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Abstract

We develop a P -multigrid solver to simulate locally preconditioned un-
steady compressible Navier–Stokes equations at low Mach numbers with
implicit high-order methods. Specifically, the high-order flux reconstruc-
tion/correction procedure via reconstruction (FR/CPR) method is employed
for spatial discretization and the high-order time integration is conducted
by means of the explicit first stage, singly diagonally implicit Runge-Kutta
(ESDIRK) method. Local preconditioning is used to alleviate the stiffness
of the compressible Navier–Stokes equations at low Mach numbers and is
only conducted in pseudo transient continuation to ensure the high-order
accuracy of ESDIRK methods. We employ the element Jacobi smoother to
update the solutions at different P -levels in the P -multigrid solver. High-
order spatiotemporal accuracy of the new solver for low-Mach-number flow
simulation is verified with the isentropic vortex propagation when the Mach
(Ma) number of the free stream is 0.005. The impact of the hierarchy of
polynomial degrees on the convergence speed of the P -multigrid method is
studied via several numerical experiments, including two dimensional (2D)
inviscid and viscous flows over a NACA0012 airfoil at Ma = 0.001, and
a three dimensional (3D) inviscid flow over a sphere at Ma = 0.001. The
P -multigrid solver is then applied to coarse resolution simulation of the tran-
sitional flows over an SD7003 wing at 8◦ angle of attack when the Reynolds
number is 60000 and the Mach number is 0.1 or 0.01.
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1 Introduction

Many industrial applications of fluids concern low speed flows and need
a fast turnaround time to obtain reasonable analysis results, especially for
turbulent flows. Efficient under-resolved turbulence simulation of low speed
flows is a promising approach to meet those industrial requirements. Due to
the superior numerical properties of high-order methods over their low-order
counterparts for coarsely resolved computations, many researches [1, 2, 3, 4]
on under-resolved simulation of turbulent flows have been conducted in re-
cent years. Among them few have discussed the simulation of low-Mach-
number flows by solving the compressible Navier–Stokes equations directly,
an important approach to tackle flow simulation at all speeds and to take full
advantage of contemporary technique development in computational fluid
dynamics (CFD). In this study, we aim to develop an efficient high-order nu-
merical framework for coarse resolution simulation of locally preconditioned
unsteady compressible Navier-Stokes equations at low Mach numbers.

There are several challenges needed to be addressed towards achieving
our research goal. First, when solving convection-dominated problems at
low Mach numbers, the accuracy of numerical methods degrades due to
the large disparities between the propagation speeds of different charac-
teristics. Moreover, the nonlinear systems, resulted from the high-order
spatiotemporal discretizations of the compressible Navier–Stokes equations,
become hard to solve due to the rapidly increasing stiffness as the Mach
number decreases to the incompressible range. To address these issues, we
employ and synergize local preconditioning techniques [5, 6, 7, 8] for un-
steady compressible Navier-Stokes equations, high-order FR/CPR spatial
discretization methods [9, 10, 11, 12], high-order implicit time integration
methods (i.e., ESDIRK) [13, 14, 15, 16], and P -multigrid [17, 18, 19, 20, 21]
in this study. We briefly review the state-of-the-art developments of these
methods/techniques, and discuss our contribution.

For low-Mach-number flows, local preconditioning essentially balances
the propagation speeds of the characteristics originated from the hyperbolic
part of the Navier–Stokes equations. Hence, the convergence of iterative
methods can be accelerated and the accuracy of numerical methods can be
preserved for low Mach flows as well. We note that in the high-order method
community, the artificial compressibility method [15, 22, 23, 24] has been
widely used for low speed flow simulation under the assumption that the flow
is incompressible. In this study, we pursue the local preconditioning method
for compressible flows due to its flexibility on solving flows of all speeds. A
comprehensive comparison of the artificial compressibility method and local
preconditioning method in the context of high-order methods is yet to be
done. Some preliminary work can be found in Ref. [8].

The FR/CPR method adopted in this study was first developed by
Huynh [9, 10], and a family of the FR/CPR methods have been substan-
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tially developed by many researchers [11, 12, 25, 26, 27]. The idea of recon-
structing the local solution polynomials by the correction procedure enables
the FR/CPR method to recover many other popular high-order methods,
such as discontinuous Galerkin (DG) [28, 29, 30, 31, 32], spectral volume
(SV) [33], and spectral difference (SD) [34, 35]. Recent researches [36, 4, 24]
have demonstrated that high-order FR/CPR methods are promising spa-
tial discretization methods for simulating complex vortex-dominated flows,
aeroacoustics and turbulent flows.

High-order explicit Runge-Kutta methods [28, 37] have been widely
used with high-order spatial discretizations to achieve high-order spatiotem-
poral accuracy due to their ease of implementation. Implicit Runge-Kutta
methods have also attracted much research interest due to their stability
advantages over the explicit methods [13, 14, 15, 16]. When implicit time
integrators are employed, Newton-Krylov methods are usually used to solve
the large nonlinear/linear systems [38, 39]. Although varying degrees of
success have been achieved, matrix-based Newton-Krylov methods suffer
from large memory consumption. By introducing an approximation of the
matrix-vector production in Krylov subspace methods, a matrix-free im-
plementation can significantly reduce the memory usage. Matrix-free im-
plementations of Newton-Krylov methods [38] for high-order methods have
been extensively studied [40, 41, 42, 43, 44, 23]. In our recent work [16],
a comparative study of various ESDIRK, Rosenbrock and backward dif-
ferentiation formula (BDF) methods has been conducted in the context of
matrix-free implementation of Newton-Krylov methods when FR/CPR is
employed for the spatial discretization. In this study, we employ ESDIRK
methods to carry out high-order time integration.

The multigrid method can be a competitive alternative of the Newton-
Krylov methods as it can significantly accelerate the convergence speed of
classic iterative methods. Jameson [45] has pioneered in applying the multi-
grid method to the fast solution of Euler equations, and since then numerous
advances have been made [46, 47, 48]. An attribute of the high-order meth-
ods is that the built-in compact nature enables a straightforward P -multigrid
implementation to accelerate the convergence speed of classic iterative meth-
ods. The P -multigrid approach has been successfully applied to solve both
Euler and Navier–Stokes equations with high-order spatial discretizations
in recent decades [17, 18, 19, 20, 21]. Helenbrook et al. [49] have analyzed
the performance of multigrid solvers for both diffusion and convection prob-
lems. They found that the anisotropic nature of convection problems can
hinder the performance of the isotropic P -multigrid method with an ele-
ment Jacobi smoother. Fidkowski et al. [18] proposed to use the element
line Jacobi smoother to improve the convergence of P -multigrid methods
for high Reynolds number flow simulation with stretched grids. To further
accelerate convergence, P -multigrid methods can be combined with the ge-
ometric multigrid methods [19, 50]. We also note that P -multigrid methods
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can serve as preconditioners for Newton-Krylov methods [39, 51].
Contributions. In this paper, we aim to develop implicit high-order flux

reconstruction methods to solve the unsteady compressible Navier–Stokes
equations at low Mach numbers with the P -multigrid acceleration tech-
nique. To better understand numerical properties of the P -multigrid solver,
numerical experiments have been conducted to study the impact of the poly-
nomial degree hierarchy on the convergence speed of the multigrid solver.
This has seldom been conducted in previous works; some preliminary re-
sults have been reported in the conference paper [52]. Our numerical ex-
periments consistently suggest that a polynomial degree hierarchy close to
{P0−P0/2−P0} or {P0−P0/2−P0/4−P0/2−P0} should be employed for
the two-level or three-level V-cycle P -multigrid solver to achieve the best
convergence acceleration, where P0 is the maximum polynomial degree used
in the P -multigrid. The P -multigrid solver has been applied to coarse reso-
lution simulation of the transitional flows over an SD7003 wing at Ma = 0.1
and 0.01.

Article Organization. The remainder of the paper is organized as follows.
In Section 2, we first review the local preconditioning method, and then
briefly introduce FR/CPR and ESDIRK methods. In Section 3, we explain
the P -multigrid method. We then present and discuss numerical results
from several 2D and 3D low-Mach-number flow simulations in Section 4.
The last section summarizes this work.

2 Numerical methods

2.1 Governing equations

On using Einstein summation convention, the compressible Navier–Stokes
equations can be written as

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0, (1)

∂(ρui)

∂t
+
∂(ρujui + δjip)

∂xj
=
∂τji
∂xj

, (2)

∂(ρE)

∂t
+
∂(ρujH)

∂xj
=
∂(uiτij −Kj)

∂xj
, (3)

where i = 1, . . . , d, and d is the size of the problem dimension. Herein, ρ
is the fluid density, ui is the velocity component, p is the pressure, E =
p/ρ
γ−1 + 1

2ukuk is the specific total energy, H = E + p
ρ is the specific total

enthalpy, τij is the viscous stress, Kj is the heat flux, and δij is the Kronecker
delta. We note that in the definition of the specific total energy, γ is the
specific heat ratio defined as γ = Cp/Cv, where Cp and Cv are specific heat
capacity at constant pressure and volume, respectively. In this study, γ is
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set as 1.4. The ideal gas law p = ρRT holds, where R is the ideal gas
constant and T is the temperature. The viscous stress tensor and heat flux
vector are given by

τij = 2µ

{
Sij −

1

3

∂uk
∂xk

δij

}
, (4)

Kj = −µCp
Pr

∂T

∂xj
, (5)

where µ is the fluid dynamic viscosity, Pr is the molecular Prandtl number,
and the strain-rate tensor Sij is defined as

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (6)

In this study, µ is treated as a constant and Pr is set as 0.72.

2.2 Local preconditioning for steady problems

Eqs. (1), (2), and (3) can be rewritten in the symbolic format as

∂q

∂t
+∇ · f = 0, (7)

where q = (ρ, ρui, ρE)T are the conservative variables and f is the flux
tensor. The local preconditioning approach employed in this study uses
primitive variables (p, ui, T )T as the working variables [7, 8]. To avoid con-
fusion, we use qc and qp to denote the conservative variables (ρ, ρui, ρE)T

and primitive variables (p, ui, T )T , respectively. One can apply the chain
rule to the temporal derivative in Eq. (7) to obtain

M
∂qp
∂t

+∇ · f = 0, (8)

where M = ∂qc/∂qp. Then the Jacobian matrix M is replaced with the
preconditioning matrix Γ . For a 3D problem, Γ reads

Γ =


Θ 0 0 0 ρT

Θu ρ 0 0 ρTu
Θv 0 ρ 0 ρT v
Θw 0 0 ρ ρTw

ΘH − 1 ρu ρv ρw ρTH + ρCp

 . (9)

where

Θ =
( 1

U2
r

− ρT
ρCp

)
. (10)

Herein, Ur is the reference velocity, which can be modeled as Ur = εc, where
c is the speed of sound. The free parameter ε is defined as

ε = min(1,max(κMa∞,Ma)), (11)
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where κ is a free parameter. The global cut-off parameter κMa∞ is employed
to prevent robustness deterioration instabilities near stagnation points. If
not specifically mentioned κ = 1.0 for all numerical simulations. The eigen-
values of the inviscid part of the preconditioned Navier–Stokes equations

Γ
∂qp
∂τ

+∇ · f = 0, (12)

in the face normal direction n are un, un, un, u
′
n + c′, u′n − c′ where [7]

un = v · n
u′n = un(1− α)

c′ =
√
α2u2

n + U2
r

α = (1− βU2
r )/2

β =
(
ρp + ρT

ρCp

)
.

(13)

Herein, v is the velocity vector. For an ideal gas, β = (γRT )−1 = 1/c2.
At low speed, when Ur approaches zero, α will approach 1

2 . All the eigen-
values will then have the same magnitude as un. Thus, the stiffness of the
compressible Navier–Stokes equations is significantly decreased. Note that
the local preconditioning method will destroy the time accuracy of Eq. (8).
Thus, the pseudo time τ is introduced here which is conventionally used in
the pseudo transient continuation to solve the nonlinear equations in both
steady and unsteady problems. For more information, the readers are re-
ferred to Refs. [7, 8].

2.3 The FR/CPR method with local preconditioning

For completeness, a brief review of the FR/CPR method [11] is presented
in this section when local preconditioning is employed. The preconditioned
Navier–Stokes equations (12)

Γ
∂qp
∂τ

+∇ · f = 0,

is defined in domain Ω which is partitioned into N non-overlapping elements
Ωe, where e = 1, 2, . . . , N . After multiplying each side by the test function
ϑ and integrating over Ωe, one obtains∫

Ωe

Γ
∂qp,e
∂τ

ϑdV +

∫
Ωe

ϑ∇ · f edV = 0 (14)

On applying the integration by parts and divergence theorem, Eq. (14) reads∫
Ωe

Γ
∂qp,e
∂τ

ϑdV +

∫
∂Ωe

ϑf e · ndS −
∫

Ωk

f e · ∇ϑdV = 0, (15)
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where n is the outward-going normal direction of the faces of the element
Ωe. In the discrete form, we assume qhp,e is the approximate solution in
element Ωe. The solution and the test function belong to the polynomial
space of degree k, i.e., qhp,e ∈ P k and ϑh ∈ P k. The ensure conservation,
f e · n in Eq. (15) is replaced with f comn , the common flux in the normal
direction of the element surfaces. Eq. (15) then reads∫

Ωe

Γ
∂qhp,e
∂τ

ϑhdV +

∫
∂Ωe

ϑhf comn dS −
∫

Ωk

fhe · ∇ϑhdV = 0. (16)

After applying integration by parts and divergence theorem again to the last
term of Eq. (16), one obtains∫

Ωe

Γ
∂qhp,e
∂τ

ϑhdV +

∫
Ωe

ϑh∇ · fhedV +

∫
∂Ωe

ϑh[f ]dS = 0, (17)

where [f ] = f comn −f locn with f locn = fhe ·n. In FR/CPR, the correction field
δe ∈ P k is defined as [11]∫

∂Ωe

ϑh[f ]dS =

∫
Ωe

ϑhδedV. (18)

Therefore, Eq. (17) can be expressed as∫
Ωe

(
Γ
∂qhp,e
∂τ

+∇ · fhe + δe

)
ϑhdV = 0. (19)

The differential form can then be obtained as

Γ
∂qhp,e
∂τ

+ P
(
∇ · fhe

)
+ δe = 0. (20)

Herein, P
(
∇ · fhe

)
is the projection of the flux divergence

(
∇ · fhe

)
, which

may not be a polynomial, onto an appropriate polynomial space. We note
that Eq.(20) can be directly derived from the differential form of the gov-
erning equations; their equivalence has been established in Ref. [53]. Specif-
ically, for quadrilateral and hexahedral elements, the correction field can be
obtained by means of tensor product of the one dimensional correction poly-
nomials; for triangular and tetrahedral elements, the readers are referred to
Ref. [54]. Only quadrilateral and hexahedral elements are considered in this
study.

A key step to solve Eq. (20) is to construct the common normal flux
f comn . The approximate Riemann solver in Ref. [7] is used to calculate the
common inviscid fluxes at the element interfaces in their normal directions
as

f comn,inv =
f+
n,inv + f−n,inv

2
− ΓR|Λ|R−1

q+
p − q−p

2
, (21)
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where superscripts ‘−’ and ‘+’ denote the left of right side of the current
interface, the subscript n is the unit normal direction from left to right,
Λ is a diagonal matrix consisting of the eigenvalues of the preconditioned
Jacobian Γ−1∂fn/∂qp, and R consists of the corresponding right eigenvec-
tors evaluated with the averaged values. The common viscous fluxes at the
element interfaces are f comn,vis = fvis(q

+
p ,∇q+

p , q
−
p ,∇q−p ). Here we need to

define the common solution qcomp and common gradient ∇qcomp at the cell
interface. On simply taking average of the primitive variables, we get

qcomp =
q+
p + q−p

2
. (22)

The common gradient is computed as

∇qcomp =
∇q+

p + r+
p +∇q−p + r−p

2
, (23)

where r+ and r− are the corrections to the gradients on the interface. The
second approach of Bassi and Rebay (BR2) [55] is used to calculate the
corrections.

2.4 ESDIRK with dual-time stepping

The ESDIRK methods for the 3D compressible Navier-Stokes equa-
tion (7) can be written as

qn+1
c = qnc + ∆t

∑s
i=1 biR(qic),

qic = qnc , i = 1,

qic = ∆tωR(qic) + qnc + ∆t
∑i−1

j=1 aijR(qjc), i = 2, . . . , s,

(24)

where i is the stage number, s is number of total stages, n denotes the
physical time step and R = −∇ · f . The second-order, three-stage ES-
DIRK2 [14], third-order, four-stage ESDIRK3 [13] and fourth-order, six-
stage ESDIRK4 [13] methods are studied in this paper. Note that the tem-
poral discretization is for conservative variables. In every stage except the
first one, a nonlinear system is to be solved, which can be expressed as

F (qic) =

(
− 1

ω∆t
qic +R(qic)

)
+

1

ω∆t

qnc + ∆t
i−1∑
j=1

aijR(qjc)

 , i = 2, . . . , s.

(25)
Since qc is de facto a function of qp, Eq. (25) can be reformulated as

F (qip) =

(
− 1

ω∆t
qic(qp) +R(qip)

)
+

1

ω∆t

qnc (qp) + ∆t

i−1∑
j=1

aijR(qjp)

 , i = 2, . . . , s.

(26)
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A dual-time stepping procedure for the i-th stage reads

Γ
qm+1,i
p − qm,ip

∆τ
= F (qm+1,i

p ), (27)

where m is the iteration step for the pseudo-transient continuation. This
procedure can ensure that the preconditioning is only enforced in the pseudo-
time marching. Therefore, the accuracy of ESDIRK can be preserved.
Eq. (27) can be linearized as(

Γ

∆τ
+
M

ω∆t
− ∂R

∂qp

)m
∆qm,ip = F (qm,ip ), (28)

where ∆qm,ip = qm+1,i
p − qm,ip . As a result, the solution can be updated as

qm+1,i
p = qm,ip +A−1F (qm,ip ), (29)

where A =
(
Γ

∆τ + M
ω∆t −

∂R
∂qp

)m
. In order to save the memory usage, the

smoothing step is conducted as

qm+1,i
p = qm,ip + αrD

−1F (qm,ip ), (30)

where D is the block diagonal matrix of A and αr is a relaxation parameter
which is set as one in this study. The smoother is referred to as the element
Jacobi smoother. We employ a modified successive evolution relaxation
(SER) algorithm [56] to update the Courant-Friedrichs-Lewy (CFL) number
as

CFL0 = CFLinit, CFL
m+1 = min

CFLm( ||F ||m−1
L2

||F ||mL2

)1.5

, CFLmax

 .

(31)
The CFL number in this study is calculated from

CFL =
∆τ

∆τmin
, (32)

where ∆τmin is ∆τmin = min(∆τinv,∆τvis) with ∆τinv and ∆τvis defined as

∆τinv = min

{(
∆x/(P + 1)

c+ |v|

)
e

}
, and ∆τvis = min

{(
[∆x/(P + 1)]2

µ/ρ

)
e

}
.

(33)
∆x is twice as the minimum distance of the barycenter of element Ωe to
its surfaces. We note that the growth ratio in Eq. (31) is fixed at 1.5; a
larger value will make the SER method more aggressive. In order to avoid
instabilities, we only employ moderately large CFLmax or ∆τmax in this
study.
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Figure 1: Illustration of a typical three-level V-cycle of the P -multigrid
method.

3 The P -multigrid method

To avoid confusion, we neglect the subscript ‘p’ in the working variable qp
in this section. Consider a typical three level V-cycle P -multigrid method.
The hierarchy of the polynomial degrees is {P0−P1−P2−P1−P0}, where
P0 is the maximum polynomial degree used in the cycle. One needs to solve
a nonlinear system at each level expressed as

F P0(qP0
)− SP0 = 0, (34)

F P1(qP1
)− SP1 = 0, (35)

F P2(qP2
)− SP2 = 0, (36)

where F is defined in Eq. (26) for unsteady problems and F = −∇ · f
for steady problems. The subscripts P0, P1 and P2 denote the polynomial
degrees at the corresponding level. SP0 , SP1 and SP2 are referred to as
forcing terms. Note that

SP0 = 0. (37)

The procedure of a three-level V-cycle P -multigrid method is illustrated
in Figure 1. The superscript ‘b’ means before smoothing, ‘a’ means after
smoothing and ‘c’ means corrected solution at the current P -level. Specifi-
cally, the procedure of a typical three-level V-cycle P -multigrid method can
be organized as follows [18, 20, 21]:

• Before smoothing, the initial value of q at the first level is qbP0
. Smooth

Eq. (34) using the element Jacobi smoother Eq. (30) for a few steps.
The primitive variables after smoothing is expressed as qaP0

.
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• The defect at the first level

dP0 = SP0 − F P0(qaP0
). (38)

Restrict qaP0
from the first level to the second level as

qbP1
= PP0

P1
qaP0

, (39)

where qbP1
is the initial solution at the second level, and PP0

P1
indicates

a projection from the first level (i.e., P0) to the second level (i.e., P1).
Calculate the forcing term at this level as

SP1 = F P1(qbP1
) + PP0

P1
dP0 (40)

• Smooth Eq. (35) using the element Jacobi smoother Eq. (30) for a few
steps to obtain the smoothed solution qaP1

at the second level. Update
F as F P1(qaP1

) afterwards.

• The defect at the second level is

dP1 = SP1 − F P1(qaP1
). (41)

Restrict the solution qaP1
from the second level to the third level as

qbP2
= PP1

P2
qaP1

. (42)

qbP2
is the initial solution at the third level. Calculate the forcing term

at the third level as

SP2 = F P2(qbP2
) + PP1

P2
dP1 (43)

• Smooth Eq. (36) using the element Jacobi smoother Eq. (30) for a few
steps to obtain the smoothed solution qaP2

at the third level.

• Correct the solution at the intermediate (second) level with a prolon-
gation procedure as

qc,bP1
= qaP1

+ IP2
P1
CP2 , (44)

where CP2 = qaP2
− qbP2

, and IP2
P1

is an interpolation from the third
level (i.e., P2) to the second level (i.,e, P1).

• Post-smooth Eq. (35) using the element Jacobi smoother Eq. (30) for

a few steps with starting value qc,bP1
to obtain the smoothed solution

qc,aP1
at the second level.

• Correct the solution at the finest (first) level as

qc,bP0
= qaP0

+ IP1
P0
CP1 (45)

where CP1 = qc,aP1
− qbP1

.
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• Post-smooth Eq. (34) using the element Jacobi smoother Eq. (30) for a

few steps with starting value qc,bP0
to obtain the smoothed solution qc,aP0

at the finest level. qc,aP0
is the final solution of qP0

after one V-cycle.

To simplify the notation, we use P{P0 − P1 − P2} to denote a three-level
V-cycle P -multigrid solver, in which the hierarchy of the polynomial degrees
is {P0−P1−P2−P1−P0}. The number of iterations of pre-smoothing and
post-smoothing at the same level are identical. Therefore, we employ I{n0−
n1−n2} to denote the numbers of iterations in the smoothing procedure at
different levels.

4 Numerical results

4.1 Validation of spatiotemporal order of accuracy

In this section, we employ the isentropic vortex propagation problem at
low free stream Mach numbers to validate the order of accuracy for both spa-
tial discretizations and time integrations. The free stream has the following
flow conditions: (ρ, u, v,Ma∞) = (1.0, 1.0, 1.0, 0.005), and the fluctuation is
defined as [15] 

δu = − α
2π (y − y0)eφ(1−r2),

δv = α
2π (x− x0)eφ(1−r2),

δT = −α2(γ−1)
16φγπ2 e

2φ(1−r2),

dS = 0,

(46)

where φ = 1
2 and α = 5 are parameters that define the vortex strength.

r = (x− x0)2 + (y − y0)2 is the distance from any point (x, y) to the center
of the vortex (x0, y0) = (0, 0) at t = 0. The periodic domain is defined in
[−10, 10]2. At Ma∞ = 0.005, the variation of the temperature T is trivial
as well as the density ρ and the pressure p. Therefore, this is a very good
case to test the low dissipation and high resolution natures of high-order
methods.

Since there are no wall boundaries in this problem, the global cut-off is
turned off. This indicates that ε is set as the local Mach number instead
of that in Eq. (11). For the time refinement study, the P 5 (i.e., 6th order)
FR scheme is employed to solve the problem on a 50× 50 mesh to validate
the order of accuracy for ESDIRK methods. We simulate this problem for
one period, i.e., tend = t̃ = 20. A three-level V-cycle P -multigrid solver of
P{5−3−1} serves as the nonlinear solver. I{20−20−40} is adopted as the
number of iterations for smoothing at different levels. We set ∆τinit = 0.01
and ∆τmax = 10 directly instead of providing the initial and maximum
value of CFL for the pseudo transient continuation. The element Jacobi
smoother is updated every 10 pseudo iterations. The convergence tolerance
of the pseudo transient continuation is tolpseudo = 10−4. Numerical results
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Table 1: Time refinement study of the ESDIRK methods on solving the
isentropic vortex propagation at Ma∞ = 0.005.

∆t ρ order u order p order

ESDIRK2
t̃/100 3.6483e-07 9.8315e-12 4.6706e-08

t̃/200 9.3321e-08 1.97 2.4997e-12 1.98 1.1868e-08 1.98

t̃/400 2.3385e-08 2.00 6.2593e-13 2.00 2.9651e-09 2.00

ESDIRK3
t̃/100 1.8968e-07 3.0862e-12 4.1661e-08

t̃/200 2.8674e-08 2.73 4.6512e-13 2.73 7.3317e-09 2.51

t̃/400 3.7789e-09 2.92 6.0674e-14 2.94 1.0117e-09 2.86

ESDIRK4
t̃/40 9.3385e-08 1.8414e-12 1.3238e-08

t̃/80 6.6311e-09 3.82 1.2589e-13 3.87 5.6713e-09 3.73

t̃/120 4.8141e-09 0.79 2.5137e-14 4.00 9.9590e-10 1.39

Table 2: Grid refinement study of the FR methods on solving the isentropic
vortex propagation at Ma∞ = 0.005. L is the length of the periodic domain
in the x or y direction.

∆x ρ order u order p order

P 3FR
L/12 3.4712e-08 1.0335e-12 1.6424e-08
L/24 3.2835e-09 3.40 5.0024e-14 4.37 7.8227e-10 4.39
L/36 2.6967e-09 0.49 1.0237e-14 3.91 4.2379e-10 1.51

P 4FR
L/12 7.5699e-09 1.4991e-13 3.3548e-09
L/24 1.6704e-09 2.18 5.6887e-15 4.72 2.2024e-10 3.93
L/36 1.6553e-09 0.02 1.0253e-15 4.23 1.9209e-10 0.34

of the time refinement study are presented in Table 1. It is observed that
all ESDIRK methods converge to the nominal order of accuracy except that
order of reduction is observed for ESDIRK4 when the errors of ρ or p are
considered.

The grid refinement study is conducted on a 12×12, 24×24, and 36×36
mesh set. ESDIRK4 is used for the time integration and ∆t = t̃/200. We
only simulate this problem for tend = 2. The hierarchies of the polynomial
degrees of the P -multigrid solvers are P{3 − 2 − 1} and P{4 − 2 − 1} for
P 3 and P 4 FR schemes, respectively. As shown in Table 2, FR methods
can preserve the nominal order of accuracy for velocity. However, there are
order reductions for both ρ and p due to that the errors quickly drop to the
accuracy limit of the solver as we refine the grids.

4.2 The impact of the hierarchy of polynomial degrees

As aforementioned, we intend to study the impact of the hierarchy of
polynomial degrees on the convergence speed of the two-level and three-level
P -multigrid solvers. The FR schemes with P 3, P 4 and P 5 solution construc-
tion are tested in this section. For all P -multigrid solvers, the polynomial
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degree at the lowest level is no less than one. For the P 3 FR discretization,
possible configurations of the hierarchy of polynomial degrees are P{3− 2},
P{3−1} and P{3−2−1}. For the P 4 FR discretization, possible setups are
P{4− 3}, P{4− 2}, P{4− 1}, P{4− 3− 2}, P{4− 3− 1} and P{4− 2− 1}.
The following combinations for the P 5 FR discretization are studied, i.e.,
P{5−3}, P{5−2}, P{5−1}, P{5−4−1}, P{5−3−1} and P{5−2−1}. For
all the studies in this section, if not specifically mentioned, CFLinit = 102,
CFLmax = 105 and I{5− 10− 20} is employed as the numbers of iterations
for the smoothing procedure at different levels.

4.2.1 Inviscid flow over a NACA0012 airfoil

We first simulate the inviscid flow with Ma = 0.001 over a NACA0012
airfoil. The mesh that has 1560 quadrilateral elements is presented in Fig-
ure 2. The curved wall boundary is represented by P 4 elements. Note that
the mesh is clustered near the wall to facilitate viscous simulation that will
be presented in the next subsection. We use I{5−10−20} for the smoothing
procedure in the three-level P -multigrid solver, I{5 − 10} for the two-level
P -multigrid solver and I{10} for the single-level solver.

We present the fields of the normalized pressure pnorm = p−pmin

pmax−pmin
and

Mach number in Figure 3. We observe that no pressure oscillations occur
near the stagnation point on the leading edge. Convergence histories are
present in Figure 4, Figure 5 and Figure 6. The convergence performance
with the P -multigrid method has a significant improvement over that with
a single level iterative method in terms of both CPU time and number of
V-cycles, especially when three-level methods are employed. In general, a
three-level V-cycle P -multigrid method converges faster than a two-level
V-cycle method.

When examining the convergence histories of the two-level P -multigrid
methods carefully, we find that if the hierarchy of polynomial degrees devi-
ate from {P0 − P0/2 − P0}, the performance of the P -multigrid solver will
get worse. For the P 3 FR method, P{3 − 2} and P{3 − 1} have almost
the same computational cost. However, when the polynomial degree in-
creases, P{4−1} and P{5−1} have the worst convergence speed compared
to their counterparts. Additionally, P{4− 1} and P{5− 1} perform better
than a single level method when the residual is above 10−6. However, when
the residual further decreases, almost no acceleration can be gained from
these two P -multigrid solvers. On the contrary, P{4 − 2} has the fastest
convergence speed in all the two-level methods in Figure 5; for the P 5 FR
method, P{5 − 3} and P{5 − 2} have almost the same convergence speed.
The above observations suggest that when the difference of the polynomial
degrees between two adjacent levels is excessively large, the correction on
the finer level from the coarser level becomes less effective when the resid-
ual becomes smaller, and the ineffective correction can even deteriorate the
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(a) (b)

Figure 2: Unstructured meshes around a NACA0012 airfoil. (a) A global
view and (b) a close-up view near the airfoil.

convergence rate. Similarly, for the three-level V-cycle P -multigrid method,
P{4− 2− 1} has the best performance in Figure 5; the convergence perfor-
mance of P{5 − 3 − 1} and P{5 − 2 − 1} are close to each other and both
better than that of P{5−4−1}. In summary, to achieve better convergence
performance, the difference of the polynomial degrees between two adjacent
levels should be close to half of the polynomial degree at the finer level.

4.2.2 Viscous flow over a NACA0012 airfoil

The viscous flow over a NACA0012 airfoil at Ma = 0.001 and Re = 5000
is studied in this subsection. We use the same mesh as that presented in
Figure 2.

The convergence histories of different P -multigrid solvers are presented
in Figure 8, Figure 9 and Figure 10. Similar to the observations in Sec-
tion 4.2.1, for two-level methods, P{3 − 1} and P{3 − 2} have a similar
performance in terms of both CPU time and number of V-cycles; P{4− 2}
is the best in all two-level methods for the P 4 FR discretization; the con-
vergence performance of P{5− 3} and P{5− 2} is close to each other. For
P{5− 1}, the residual starts to oscillate after it drops below 10−4 and fails
to converge. This indicates that the ‘correction’ from the coarser level no
longer favors the convergence at the finer level, and even worse, it intro-
duces new errors that lead to failure of further convergence. For three-level
methods, we observe that the P -multigrid solvers which adopt a polynomial
degree hierarchy close to {P0 − P0/2− P0/4− P0/2− P0} tend to have the
best performance. This is consistent with the observation from numerical
experiments for the inviscid flows.
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(a) (b)

Figure 3: (a) Normalized pressure field and (b) Ma number field of the
inviscid flow over a NACA0012 airfoil at Ma = 0.001.
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Figure 4: Convergence histories of different P -multigrid solvers for the P 3

FR discretization when solving the inviscid flow over a NACA0012 airfoil at
Ma = 0.001.
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Figure 5: Convergence histories of different P -multigrid solvers for the P 4

FR discretization when solving the inviscid flow over a NACA0012 airfoil at
Ma = 0.001.
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Figure 6: Convergence histories of different P -multigrid solvers for the P 5

FR discretization when solving the inviscid flow over a NACA0012 airfoil at
Ma = 0.001.
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(a) (b)

Figure 7: (a) Normalized pressure field and (b) Ma number field of the
viscous flow over a NACA0012 airfoil at Ma = 0.001 and Re = 5000.

4.2.3 Inviscid flow over a sphere

In this subsection, we examine the convergence performance of P -multigrid
solvers with different hierarchies of polynomial degrees for 3D problems. We
only consider the inviscid problem since it has been demonstrated in previ-
ous numerical experiments that the convergence performances of multigrid
solvers for inviscid and convection-dominated viscous flows are similar. The
inviscid flow of Ma = 0.001 over a sphere is studied here. To save computa-
tional cost, only a quarter of the sphere is considered. The mesh with 336
elements is shown in Figure 11. The curved surfaces are represented by P 3

elements. The normalized pressure and Mach number contours are given in
Figure 11. The residual histories of the P 3 and P 4 FR discretization with
different hierarchies of polynomial degrees are presented in Figure 12 and
Figure 13, respectively. In general, the performances of different P -multigrid
solver are consistent with previous findings.

4.3 Under-resolved simulation of the transitional flows over
an SD7003 wing

As a last step, we apply the P -multigrid solver to simulate the transi-
tional flows over an SD7003 wing. The Reynolds number of the inflow based
on the chord length C of the wing is 60000. The angle of attack of the inflow
is 8◦. Two Mach numbers are studied, namely Ma = 0.1 and Ma = 0.01.
The mesh employed for this study is illustrated in Figure 14. There are
26320 hexahedral elements in total. The height of the first layer near the
wing is 0.0003C. Quadratic elements are used to represent the curved wall
boundaries. The mesh is obtained by extruding the 2D mesh along the span-
wise direction by 0.2C and 10 layers are allocated in the spanwise direction.
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Figure 8: Convergence histories of different P -multigrid solvers for the P 3

FR discretization when solving viscous flow over a NACA0012 airfoil at
Ma = 0.001 and Re = 5000.
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Figure 9: Convergence histories of different P -multigrid solvers for the P 4

FR discretization when solving the viscous flow over a NACA0012 airfoil at
Ma = 0.001 and Re = 5000.
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Figure 10: Convergence histories of different P -multigrid solvers for the P 5

FR discretization when solving the viscous flow over a NACA0012 airfoil at
Ma = 0.001 and Re = 5000.

X
Y

Z

X
Y

Z

Pnorm: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X
Y

Z

Ma: 0.0001 0.0003 0.0005 0.0007 0.0009 0.0011 0.0013

(a) (b) (c)

Figure 11: Inviscid flow over a sphere at Ma = 0.001. (a) Meshes in the near-
wall region, (b) contour of the normalized pressure pnorm and (c) contour of
the Mach number.
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Figure 12: Convergence histories of different P -multigrid solvers for the P 3

FR discretization when solving the inviscid flow over a sphere at Ma = 0.001.
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Figure 13: Convergence histories of different P -multigrid solvers for the P 4

FR discretization when solving the inviscid flow over a sphere at Ma = 0.001.
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(a) (b)

Figure 14: Meshes around an SD7003 wing for under-resolved transitional
flow simulation. (a) A global view and (b) a close-up view near the wing.

A three-level P -multigrid solver, i.e., P{3 − 2 − 1}, is used to solve the
nonlinear systems. When Ma = 0.1, I{5 − 5 − 10} is employed for the
smoothing procedure at each level and when Ma = 0.01, I{10− 10− 16} is
used. The physical time step size is set as ∆t = 0.002 for both simulations.
Instead of providing CFL for the pseudo transient continuation, we set
∆τinit and ∆τmax directly as ∆τinit = 0.001 and ∆τmax = 0.05 for both
cases. When Ma = 0.1, we update the element Jacobi smoother every 10
steps; when Ma = 0.01, we update it every 20 steps. If ∆τ = ∆τmax, the
smoother will not be updated anymore. We require the relative residual of
the pseudo transient continuation to drop three orders, i.e., tolpseudo = 10−3,
during each physical time step. The second order backward differentiation
formula (BDF2) is used to perform simulations until t = 3 to obtain the
initial flow fields. ESDIRK2 is then employed to restart both simulations
while the physical time is reset as t = 0. The instantaneous solutions in the
time slot t ∈ [14, 18] are used for statistics. The global cut-off parameter
κ in Eq. (11) is set as 1.0 for Ma = 0.1 and 2.5 for Ma = 0.01. A slightly
larger κ for Ma = 0.01 can accelerate the convergence speed.

An instance of the isosurface of the Q-criterion where Q = 500 colored
by the streamwise velocity u when Ma = 0.01 is presented in Figure 15.
The corresponding time-averaged fields of normalize pressure and Ma are
presented in Figure 16. We note that the time-averaged flow fields when
Ma = 0.1 are very similar to those when Ma = 0.01. Therefore, they are not
presented here for brevity. The time-averaged surface pressure coefficient
Cp and friction coefficient Cf of the suction side are illustrated in Figure 17.
The predicted Cl, Cd, separation point xs and reattachment points xr are
documented in Table 3. The lift predictions of our current work have a
good agreement with the previous experimental and numerical results. All
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Figure 15: Iso-surfaces of the Q-criterion colored by the instantaneous
streamwise velocity u at Ma = 0.01. In this case, the value of Q is set
as 500.

numerical studies over-predict the drag compared to the experiment by Selig
et al. [57]. A general trend in previous numerical studies is that when
the Mach number becomes smaller, the lift generation will decrease. This
trend has been observed in the current work. Few works can be found in
literature using high-order methods to simulate this problem at Ma = 10−2.
At low speeds, the artificial compressibility method is usually employed with
high-order methods [15]. In our current work, when the Ma decreases from
Ma = 0.1 to Ma = 0.01, the separation bubble becomes longer, and the lift
production is reduced. It is not clear whether this is due to the dissipation
introduced by larger κ or the weak compressibility of fluid at different Mach
numbers. We note that in our previous work, it has been demonstrated
that weak compressibility has a non-negligible effect on thrust generation of
flapping wings at low Mach numbers [8]. More investigations remain to be
conducted to unravel this open question.

The stiffness of the compressible Navier–Stokes equations will signifi-
cantly increase when the Mach number is reduced from 0.1 to 0.01. There-
fore, it is expected that the P -multigrid solver needs more iterations to
converge. Instantaneous convergence histories of the relative residual for
different Ma numbers when the flows are fully developed are shown in Fig-
ure 18. When Ma = 0.1, the relative residual in the 2nd stage and 3rd
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(a) (b)

Figure 16: Mean flow fields of the transitional flow over an SD7003 wing at
Ma = 0.01. (a) Contour of the normalized pressure pnorm and (b) contour
of the Mach number.

Table 3: A comparison of the predicted Cd, Cl, separation points xs and
reattachment point xr of the transitional flow over an SD7003 wing between
the current study and previous ones.

Condition Cl Cd xs/C xr/C Method
Current Ma = 0.1 0.920 0.048 0.032 0.326 P 3 FR
Current Ma = 0.01 0.913 0.053 0.030 0.364 P 3 FR

Vermeire et al. [58] Ma = 0.2 0.941 0.049 0.045 0.315 P 4FR
Beck et al. [59] Ma = 0.1 0.923 0.045 0.027 0.310 P 3 DG
Beck et al. [59] Ma = 0.1 0.932 0.050 0.030 0.336 P 7 DG

Galbriath &Visbal [60] Ma = 0.1 0.91 0.043 0.04 0.28 O(h6) FD
Bassi et al. [15] Incompressible 0.962 0.042 0.027 0.268 P 3 DG
Bassi et al. [15] Incompressible 0.953 0.045 0.027 0.294 P 4 DG
Selig et al. [57] Experiment 0.92 0.029
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Figure 17: (a) Time-averaged surface pressure coefficient Cp and (b) time-
averaged surface friction coefficient Cf of the suction side.

stage of ESDIRK2 can be decreased by three orders of magnitude within
14 pseudo iterations; but when Ma = 0.01, 49 and 44 pseudo iterations are
needed, respectively. Note that more iterations are used for the smoothing
procedure at different levels for the P -multigrid solver when Ma = 0.01 (re-
call that I{5− 5− 10} is used for Ma = 0.1 and I{10− 10− 16} is used for
Ma = 0.01). This indicates that the computational cost of smoothing when
Ma = 0.01 is approximately as much as six times of that when Ma = 0.1.
Much effort is still needed to further improve the computational efficiency
of the P -multigrid solver for flow simulation at very low Mach numbers.

5 Conclusions

We have developed a P -multigrid solver to solve the nonlinear systems
resulted from implicit high-order FR discretization of the locally precondi-
tioned unsteady compressible Navier-Stokes equations at low Mach numbers.
Specifically, high-order FR is employed for spatial discretization, and ES-
DIRK is employed for time integration. Local preconditioning is coupled
with ESDIRK methods and is only enforced in the pseudo transient contin-
uation procedure to preserve the accuracy of ESDIRK methods. High-order
spatiotemporal accuracy is preserved for numerical simulation of low-Mach-
number flows.

Through various numerical experiments, we found that for a two-level P -
multigrid solver, if the solver has a polynomial hierarchy close to {P0−P0/2−
P0}, it would most likely have the best convergence performance. If the
difference of the polynomial degrees between these two levels are excessively
large, the correction from the coarser level may not only deteriorate the
convergence speed, but also introduce new errors to the solution at the finer
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Figure 18: Typical convergence histories of the relative residual for the
pseudo transient continuation at the (a) second and (b) third stages of ES-
DIRK2 when simulating the transitional flow over an SD7003 wing.

level. This can possibly lead to failure of convergence. Similarly, for a three-
level P -multigrid solver, a polynomial hierarchy close to {P0−P0/2−P0/4−
P0/2− P0} is suggested.

We have demonstrated the capability of the implicit high-order FR meth-
ods with P -multigrid acceleration on conducting under-resolved turbulence
simulation at moderate Reynolds numbers and low Mach numbers. Numer-
ical results have a reasonable agreement with those from previous studies.
We note that simulating massively turbulent flows at very low Mach numbers
is challenging even with local preconditioning and P -multigrid acceleration.
To further accelerate turbulent flow simulation at very low Mach numbers,
the Newton-Krylov methods with the P -multigrid preconditioner can be
among promising candidates. This is our future work.
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