

A 50mK test bench for the demonstration of the readout chain of Athena/X-IFU

Florent Castellani^{1,2}, Sophie Beaumont^{1,3,5}, François Pajot¹, Gilles Roudil¹, Joseph Adams^{3,5}, Simon Bandler³, James Chervenak³, Christophe Daniel², Edward Denison⁶, William Doriese⁶, Michel Dupieux¹, Malcolm Durkin⁶, Hervé Geoffray², Gene Hilton⁶, David Murat¹, Yann Parot¹, Philippe Peille², Damien Prêle⁴, Laurent Ravera¹, Carl Reintsema⁶, Kazuhiro Sakai^{3,5}, Robert Stevens⁶, Joel Ullom⁶, Leila Vale⁶, Nicholas Wakeham^{3,5}

¹IRAP, Univ. de Toulouse, CNRS, UPS, CNES, Toulouse, France - ²CNES, Toulouse, France - ³NASA/Goddard Space Flight Center, Greenbelt, USA - ⁴APC, Paris, France - ⁵CSST, Univ. of Maryland, Baltimore County, USA - ⁶NIST, Gaithersburg, USA

1. ATHENA'S X-RAY INTEGRAL FIELD UNIT

2. ELSA: A CRYOGENIC TEST BENCH

Figure 1: Athena spacecraft (ESA/IRAP/CNRS/UT3/CNES/Fab&Fab)

- ATHENA (Advanced Telescope for High-Energy Astrophysics) is the ESA second large mission of the Cosmic Vision science program, dedicated to the study of the Hot and Energetic Universe
- Scheduled for launch in the mid 2030's into a Lagrange point L1 orbit
- The moveable silicon pore optics X-ray mirror will able to focus photons on two different focal plane instruments:
 - the Wide Field Imager (WFI) optimised for surveys
 - the X-ray Integral Field Unit (X-IFU) optimised for spatially resolved high resolution spectroscopy [1]
- The X-IFU is a microcalorimeter spectrometer based on an array of ~2400 pixels of Transition Edge Sensors (TES), operated around 90mK. It is built under the responsibility of IRAP and CNES by a consortium of 11 European countries plus USA and Japan.

Figure 2: X-IFU focal plane assembly (Credits: SRON)

Spectral resolution	2.5 eV (E < 7 keV)
Field of view	5' (equivalent diameter)
Pixel size	~ 5" (~mirror PSF HEW)
Background level	<5 10 ⁻³ count/s/cm ² /keV
Energy band	0.2 - 12 keV
Effective area	1.4 m² at 1 keV 0.17 m² at 7 keV
Count rate capability	1mCrab (2.5 eV) up to 1 Crab (10eV)

Figure 4: The CNES / IRAP 50mK cryogenic test bench (Elsa)

- To demonstrate the operation of the warm electronics blocs of the X-IFU readout chain with representative cold electronics and microcalorimeters, a cryogenic test bench has been developed at IRAP in collaboration with CNES. It is composed of:
 - A cryostat from Entropy Gmbh based on a double stage pulse tube cooler (70K and 4K) and a double stage Adiabatic Demagnetisation Refrigerator (ADR) (500mK and 50mK)
 - A focal plane assembly from NIST and GSFC made of a 1024-pixel TES array and its associated cold electronics (NIST)
- Characterisation of the thermal performances of the cryostat has been performed with the Goddard and \bigcirc NIST cold detection chain installed:
 - The temperature stability is ~ 5μ K rms
 - The hold time for one ADR recharge ~ 15h at 55mK. It allows long enough acquisitions to make high-resolution spectra
 - In agreement with values measured during cryostat characterisation [3]

32 x 32 TES array

Figure 3: X-IFU key parameters (from [2])

3. CHARACTERISTICS AND PERFORMANCES OF THE CURRENT READOUT CHAIN ON ELSA

stalled in its remote controlled filter

wheel allowing to control the source flux

Figure 7: The Tower, connected with HDMI cables to the TDM row box

Figure 8: The TDM readout electronics (K. Sakai, NASA/GSFC) composed by the row box on top of the column box

- A warm readout chain composed by Goddard and NIST electronics allows the characterisation of the 50mK test bench.
 - The "Tower" (NIST) includes low-noise amplifiers for TES signals, TES and SQUIDs biases, and feedthrough for feedback signals and row addressing signals (Fig. 7)
- The TDM electronics (NASA/GSFC), is composed by the Row box that controls the row addressing and the Column box that performs • the FLL (flux locked-loop) and demultiplexes the output signals (Fig. 8) up to 2 separated columns
- In order to perform a functional validation of the X-IFU warm readout chain, a 3eV or better FWHM energy resolution for a multiplexed acquisition is sufficient.
- Optimisation of the SNR is performed through a careful EMI/EMC analysis and control implementation:
- As done on NIST and GSFC systems, a strict grounding scheme was implemented on the 50mK test bench: all measurement electronics and cryostat system electronics have been grounded through a single copper braid. A metal cable path tray was installed between cryostat structure and measurement electronic rack.

Figure 5: Nb shield attached to the 50mK plate and the 3K cold electronics

Figure 6: The SNOUT is composed by kilo-pixel TES array and associated SQUIDs

4. X-IFU WARM READOUT CHAIN VALIDATION

Figure 11: The Digital Readout Electronics Row Addressing and Synchronisation (DRE RAS) module

- The X-IFU detection and readout chain is composed of:
- The TES array (NASA GSFC) [5]
- The cold front-end electronics: Flux Actuated Switches, SQUID 1 (NIST) [6]

Figure 12: Demonstration model of the Warm Front-End Electronics (D. Prele, APC, Paris)

- An isolation transformer allows to isolate the measurement electronics from any power supply disturbance. ٠
- High-Frequency filtering is implemented at cryostat feedthroughs: The magnet power-supply is filtered with Shaffner Single-stage Filter FN2410/FN2412 and LEMO plugs for thermometry are filtered with 560pF capacitor EEseal filter performing a low-pass filter at 100 kHz
- A radioactive Fe55 X-ray source allows the end-to-end characterisation (Mn K α complex at 5.9 keV) \bigcirc
 - A remote controlled filter wheel (Fig. 10) selects a specific absorber (Mylar and Al films) to have the adequate count rate (~1 photon/pixel/sec)
 - The alignment of the TES array with the optical axis, and the Fe-55 source, has been checked (less than 1 mm deviation)
- A preliminary validation of the current \bigcirc NASA/GSFC and NIST detection chain performance in the Elsa test bench was performed:
 - 2.8 eV FWHM energy resolution measured on single channel
 - 3.1 eV energy resolution measured with 8 multiplexed pixels (Fig. 10)
 - These have to be compared to the performance of this detection chain in GSFC cryostat: 2.1 eV / 2.6 eV respectively [4]

processed with Goddard software

- The cold amplifier: SQUID array (VTT / NIST) [7]
- The WFEE (Warm Front-End Electronics) (APC) [8]
- The DRE (Digital Readout Electronics) (IRAP) [9]
- The prototypes of the WFEE and DRE will replace the corresponding Goddard and NIST electronics of the 50mK test bench in order to perform the end-to-end demonstration of the X-IFU readout chain:
 - The TDM row box will be replaced by the DRE Row Addressing and Synchronisation module (Fig. 11) developed at IRAP, Toulouse (ongoing)
 - The TDM column box by the DRE DEMUX (demultiplexing) module (during the current year)
 - The "Tower" will be replaced by the WFEE (Warm Front-End Electronics) (Fig. 12) developed at APC, Paris (next year)
 - WFEE and DRE are differential readout electronics: the current single-ended detection chain will be adapted by a replacement of the 3K amplifying electronics (Fig. 5) and harnesses.
- A software framework is developed by CNES, XIFUFWK, based on open-source Python, designed to analyse \bigcirc data from the future X-IFU instrument. XIFUFWK is currently under validation on the 50mK test bench.

References:

[1] Barret et al., 2018, Proceedings SPIE, Vol. 10699, 106991G [8] Geoffray et al., 2020, Proceedings SPIE, Vol. 11444, 114440X [2] Pajot et al., 2018, 2018, JLTP, Vol.193, 901 [9] Ravera et al., 2018, Proceedings SPIE, Vol. 10699,106994V [3] Betancourt-Martinez et al., 2021, SPIE, Vol. 11444, 1144401 [4] Beaumont et al., 2022, JLTP SPIE. [5] Smith et al., 2021, IEEE TAS, Vol. 31, no. 5, 2100806 [6] Doriese et al., 2016, JLTP, Vol.184, 389 [7] Kiviranta et al., 2021, IEEE TAS, Vol. 31, no. 5, 9357957

Montreal 2022