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ABSTRACT
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Functional magnetic resonance imaging (fMRI) captures the blood-oxygen-level-dependent

(BOLD) response and has been a valuable tool for understanding human brain function.

Data-driven techniques have proven to be very effective in fMRI analysis and identified

unique biomedical patterns in neurological disorders such as in schizophrenia (SZ), atro-

phy, degenerative dementias, Alzheimer’s disease, and many others. There are a number

of data-driven techniques developed for fMRI analysis to extract functional networks and

their associated properties, but there are still a number of important challenges. First, there

is a need to better understand the properties of different approaches to be able to select the

best method for a given scenario. Then, a big challenge has been capturing the subject

variability while simultaneously performing analysis on multi-subject fMRI. This moti-

vates the development of a method that is able to preserve variabilities across datasets,

so that one can identify statistically significant groupings of subjects, another major re-

search thrust in medical imaging. Finally, besides investigating static functional patterns,

extracting dynamic features to study brain dynamics is becoming important due to the ev-

idence that brain functional patterns exhibit changes during the scanning period of fMRI.

Both BOLD activity and functional network connectivity (FNC) are shown to be related

to mental and cognitive processes. However most previous dynamic studies only conduct

a dynamic FNC (dFNC) analysis and few studies have evaluated the inter-relationships of

these two domains of function. It is desirable to incorporate dynamic BOLD activity (dBA)



to gain insight into the activity-connectivity co-evolution in the study of brain dynamics.

In this dissertation, we address these challenges by working within the source separa-

tion umbrella for fMRI analysis. We first demonstrate that jointly incorporating multiple

types of diversity is more desirable by proposing the use of objective global metrics to

assess the performance of different data-driven algorithms—independent component anal-

ysis (ICA), dictionary learning, and sparse version of ICA—that each make use of different

types of diversity. Independent vector analysis (IVA) extends ICA to multiple datasets by

additionally making use of dependence across datasets, and hence can preserve the cor-

relation structure across datasets but suffers from the dimensionality issue. We develop a

new method, IVA for common subspace analysis (IVA-CS) for subspace analysis of multi-

subject fMRI by leveraging the strengths of IVA and addressing the dimensionality issue.

We show that IVA-CS is able to extract meaningful common and distinct subspaces as well

as group-specific neuroimaging features that allow for the identification of significant sub-

groups of SZ subjects. In order to enable a study of brain dynamics in terms of both dBA

and dFNC, we propose a novel use of adaptively constrained IVA (acIVA) to capture activ-

ity variabilities and efficiently quantify the spatial property of dBA (sdBA). We first address

the challenge in dFNC analysis by proposing a goal-driven scheme to successfully select an

optimal value for the number of dFNC states. The efficient quantification of sdBA enables

a careful investigation of the association between temporal property of dBA (tdBA) and

sdBA, and the activity-connectivity co-evolution of sdBA and dFNC computed using the

spatial maps (sdFNC). The application to multi-subject resting-state fMRI data detects sig-

nificant tdBA-sdBA patterns and activity-connectivity co-evolution patterns. Moreover, we

identify significant subgroups of SZs using tdBA-sdBA association and sdBA-sdFNC co-

evolution, demonstrating the effectiveness of dynamic features for studying heterogeneity

of disorders.
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Chapter 1

INTRODUCTION

1.1 Analysis of fMRI data

Functional magnetic resonance imaging (fMRI) is a neuroimaging modality that de-

tects changes in the blood-oxygen-level-dependent (BOLD) response that are caused by

the neuronal activation in the brain, opening a new window for the interpretation of human

brain function. The fMRI data observes BOLD activity in brain spatially within a volume

of high resolution (typically in millimeters) and temporally at different time instants of low

resolution (typically every one or two seconds), yielding a four-dimensional dataset for

each subject. In most fMRI data analysis, each fMRI volume at a specific time instant is

flattened to a vector to transform the original four-dimensional data into a two-dimensional

data matrix with time points vertically presented and the voxels horizontally summarized.

From the observed fMRI data we can extract BOLD activation patterns of functional re-

gions or coherent networks in spatial and temporal domains. This therefore enables an

investigation of the BOLD activity and the brain connectivity in order to study how the

normal brain functions and how it is affected by drug abuse and neurological disorders, and

how the brain attempts to recover after proper treatment. For example, the abuse of ecstasy,

amphetamine, cannabis, and nicotine is found to be associated with abnormal functional

alternations in human brain [104, 185]. In the study of neurological disorders, a common

hypothesis that the brain function is less efficient for subjects with a certain type of disor-
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der compared with the healthy controls (HCs). There is rich work that successfully identify

distinct biomedical patterns in a variety of disorders such as schizophrenia (SZ), atrophy,

degenerative dementias, Alzheimer’s disease, and post-traumatic stress disorder through

the analysis of fMRI data, enabling a better understanding of these disorders hence poten-

tially providing useful clinical guidance [30,45,82,140,160,169,192]. Clinical factors such

as emotional measures, behavioral performance, and positive and negative syndrome scale

(PANSS) that is special for SZ are shown to correlate with functional biomedical patterns

in neurological disorders [20, 109, 179]. Also, the effect of drug use and the effectiveness

of treatment in disorders, such as the use of cannabis [134] and antipsychotic medications

[42] in SZ, have been studied using fMRI data.

However, the extraction of interpretable functional BOLD activity patterns from fMRI

data is complicated by many factors, such as the low signal to noise ratio, random noise,

constant biological processes (breathing and heartbeat), subject motion, and inter-subject

anatomical variabilities. Many preprocessing techniques, such as filtering for noise and

registration for subject motion, are adopted to reduce the effect of these factors but it is

very hard to eliminate it. Another big challenge in fMRI analysis is the lack of prior

knowledge of the data especially the resting-state fMRI data. The analysis of resting-state

fMRI data is emphasized because it captures the intrinsic neural activities when the brain

is not constrained by any external input or task stimuli, and the obtaining of resting-state

fMRI is easier and less expensive without training the participants. Therefore, methods

that effectively analyze fMRI data in a data-driven manner and are robust to the effect of

these complicated factors are preferable. Computational complexity is also crucial in multi-

subject fMRI data analysis due to the increasing number of large fMRI datasets that include

hundreds or even thousand of subjects. It is important to investigate the offset between a

joint analysis of a large number of datasets and an effective preservation of dataset-specific

2



variabilities.

All these challenges should be taken into account when addressing problems of inter-

est in multi-subject resting-state fMRI data analysis. Two critical ones that have received

much attention lately are subspace analysis and the study of brain dynamics. Subspace

analysis of multi-subject fMRI data started gaining attention since it is able to extract

group-specific BOLD activation patterns that help identify subgroups of subjects, allow-

ing for a more comprehensive study of mental disorders such as SZ that has been clinically

recognized to possess the property of heterogeneity. The study of brain dynamics on the

other hand aims at extracting and modeling the dynamics of functional biomedical pat-

terns in human brain. It has been shown that the brain with different mental disorders also

demonstrates significant differences in dynamic patterns compared with that of the normal

brain [62, 81, 162]. In this work, we develop effective methods to resolve these two impor-

tant problems in fMRI analysis by addressing the challenges we introduced above as well

as other specific challenges in the two problems we present as follows.

1.1.1 Subspace analysis of multi-subject fMRI data

Identification of common and distinct subspaces from multiple datasets transforms

the high dimensional datasets into lower dimensional joint and disjoint subspaces, and

allows for a more detailed analysis of the group-specific as well as distinct information.

Along with identifying a common subspace comprised of components correlated across

all subjects, the extraction of common components across a subgroup of subjects is also

of interest. Clinical heterogeneity of patients with mental disorders, especially in SZ has

been recognized [69, 101, 102], and there has been significant interest in studying their

subtypes [82, 89, 150]. The study of subtypes can be made possible by identifying sub-

groups of patients that share specific common information and can help better understand

the uncertainty in the need of precision medicine [167] during clinical diagnosis and treat-
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ment. Subtypes of SZ have been well studied using genetic information [89, 150] but not

yet using other neuroimaging modalities such as fMRI data, which has been successfully

used in the study of SZ [45, 82, 140]. The common subspace analysis motivates us to find

a way to identify subgroups of patients with subtypes of SZ by summarizing their shared

information.

Given the importance of subspace analysis in medical image analysis, a number of

recent studies had a focus on this aspect, in particular for fusion of different modalities

such as fMRI, structural MRI and electroencephalograph, or of fMRI data from different

tasks [5,65,114,126,135,161,176,184]. However these cases have only been demonstrated

for joint decomposition of a small number of datasets. As we have discussed, distinct and

common subspace analysis also promises to be attractive for multi-subject analyses. The

models used for identification of common and distinct subspaces in fusion study have not

been well-studied in the context of the joint analysis of more than a couple of datasets.

Multi-subject data analysis involves joint analysis of at least tens, or more typically hun-

dreds of subjects. This motivates the development of an effective method that allows for a

subspace analysis of multi-subject imaging data by successfully preserving the correlation

structure across datasets.

1.1.2 Study of brain dynamics

There is evidence showing that the intrinsic functional patterns in human brain change

over time and the time-varying—dynamic—patterns are captured and studied using resting-

state fMRI data [58,90,94,95]. A decomposition of resting-state fMRI data extracts resting-

state networks (RSN) that consists of cortical and subcortical areas with synchronized

BOLD activities. BOLD activation pattern of a RSN varies in both spatial and tempo-

ral domains over time, which are referred to as spatial maps and time courses separately,

leading to the changes in the constructed functional network connectivity (FNC) that mea-
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Fig. 1.1. Dynamic features that quantify the evolution of BOLD activity and functional con-
nectivity are useful for the study of brain dynamics. (a) Both spatial maps and time courses
of RSNs change over time, leading to changes in the constructed FNC that measures the
association between the BOLD activation patterns of RSNs. (b) Static features measure the
average BOLD activity and FNC over time and hence cannot describe the dynamics.

sures the association between the BOLD activation patterns, as shown in Fig. 1.1. Static

features quantify the average BOLD activity and FNC across time and hence are not able

to precisely describe the functional evolution in brain, limiting the interpretation of brain

function. Therefore, conducting a study of brain dynamics through the use of dynamic

features is important in order to gain a better understanding of the brain function.

Based on the time-varying BOLD activation patterns of RSNs, most dynamic studies

obtain a FNC matrix as a function of time [10, 30, 51, 62, 79, 103, 155, 189]. A dynamic

FNC (dFNC) analysis allows a systematical study of evolving functional patterns by jointly

taking multiple brain networks into consideration. Identifying discrete transient states that

are characterized by FNC patterns is a common strategy in order to study the dynamic

evolution of brain function [141,196]. The determination of the number of states is essential
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while there is no effective method for its selection. People either select the value that yields

the lowest error or cost regarding the clustering methods they use to identify the states, or

use multiple values and conduct a comparison.

There is rich work showing that both BOLD activity and functional connectivity are

related to mental and cognitive processes, see e.g., [37,93,145,146]. Differences in BOLD

activity and functional connectivity has been separately reported in multiple mental disor-

ders especially in SZ, such as the reduced amplitude of low-frequency fluctuation (ALFF)

in cuneus [91,180], reduced BOLD activation in anterior cingulate gyrus [19,165], dyscon-

nectivity in default mode network [183, 198], and dysconnectivity between thalamus and

sensory regions [49,117,143,149,198]. However, the association between dynamic BOLD

activity (dBA) and dFNC is not well studied and it is desirable to incorporate dBA to gain

insight into the activity-connectivity co-evolution by identifying highly correlated patterns

between dBA and dFNC.

In [80], the authors investigate the associations between dBA and dFNC in tempo-

ral domain, i.e., they measure dBA and dFNC using the temporal variabilities of functional

networks and observe that dBA and dFNC are significantly correlated in time in some cases

and not in others and SZ patients show lower or nonexistent associations between dBA and

dFNC compared with HCs. However, like in [80], most previous studies conduct a dFNC

analysis using the time courses of BOLD activity by assuming the spatial domain is static

[10, 51, 103, 189]. As we illustrate in Fig. 1.1, the BOLD activation of RSNs varies in

both the spatial and temporal domains. Spatial variation of BOLD activity is observed as

changes in the volume of a functional network or variations in the activated regions within a

functional network and has started to attract attention, since they enrich the dynamic study

of brain function [98–100]. Previous studies have shown that simultaneously considering

temporal and spatial changes yields more distinguishable RSNs between subject groups
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[100, 105, 116]. Studies that compute dFNC using the spatial maps of brain networks also

have emphasized the importance of the assumption of spatial variability in a dynamic study,

by detecting significant differences between the patients with mental disorder such as be-

tween those with SZ and the HCs [25, 27, 141]. However, the spatial activation patterns of

dBA themselves are not well explored primarily due to the lack of effective quantification

strategies of the spatial property of dBA (sdBA). An efficient quantification of sdBA does

not only enable the investigation of the spatial activation patterns of dBA but also leads to

a study of activity-connectivity co-evolution using sdBA and dFNC that is computed using

the spatial maps (sdFNC). More importantly, due to the dynamic nature of human brain, it

is desirable to investigate the effectiveness of dynamics neuroimaging features for identi-

fying subgroups of subjects that enable the study of the heterogeneity of mental disorders

such as SZ.

1.1.3 Model-driven and data-driven techniques

Methods to analyze fMRI data can be studied under two broad categories as model

driven and data driven. Model-driven methods are typically based on priori models that

specify the structure of temporal variation or spatial activation patterns of functional net-

works or brain regions, and have been the traditional approach for analyzing fMRI data.

They assume that certain types of prior information about the data are known. Seed-based

approach is a type of model-driven method that makes use of the spatial maps of pre-

defined templates of brain regions of interest and is known as a univariate method that

treats each voxel independently and obtains the corresponding temporal variation patterns

by averaging the time series of the voxels in each region [59, 85, 127]. However, the use of

pre-defined templates assumes that all the selected regions have a similar activation pattern

and leads to the analysis results highly dependent on the choice of regions of interest. Ad-

ditionally, time series usually involve a significant level of noise. One potential solution is
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denoising, yet it is difficult to remove all kinds of noise because of the unknown nature of

noise. Another model-driven method is general linear model that specifies a user-defined

matrix of time courses hence are robust to the effect of noise. However, the strong assump-

tion on the time courses limits the application of general linear model to task-evoked fMRI

data where the task stimuli are known and can be used to define the matrix [43,75,77,106].

With the fixed matrix of time courses, the general linear model estimates the spatial maps

of functional networks using the regression approach.

Data-driven techniques have been growing in importance for analysis of both resting-

state and task-evoked fMRI data since the underlying assumptions are minimized [127,

133,183] which makes data-driven methods more flexible, and hence more desirable espe-

cially for the study of multi-subject resting-state fMRI data as there is no a priori informa-

tion in this case. Moreover, data-driven methods can be built on using different forms of

diversity—statistical properties of the data—hence maximally taking the information into

account through a multivariate model in order to study the spontaneous BOLD fluctuations.

When a group of neurons in different functional networks are activated at a time instant,

their BOLD response is added up linearly and can be modeled using a linear mixture model,

forming a typical blind source separation (BSS) problem. The latent sources—functional

networks—can be recovered through a matrix factorization of the observed fMRI data, in

general, using a generative model that yields a mixing matrix and a source component ma-

trix. The time courses of the functional networks are conveyed in the mixing matrix and the

spatial maps are expressed in the source component matrix. The assumptions in data-driven

BSS methods are, in part, based on different forms of diversity of either the observations or

the underlying sources, such as independence and sparsity, resulting in the development of

different data-driven algorithms.

Independent component analysis (ICA) has been a popular data-driven BSS technique
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that decomposes the observed data by maximizing a measure of (statistical) independence

among the underlying sources [50, 127, 183]. This popularity has, in part, led to the devel-

opment of different ICA algorithms that can be derived from the maximum likelihood (ML)

principle, each designed to achieve the independent component decomposition through ex-

ploiting different forms of diversity of the signals, such as higher than second-order statis-

tics (HOS), noncircularity, and sample dependence [4,48,66,96]. Dictionary learning (DL)

is another data-driven BSS technique that makes use of sparsity as the starting point for

the decomposition and has been shown to be useful for the analysis of fMRI data as well

[3, 121, 142, 186]. Recent work [35, 36] introduces a unified mathematical framework that

enables a dynamic exploitation of both independence and sparsity, which we refer to as

the SparseICA framework. Source sparsity is incorporated through the use of the ICA cost

function, penalized by an `1 regularization term. Although independence and sparsity have

demonstrated their utility for the analysis of fMRI data, there is no study that explores the

role of each type of diversity in terms of global objective metrics for real fMRI datasets.

Both ICA and DL are originally developed for the decomposition of a single dataset.

However, the analysis of fMRI data typically involves multiple datasets that are collected

from different subjects. Group ICA [48] and independent vector analysis (IVA) [4] are

two algorithms that extend ICA to multiple datasets. Group ICA concatenates the datasets

to form a single one and assumes a common signal space across datasets hence bound-

ing the solution space. IVA is a more flexible method that jointly decomposes multiple

datasets by making effective use of the dependence across datasets through the definition

of a source component vector (SCV) [4, 111, 112]. DL can also be applied to multiple

datasets by concatenating the datasets in the same way as group ICA does. IVA has been

successfully used for the analysis of multi-subject fMRI data [6, 70, 120] and has been

shown to be more effective in capturing dataset variabilities compared with the group ICA
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approach [119, 148]. Through the selection of an effective density model for the SCV,

IVA can model and estimate the statistical dependence across datasets. Additionally, the

strong identification condition of IVA—i.e., the ability to uniquely identify the underlying

latent variables—enables the preservation of subspace structure even using only second-

order statistics (SOS). However, multiset canonical correlation analysis (MCCA), another

widely used data-driven algorithm for multiple datasets, has a limited identification condi-

tion hence is good for investigating the association to some extent while not the variabilities

across datasets.

1.2 Contributions

As motivated above, providing insight into the comparative advantage of emphasiz-

ing one form of diversity over another in the decomposition helps guiding the selection of

data-driven BSS techniques for the analysis of multi-subject fMRI data. In the application

to fMRI data that is collected from different groups such the SZ group and a HC group, en-

abling a subspace analysis helps study group-specific RSNs and more importantly identify

subgroups of SZ subjects that facilitate a study of the heterogeneity of SZ. Furthermore,

it is desirable to study the dynamics of brain using spatial variabilities and investigate the

activity-connectivity co-evolution using dBA and dFNC to better interpret the functional

organization in brain. Due to the nature of a dynamic change in human brain, it is also of

interest to study the heterogeneity of mental diseases such as SZ using dynamic features.

In this work, we propose methods to address these challenges. The main contributions are

summarized as follows.

i. Study the role of diversity in data-driven algorithms

Algorithmic comparison is difficult as decompositions can be quite different depending on

the modeling assumptions of a particular algorithm, thus matching of all the estimated com-
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ponents one-to-one is usually not possible. In addition, each method is based on a different

cost function. In order to enable a comparison among different data-driven algorithms, we

propose to use the global metrics that are objective. We

- Conduct a comparative study to provide insight into the role of different forms of di-

versity on a decomposition of multi-subject fMRI data. For this task, we choose

Infomax, entropy bound minimization (EBM), entropy rate bound minimization

(ERBM), DL and SparseICA by EBM(SparseICA-EBM) for the comparison as they

are good representations of algorithms that use different types of diversity;

- Propose to use objective global measures, e.g., time course frequency power ratio,

network connection summary and graph-theoretical metrics, for performance assess-

ment;

- Provide a general guide to the practitioners about the selection of the appropriate

algorithm for a specific situation.

ii. IVA for common subspace analysis

Though ICA and DL have been extended to the analysis of multiple datasets by assuming

a common signal space in either the spatial domain or the temporal domain, the group ICA

and DL do not make effective use of the dependence across datasets. IVA extends ICA to

the analysis of multiple datasets to effectively make use of the dependence across datasets

by the definition of SCV, making it an attractive choice for subspace analysis. We

- Study the strengths and challenges of applying IVA to multi-subject fMRI data;

- Demonstrate that IVA can successfully preserve the correlation structure across

datasets compared with MCCA using a simulation study;

- Propose and implement a new method IVA for common subspace analysis (IVA-CS)

by leveraging the strengths of IVA and addressing the dimensionality issue of IVA;

11



- Apply IVA-CS to multi-subject fMRI and extract interpretable group-specific RSNs

for SZ and HC groups;

- Identify subgroups of SZ subjects that demonstrate significant differences in terms of

their imaging data analysis results and their clinical symptoms.

iii. Quantitative study of dFNC using graph-theoretical analysis

A common way of using dFNC for the dynamic study is to identify transient states with the

dFNC information as features. It is challenging to determine the optimal number of states.

We

- Propose the use of a recent algorithm adaptively constrained IVA (acIVA) to capture

BOLD variability in both temporal and spatial domain;

- Emphasize the importance of making use of spatial variabilities by comparing two

forms of dFNC that are computed using time courses (tdFNC) and spatial maps

(sdFNC) separately in terms of their potential to extract distinguishable features be-

tween groups;

- Propose the use of a goal-driven scheme for the determination of the number of

transient states in a more interpretable way in dynamic study;

- Demonstrate the effectiveness of the goal-driven scheme by conducting a dynamic

study of a multi-subject fMRI data and quantitatively studying the dFNC using graph-

theoretical analysis.

IV. Activity-connectivity co-evolution

Study of the activity-connectivity co-evolution using dBA and dFNC is motivated by the

fact that both BOLD activity and network connectivity are related to mental and cognitive

processes in human brain. A key task is to find metrics to quantify dBA in either temporal
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or spatial domain. Moreover, it will be interesting if we enable the study of heterogeneity

of mental diseases such as SZ using dynamic features. Therefore, we

- Propose a novel use of acIVA to efficiently quantify the spatial property of dBA

(sdBA) as part of the algorithm and demonstrate its desirable performance through a

simulation study;

- Study the cross-correlation between temporal property of dBA (tdBA) and sdBA;

- Investigate the activity-connectivity co-evolution using sdBA and sdFNC;

- Identify subgroups of SZ subjects in order to study the heterogeneity of SZ using

dynamic features and investigate clinical differences across the subgroups.

1.3 Overview of dissertation

This dissertation is organized as follows.

In Chapter 2, we provide an introduction to multi-subject fMRI data and a number of

data-driven BSS techniques we will be discussing throughout this work. We begin with a

brief introduction of the popularity of studying human brain through the analysis of multi-

subject fMRI data, and the dataset we use in this work. Then we present three categories of

algorithms—ICA, DL, and SparseICA—that make use of different forms of diversity of the

data to enable the decomposition of a single dataset. After that we introduce the algorithms

for the decomposition of multiple datasets, including group ICA, IVA and MCCA.

In Chapter 3, we present our first contribution of providing insight into the compar-

ative advantage of emphasizing one form of diversity over another when applying the

data-driven algorithms to the decomposition of multi-subject fMRI data. We clarify the

challenges of making such a performance comparison across data-driven algorithms and

propose the use of global metrics in performance assessment. We demonstrate that global
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metrics help with the comparative study in the application to multi-subject fMRI data anal-

ysis.

In Chapter 4, we introduce the proposed IVA-CS algorithm and its application to

the subspace analysis of multi-subject fMRI data. We study the strengths and challenges

of IVA and demonstrate its desirable performance in preserving the correlation structure

across datasets, proving a good starting point for subspace analysis. Then the two stages of

IVA-CS, subset analysis and common subspace identification, are presented in detail. We

summarize the results of applying IVA-CS to real fMRI data and highlight its effectiveness

in studying of the heterogeneity of SZ.

Chapter 5 presents a quantitative study of dFNC using graph-theoretical analysis in

dynamic study. We show that the recently proposed method acIVA effectively captures

dBA in both temporal and spatial domains. We investigate the potential of a separate use of

tdFNC and sdFNC to extract distinguishable dynamic features to emphasize the importance

of using the rich samples in spatial domain for a reliable computation of dFNC. We propose

the use of a goal-driven scheme for the determination of the number of transient states and

demonstrate the effectiveness of the goal-driven scheme by using a comprehensive study

of graph-theoretical metrics when applied to multi-subject fMRI data.

In Chapter 6, we propose a novel use of acIVA to efficiently quantify sdBA and

study the cross-correlation between tdBA and sdBA as well as the activity-connectivity co-

evolution using sdBA and sdFNC. We first use a simulation study to demonstrate that acIVA

accurately captures the spatial variabilities by making use of reference signals. When ap-

plied to real fMRI data, we show that the tdBA-sdBA cross-correlation and the activity-

connectivity co-evolution features are useful in identifying subgroups of SZ subjects, en-

abling a study of heterogeneity of SZ.

Finally, we summarize all the contributions made in this work and suggest possible
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directions for future work in Chapter 7.
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Chapter 2

BACKGROUND

Data-driven algorithms that are designed for a single dataset such as ICA, DL, and

the recently proposed method SparseICA either make use of one of the two forms of

diversity—independence and sparsity—of the latent sources or jointly take both into con-

sideration. In addition, in most real world applications, there are multiple datasets to be

jointly analyzed such as the fMRI data that is collected from multiple subjects. Group ICA

and IVA are two algorithms that extend ICA to multiple datasets. DL can also be applied to

multiple datasets by concatenating them like what group ICA does. Another data-driven al-

gorithm that is proven powerful in the joint analysis of multiple datasets is MCCA. In this

Chapter, we introduce the multi-subject resting-state fMRI data and the commonly used

data-driven algorithms for fMRI analysis.

2.1 Multi-subject resting-state fMRI data

The resting-state fMRI data captures the variations of BOLD response that result from

the changes in the magnetic properties of the blood during a neuronal activation when the

brain is not constrained by any external input or task stimuli. The onset of neuronal activa-

tion causes a large demand of glucose that is transported by blood hence more oxygenated

blood flows in the area of neuronal activation. Aggregation of oxygenated blood leads to a

net decrease in deoxygenated blood. This makes it possible to capture the small changes in
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Fig. 2.1. The fMRI machine and the obtained fMRI data.

magnetic sensitivity that reflect the neural activity using fMRI machine since the magnetic

properties are slightly different between oxygenated and deoxygenated blood. The ma-

chine scans the whole brain at a series of time instants during a certain period, yielding a

sequence of volume data—a four-dimensional data—for each subject, as shown in Fig. 2.1.

Each entry—voxel—of a volume quantifies the BOLD activity at a specific location hence

providing a high quality visualization of the activation patterns of brain. When a group

of neurons in different functional networks are activated at a time instant, their BOLD re-

sponse is added up linearly and can be modeled using a linear mixture model, as shown in

Fig. 2.2. The observed fMRI data, the latent source components, and the mixing matrix of

time courses are denoted using X, S, and A, respectively. Therefore, matrix factorization

techniques such as data-driven BSS methods are exploited to effectively decompose the

observed fMRI data and recover the latent sources.

A joint analysis of fMRI data that is collected from multiple subjects, especially those

of different groups such as a group of subjects with SZ and a group of HC, makes use
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Fig. 2.2. The linear mixture model used by data-driven BSS techniques for fMRI analysis.

of the rich information across datasets. The comparative study of brain function between

groups leads to a better understanding of the mental disease by identifying unique biomed-

ical patterns for the patient group. Generally, brain function is relatively more efficiently

organized across healthy subjects than subjects with a certain type of mental disorder [28].

It is desirable to study the intrinsic functional patterns of mental disorders when the brain

is at a resting state without being constrained by any task stimulus which may force it to

act as normal.

In this work, we demonstrate the effectiveness of our proposed methods using a multi-

subject resting-state fMRI data from the Center of Biomedical Research Excellence (CO-

BRE), which is available on the collaborative informatics and neuroimaging suite data ex-

change repository (https://coins.trendscenter.org/) [7, 57, 166]. The data includes 88 SZs

(average age: 37 ± 14) and 91 HCs (average age: 38 ± 12). For this study, the participants

were asked to keep their eyes open during the entire scanning period. All images were

collected on a single 3-Tesla Siemens Trio scanner with a 12-channel radio frequency coil

using the following parameters: TE = 29 ms, TR = 2 s, flip angle = 75◦, slice thickness

= 3.5 mm, slice gap = 1.05 mm, voxel size 3.75 × 3.75 × 4.55 mm3. Participants were

instructed to keep their eyes open during the scan and stare passively at a central fixation

cross. Each resting state scan consists of 150 volumes. To eliminate the T1-related sig-

nal fluctuations (T1 effect) [171], the first 6 volumes are removed in this study, thus 144
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volumes remain for each subject. The fMRI data are realigned with INRIalign algorithm

[73], slice-timing correction is applied using the middle slice as the reference frame in

the functional data pipeline and spatially normalized to the standard Montreal Neurologic

Institute (MNI) space [76] and resampled to 3 × 3 × 3 mm3, resulting in 53 × 63 × 46 vox-

els. Afterwards, the fMRI data are smoothed using a Gaussian kernel with a full-width at

half-maximum of 5 mm.

2.2 Data-driven BSS techniques for a single dataset

There are two major forms of diversity—independence and sparsity—that have been

shown useful in fMRI data decomposition using a data-driven BSS method. ICA is a typical

data-driven BSS method that estimates the latent source components by assuming that the

latent sources are statistically independent to each other. DL is another data-driven BSS

method that extracts the latent sources by making use of the sparsity property of the sources.

While initially sparsity has been presented as a competitor for ICA in fMRI analysis [63],

the claims in this article regarding the roles of sparsity and independence are later clarified

[53], and both sparsity and independence have now been recognized as meaningful starting

points for use in fMRI analysis. The work in [35, 36] introduces a unified mathematical

framework that enables dynamic exploitation of both independence and sparsity, which we

refer to as the SparseICA framework. We introduce the three methods in detail in this

section.

2.2.1 Independence as type of diversity: ICA

ICA is able to extract latent sources from the observed data, through the assumption

of statistical independence and a linear mixing model [4]. Note that the latent sources are

assumed to have zero mean and unit variance and all the estimated source components are

normalized to have zero mean and unit variance before any post analyses throughout the
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work. Suppose the observed fMRI data of a subject is X̃ ∈ RT×V with T and V denoting

the number of time points and voxels separately. To reduce the contamination from noise,

principal component analysis (PCA), using an order N suggested by the entropy rate based

order selection technique described in [78], is employed to reduce the dimension of an

fMRI dataset, i.e., to estimate the signal subspace. The order estimation method proposed

in [78] takes sample dependence into consideration without downsampling, which leads

to improved estimation of the signal subspace. The dimension of X̃ is reduced from T to

N, computed as X = (F)†X̃ , where † represents the pseudoinverse and (F)† ∈ RN×T is the

reduction matrix, whose columns are the eigenvectors of X̃(X̃)> and the reduced data is

X ∈ RN×V . The reduced data matrix, X, consists of the first N principal components of X̃

that represent the informative signals for the subject. The source components S ∈ RN×V are

then estimated by performing ICA on X

X = AS, (2.1)

where A ∈ RN×N is the mixing matrix. ICA seeks to find a demixing matrix, W, such that

the estimated sources are obtained as Ŝ = WX.

ICA algorithm choice The popularity of ICA for BSS problems such as fMRI data

analysis has, in part, led to the development of different ICA algorithms that can be derived

from the ML principle, each designed to achieve the independent component decomposi-

tion through exploiting different forms of diversity, such as HOS, noncircularity, and sam-

ple dependence [4,48,66,96]. For example, the Infomax algorithm, which was the first ICA

algorithm used for fMRI analysis [147], exploits HOS through the use of a fixed tangent

hyperbolic nonlinearity. In contrast to Infomax, entropy bound minimization (EBM) [129]

and entropy rate bound minimization (ERBM) [128] are two more recently introduced ICA

algorithms and have been shown to provide desirable performance on both simulated and
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real fMRI data, see e.g., [4, 67, 128, 138], through the use of a dynamic nonlinearity, and

in the case of ERBM, sample dependence of each source as well. The use of a dynamic

nonlinearity enables EBM and ERBM to match a wide variety of distributions.

In order to estimate the demixing matrix W, Infomax and EBM equivalently aim at

minimizing the mutual information (MI) between the source estimates ŝ1, · · · , ŝN , given by

I(W) =

N∑
n=1

H(ŝn) − H(Ŝ)

=

N∑
n=1

H(ŝn) − log|detW| − H(X) (2.2)

where H(·) = −E[logp(·)] refers to (differential) entropy of a random variable, with p re-

ferring to the probability density function (PDF) of corresponding variable. The last term

H(X) is a constant as it is independent of W. Expression in (2.2) can be written using

ML formulation for the given observations. While ICA is achieved through the estimation

of the demixing matrix W, for the estimator to achieve the desirable large sample prop-

erties of the ML principle, the PDF of the sources needs to be modeled or estimated as

well [4]. Among different versions of Infomax algorithms [12, 23, 123], the most widely

used in fMRI data analysis is the original version proposed in [23]. In this version, the

algorithm takes only HOS into consideration, and achieves this by using a fixed sigmoidal

nonlinearity to model the source PDF [23], which implies a super-Gaussian PDF, which is

a good match for the fMRI source, as well as a soft sparsity for the sources. This means

that Infomax is a good match for very focal regions of activation, however, it might sig-

nificantly bias latent sources relating to broad regions, such as the default mode network

(DMN) [66]. In contrast to Infomax, EBM does not assume one specific distribution for the

latent sources but instead attempts to upper bound their entropy through the use of several

measuring functions [129]. Each of these functions provides bounds on the entropy, with

the tightest bound being closest to the true entropy. The use of these measuring functions
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makes it possible to match a wide variety of distributions, including those that are sub-

Gaussian, super-Gaussian, unimodal, bimodal, symmetric, as well as skewed [129], thus

potentially leading to more accurate estimation of the latent sources.

Instead of bounding the entropy of latent sources, ERBM attempts to bound their

entropy rate using measuring functions. The cost function, thus, is given by

Ir(W) =

N∑
n=1

Hr(ŝn) − log|detW| − Hr(X) (2.3)

where Hr(ŝn) = H[ŝn(1), · · · , ŝn(V)]/V refers to the entropy rate of ŝn, thus the goal is now

minimizing the MI rate among the source estimates. Hence this cost function accounts for

two types of diversity—sample dependence and nonstationarity—of the signals. ERBM

models the sample dependence of fMRI data and filters the samples using a time-invariant

invertible linear filter. Consequently, sample dependence is taken into consideration by

ERBM. Since EBM and ERBM relax the assumptions placed on the fMRI sources by

assuming flexible source distributions, they are expected to provide improved performance

over Infomax. Additionally, ERBM is expected to have superior performance over EBM

as well as Infomax, since it takes advantage of multiple underlying properties of fMRI

sources, namely, HOS and voxel-wise dependence. All three algorithms can be found in

the group ICA of fMRI toolbox (GIFT) (http://mialab.mrn.org/software/gift/index.html).

2.2.2 Sparsity as type of diversity: DL

DL is anther data-driven method that has been successfully applied to fMRI analysis

[1, 121] by making use of the sparsity property of latent sources as the starting point for

the decomposition and aiming at balancing the decomposition accuracy and source sparsity

through a regularization parameter. DL expresses the observations as sparse combinations

of the atoms (columns) in a dictionary D ∈ RT×N , seeking to estimate the latent spatial

components Ŝ ∈ RN×V that are conveyed in the sparse loadings. The cost of DL procedure
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is given by

`(D) = min
D,Ŝ
‖X̃ − DŜ‖2F + λ‖Ŝ‖1 (2.4)

where Ŝ are the spatial maps, ‖Ŝ‖1 =
∑N

i=1
∑V

j=1 |ŝi j|, and λ is the regularization parameter

that controls the level of sparsity of the sources. It is shown that the DL algorithm that

achieves the decomposition using an online optimization algorithm is suitable for large

datasets [142].

2.2.3 Balancing independence and sparsity: SparseICA

Since both independence and sparsity are natural properties of fMRI sources, a uni-

fied mathematical framework is proposed to account for both by incorporating a sparsity

term—an `1 regularization term—of the source components into the cost function of ICA

[35, 36]. The cost function of SparseICA-EBM, which is utilized to demonstrate the appli-

cation of this framework, is constructed using two terms, i.e., an independence term and a

sparsity term. The independence refers to (2.2) and the sparsity is written as the sum of the

regularization function of all estimates. The final cost function is given by

J(W) =

N∑
n=1

H(ŝn) − log|det(W)| +
N∑

n=1

λn f (ŝn) (2.5)

f (ŝn) = lim
εn→0

V∑
v=1

√
ŝ2

nv + εn (2.6)

where f (ŝn) is the regularization term with respect to the nth source estimate ŝn, λn is the

sparsity parameter and εn is the smoothing parameter. The third term in (2.2) is removed

here since it is a constant with respect to W. By tuning the sparsity and smoothing param-

eters, SparseICA-EBM enables different decompositions that yield different estimates with

different levels of sparsity.
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2.3 Data-driven BSS techniques for multiple datasets

Typically the fMRI data is collected from multiple subjects, yielding multiple datasets.

This leads to the development of effective algorithms that are able to jointly analyze multi-

ple datasets by making use of the rich information among the datasets. There are a number

of methods developed by either extending the methods for a single dataset that are intro-

duced above to multiple datasets such as group ICA and IVA, or starting from another

aspect such as MCCA.

2.3.1 Group ICA

The group ICA framework enables the analysis of multiple datasets using ICA and has

become popular for the analysis of multi-subject fMRI data [46, 48]. Group ICA assumes

a common signal space across datasets due to the fact that the extracted functional network

components across different subjects are expected to share some similarity. To form a single

dataset that is spanned by the common source components, group ICA adopts two steps of

PCA, the subject level PCA and the group level PCA. The subject level PCA helps remove

the effect of noise and the group level PCA helps extract the common signal subspace.

Finally a single ICA is performed on the common signal matrix.

Suppose the observed fMRI data is collected from K subjects. Let the data from the

kth subject be denoted by X̃[k] ∈ RT×V , 1 ≤ k ≤ K, where T denotes the number of time

points and V denotes the number of voxels. For each subject, the subject-level PCA reduces

the dimension of X̃[k] from T to T ′, computed as X[k] = (F[k])†X̃[k] , where † represents the

pseudoinverse and (F[k])† ∈ RT ′×T is the subject level reduction matrix, whose columns are

the eigenvectors of X̃[k](X̃[k])T and the reduced data is X[k] ∈ RT ′×V . The reduced data ma-

trix, X[k], consists of the first T ′ principal components of X̃[k] that represent the informative

signals from the kth subject. It is assumed that the subjects share a common component
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subspace [46]. In order to estimate the common subspace across subjects, the datasets are

temporally concatenated to form a single data matrix Z̃ ∈ RKT ′×V , which is then reduced

to Z ∈ RN×V by a group level PCA, Z = G†Z̃, with G† ∈ RN×KT ′ as the group level reduc-

tion matrix and N as the order for the common observation subspace. Group components

S ∈ RN×V are then estimated by performing ICA on the common group subspace Z, which

subject to the same linear model in (2.1), to obtain the estimated sources as Ŝ = WZ. The

use of a single ICA on the common subspace of all datasets helps to preserve the order of

the components across subjects. Following the completion of ICA, back-reconstruction is

performed on Ŝ to generate the corresponding subject-specific source estimates Ŝ[k] ∈ RN×V .

In order to obtain the back-reconstructed signals, Ŝ[k], the group level reduction matrix G†

is blocked by columns, G† = [(G[1])†, (G[2])†, · · · , (G[K])†] with (G[k])† ∈ RN×T ′ and, Ŝ[k]

is reconstructed using Ŝ[k] = W(G[k])†(F[k])†X̃[k]. The corresponding subject-specific time

courses are obtained using Â[k] = F[k]G[k]W−1.

In the group ICA framework, instead of performing an ICA on the common signal

subspace Z ∈ RN×V , the other two algorithms, DL and SparseICA, can also be adopted to

decompose Z. Since DL does not require a square dictionary D, one can also perform DL

on the concatenated data Z̃ ∈ RKT ′×V as long as DL is proven effective in separating the

signal and noise or other artifacts from the data it is applied to.

2.3.2 IVA

Unlike group ICA, IVA extends ICA to the joint analysis of multiple datasets by ef-

fectively taking into account another form of diversity—the dependence across datasets

[4, 111, 112]. We use random variable notations throughout the introduction of IVA for

convenience. IVA assumes that each dataset is a linear mixture of N independent sources,

x[k](v) = A[k]s[k](v), 1 ≤ k ≤ K, 1 ≤ v ≤ V, (2.7)

25



Fig. 2.3. The generative model of IVA

where X[k] = [x[k](1), x[k](2), · · · , x[k](V)] ∈ RN×V , S[k] = [s[k](1), s[k](2), · · · ,

s[k](V)] ∈ RN×V and A[k] ∈ RN×N denote the observed dataset, the set of independent

sources, and the invertible mixing matrix respectively. Different from in group ICA frame-

work where the dimension of each observed data X̃[k] is reduced to T ′ using a subject level

PCA, the dimension of X̃[k] is reduced to the model order N, i.e., the number of sources,

before applying an IVA decomposition on all the datasets. A general model of IVA is

shown in Fig. 2.3. In addition to the assumption of independence among sources within

a dataset, IVA makes effective use of dependence across multiple datasets by defining an

SCV as sn(v) = [s[1]
n (v), s[2]

n (v), · · · , s[K]
n (v)]T ∈ RK×1, 1 ≤ n ≤ N, by collecting correspond-

ing components, where s[k]
n ∈ RV×1 is the nth source from the kth dataset. ICA can be

achieved by minimizing the MI among the individual latent sources. After extending to

multiple datasets, an IVA solution finds K demixing matrices by minimizing the MI among

the SCVs, which results in the following cost function

CIVA(W) =

N∑
n=1

H(yn) −
K∑

k=1

log|detW[k]|

= −

N∑
n=1

E{logpn(yn)} −
K∑

k=1

log|detW[k]| (2.8)
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such that the estimated sources of each dataset are obtained as y[k](v) = W[k]x[k](v) for

k = 1, · · · ,K, where W = {W[1],W[2], · · · ,W[K]} denotes the demixing matrices, yn de-

notes the estimated SCV, andH(·) denotes the (differential) entropy. Minimization of (2.8)

is equivalent to maximization of likelihood through the general asymptotic equipartition

property [4]

LIVA(W) =

N∑
n=1

log(pn(Yn)) + V
K∑

k=1

log|detW[k]|, (2.9)

where Yn = [yn(1), yn(2), · · · , yn(V)], and pn(·) denotes the multivariate probability dis-

tribution of nth SCV. In both (2.8) and (2.9) the term that is constant with respect to W

associated with the observed data X is ignored. For simplicity, throughout the work we

consider the simpler independent and identical distribution case for IVA and do not take

sample dependence into account.

IVA algorithm choice To maximize the likelihood, besides W, we need to estimate

the multivariate density function of SCV. The selection of the multivariate distribution,

pn(yn), determines whether SOS and/or HOS of the data are taken into consideration. IVA-

G assumes that the sources in an SCV are multivariate Gaussian distributed and only takes

SOS into consideration [14]. This assumption guarantees a positive definite Hessian matrix

of the cost at the global optimum hence providing a reliable estimation by using second-

order optimization techniques such as using Newton updates. IVA with multivariate Lapla-

cian distribution (IVA-L) assumes each SCV is modeled by the multivariate Laplacian dis-

tribution [111, 112]. The assumption is that the correlation matrix of an SCV is identity

thus taking only HOS into consideration. IVA with multivariate generalized Gaussian dis-

tribution (IVA-MGGD) on the other hand assumes that an SCV is multivariate generalized

Gaussian distributed [15, 16, 34]. IVA-MGGD calculates the whole correlation matrix and

estimates the shape parameter of the MGGD that models each SCV, making it possible to
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take both SOS and HOS into consideration. As a consequence, this algorithm is compu-

tationally complex but provides good performance. IVA-L with SOS (IVA-L-SOS) [27]

calculates the whole correlation matrix of each SCV as in IVA-MGGD but fixes the shape

parameter to 0.5 to model a multivariate Laplacian distribution which is a good match for

fMRI sources. Hence it takes both SOS and HOS into consideration and simplifies the

computational complexity compared with IVA-MGGD. Both IVA-G and IVA-L-SOS have

proven powerful in extracting interpretable source components when applied to medical

imaging data analysis [5, 14, 27].

2.3.3 MCCA

Another commonly used BSS algorithm for multiple datasets is MCCA, which starts

from a different property—correlation—of the data hence is based on SOS only [110,133].

MCCA assumes that the latent sources within each dataset are uncorrelated and estimates

them by using a multistage deflationary correlation maximization scheme. Only one set

of corresponding sources from multiple datasets—equivalent to an SCV in IVA—are esti-

mated at a time by maximizing the correlation between them

{w[1]
n ,w[2]

n , · · · ,w[K]
n } = arg max

w
{

K∑
i, j=1

∣∣∣∣r(n)
i, j

∣∣∣∣}
s.t. w[k]

n ⊥ {w
[k]
1 , · · · ,w

[k]
n−1} if n > 1, for k = 1, · · · ,K, (2.10)

where w[k]
n is the nth row of the demxing matrix W for the kth subject, and r(n)

i, j is the element

of Rn , E{YnY>n } ∈ RK×K with Yn ∈ R
K×V denoting the nth corresponding sources from K

datasets, i.e., the nth SCV. The magnitude of correlation between each pair of components

within the estimated SCVs is in non-decreasing order, i.e.,
∣∣∣∣r(1)

i, j

∣∣∣∣ ≥ ∣∣∣∣r(2)
i, j

∣∣∣∣ ≥, · · · ,≥ ∣∣∣∣r(N)
i, j

∣∣∣∣.
To measure the overall correlation among the corresponding sources, five objective
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functions based on the augmented correlation matrix

R =



R1 0 · · · 0

0 Rn · · · 0
...

...
. . . 0

0 0 · · · RN


(2.11)

are introduced in [110]. Two objective functions are, respectively, sum and sum of squares

of all entries in the correlation matrix, i.e., SUMCOR and SSQCOR. The other three are

based on the eigenvalues of the correlation matrix, i.e., MAXVAR that only considers the

maximum eigenvalue, MINVAR that only considers the minimum eigenvalue, and GEN-

VAR that takes all the eigenvalues into consideration. Since the correlation among the

sources within each SCV is maximized, the goal for each cost—mostly ad-hoc in nature—

is trying to make the correlation matrix as ill-conditioned as possible. MCCA with GEN-

VAR cost function (MCCA-GENVAR) can be shown to have the same cost function as

IVA-G [14] if the demixing matrices are assumed to be orthogonal [4]. IVA generalizes

MCCA due to the fact that IVA is a more flexible model that simultaneously estimates all

the demixing matrices.

2.4 Summary

In this chapter, we briefly presented the background for our work. We first introduced

the acquisition of fMRI data, the analysis of multi-subject resting-state fMRI data, and

the resting-state COBRE data that is used in this work. We emphasized the popularity

of data-driven BSS methods in the analysis of fMRI and two major types of diversity—

independence and sparsity—that have shown useful in fMRI analysis. We then introduced

a number of widely used BSS algorithms such as ICA, DL, IVA, MCCA, and the recently

proposed framework SparseICA. For each algorithm, we discussed the diversity it uses
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through a detailed introduction of its objective function. We presented the general IVA

model and that it provides a flexible framework for the analysis of multi-subject fMRI

data and hence generalizing MCCA. We apply these algorithms to the COBRE data with

different research goals throughout this work to show their effectiveness and/or limitations

and develop new methods by leveraging the strengths of these algorithms especially IVA.
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Chapter 3

THE ROLE OF DIVERSITY IN MULTI-SUBJECT
FMRI DATA ANALYSIS

ICA and DL are two popular data-driven methods that are based on two different forms

of diversity, statistical independence for ICA and sparsity for DL. Despite their popularity,

the comparative advantage of emphasizing one property over another in the decomposi-

tion of fMRI data is not well understood. Such a comparison is made harder due to the

differences in the modeling assumptions between ICA and DL, as well as within different

ICA algorithms where each algorithm exploits a different form of diversity as introduced

in Chapter 2.2. In this chapter, we demonstrate that the objective global measures, such

as time course frequency power ratio, network connection summary and graph-theoretical

metrics, are good choices for performance assessment. We gain insight into the role that

different types of diversity have on the analysis of fMRI data. Four ICA algorithms that

account for different types of diversity and one DL algorithm are studied. We apply these

algorithms to multi-subject fMRI data for a thorough comparison of their performance.

3.1 Introduction

The differences in separation performance for separate ICA algorithms, such as Info-

max, EBM and ERBM, are related to differences in their assumed latent source models.

Most ICA algorithms can be cast under the ML framework and their performance is a
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function of the assumed source distribution, or the nonlinearity that is used which implies

a specific type of distribution. On the other hand, DL aims at balancing the decomposition

accuracy and source sparsity through a regularization parameter and in the estimation of

functional networks of interest, there is no implicit or explicit assumption of a source dis-

tribution. SparseICA framework enables a joint exploration of independence and sparsity

by penalizing the ICA cost function with a sparsity term. Therefore, SparseICA inherits

the advantages of ICA with enhanced performance due to the exploitation of sparsity when

the sources are sparse. Though the desirable performance of SparseICA has been shown

using simulated fMRI data, it has not been tested on real fMRI data.

Both independence and sparsity have demonstrated their utility for the analysis of

fMRI data, however there is no study that explores the role of each type of diversity in

terms of global metrics for real fMRI datasets. Few studies that have investigated the

performance of Infomax, EBM and ERBM [61, 67] used a limited number of subjects and

based the evaluation on subjective metrics, such as visual inspection of a few well-matched

components [4, 67]. Additionally, there has been no comparison of the performance of

these methods with the SparseICA framework and DL. Such an exploration raises the issue

of how to determine a metric for comparing the component estimation performance of

different data-driven algorithms on real fMRI data without a ground truth. Algorithmic

comparison is difficult as decompositions can be quite different depending on the modeling

assumptions of a particular algorithm, thus matching of all the estimated components one-

to-one is usually not possible. In addition, each method is based on a different cost function.

This motivates the identification of objective global metrics that are independent of cost

function for algorithmic performance.

In this chapter, we provide insight into the role of different types of diversity on a de-

composition of multi-subject fMRI data. For this task, we choose Infomax, EBM, ERBM,
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online DL [142], and SparseICA-EBM for comparison because they are good represen-

tations of algorithms that use different types of diversity as we detailed in Chapter 2.2.

Infomax is one of the most widely used data-driven algorithms for the task. EBM, on the

other hand, provides a more flexible estimation of source distribution thus enabling better

fulfillment of independence among the sources while ERBM extends EBM to account for

sample dependence. DL puts the emphasis on sparsity, and SparseICA-EBM balances the

roles of the two types of diversity, independence and sparsity. The relative performance

of these algorithms is assessed on the resting COBRE data that consists of 179 subjects,

which is a relatively large dataset. Due to the increasing number of large fMRI datasets

that include hundreds or even thousands of subjects, understanding the performance of

these techniques in this scenario increases our confidence in the generalizability of the re-

sults. Note that each algorithm has its own target cost function thus using the cost for

performance assessment is not possible. Even if the algorithms had the same cost function,

the lowest value of the cost function does not necessarily lead to better separation results

depending on the overall goal. In order to be fair to each algorithm, we propose to use

objective global measures, e.g., time course frequency power ratio [11, 163], network con-

nection summary [68,140] and graph-theoretical metrics [39,178]. Time course frequency

power ratio indicates whether a component is describing the BOLD response in fMRI data

or not. Network connection summary provides a general idea on how well each algorithm

can reconstruct the complex connections in the brain. Graph-theoretical metrics are an

efficient tool for studying the heterogeneity between different groups of subjects, such as

patients with SZ and HCs [9, 21, 139, 187]. These metrics perform a global comparison of

the algorithms based on all the components or the whole brain functional connectivity.
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3.2 Global metrics for performance assessment

Following are the three global measures that are used in this work to demonstrate the

powerfulness of global metrics in performance assessment.

3.2.1 Frequency analysis

The first global measure is the ratio of time course power spectra in low-frequency

band (< 0.1Hz) to the high-frequency band (> 0.15 Hz) for each component. Since the

activation in the components is due to the BOLD response, which captures the spontaneous

slow fluctuations of correlated activity in the resting brain hence corresponding to low

frequencies, higher power ratios imply that the components are more closely associated

with true neural function. Conversely, the lower the ratio, the more likely the component

is to be describing the cardiac or respiratory noise as opposed to true BOLD activation

[11, 60].

3.2.2 Network connection summary

Another global measure of the performance is the network connection summary. For

each algorithm, Npost components out of N that refer to brain functional networks are se-

lected based on their time course power ratio and visual inspection. The two-stage proce-

dure helps us to ensure that components with meaningful functional regions are included

in the post analyses. If some of them are removed or some noisy components and compo-

nents with heavy ventricle effects are included in the post analyses, the results may change.

First, all the components are separated into two categories, one containing those with time

course power ratio higher than a threshold tPR, and the other set containing the remain-

ing ones. Through visual inspection the components with large edge effects and ventricles

are removed from the first category, and those whose power ratios are slightly lower than

tPR but with activation in meaningful functional network regions are put back to the first
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category, which is finally used for network connection analysis. Using time course power

ratio to separate components into two categories in the first step significantly reduces the

difficulty of visual inspection in the second step.

The components extracted from data-driven methods generally have some dependence

due to their functional relevance. Consequently, after identifying the functional networks

that are conveyed in the components, we estimate brain connectivity by calculating the

full-order statistical dependence, MI, among them. The functional network connectivity is

constructed using normalized MI, Inorm(ŝ1, ŝ2), as the measure. The normalized MI is given

by

e(ŝ1, ŝ2) = Inorm(ŝ1, ŝ2) =
2I(ŝ1, ŝ2)

I(ŝ1, ŝ1) + I(ŝ2, ŝ2)
(3.1)

where I(ŝ1, ŝ2) is the MI between two estimated components ŝ1 and ŝ2. The performance

of three Shannon entropy based MI estimation methods, the k-nearest neighborhood [83],

the analytical formula corresponding in the chosen exponential family [154] and the Parzen

window based method [158] are investigated. The former two methods are from informa-

tion theoretical estimators toolbox (https://bitbucket.org/szzoli/ite/). Our exploration shows

that for observations with super-Gaussian distribution, the method proposed in [158] per-

forms the best, and is used in our work. After the normalization, the connectivity between

two similar sources becomes close to 1 and that of two dissimilar sources close to 0.

The complete brain network connections are summarized based on the Npost identified

functional networks with the normalized MI as connectivity measure. Connectivity patterns

within the meaningful functional modules, such as the default mode cluster, are expected

to be observed [10, 193]. Compact connections within modules improve the results of post

analyses, such as clustering, on these estimated networks. To measure the modularity of

the functional networks, the ratio of the average intra-module connectivity to the average
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Metric Abbreviation Description
Nodal metrics (globally calculated)
Degree – Number of links directly connected to node i
Characteristic path length PL Average distance of node i to all the others
Global efficiency – Communication efficiency of node i with all the others
Centrality

Betweenness centrality –
 Prominence of node i in information transfer in networkCloseness centrality –

Eigenvector centrality –
Global metrics
Clustering coefficient CC Measure of functional segregation of the network
Small-worldness SW Quantifying the ability of combining functional integration

and segregation

Table 3.1. Description of graph-theoretical metrics in both node and graph level.

inter-module connectivity is defined as:

Rm =

1
Nintra

∑Q
i
∑Ni

u eu

1
Ninter

∑Q
i, j

∑Ni, j
v ev

(3.2)

where Q is the number of modules, Ni is the number of connections within the ith mod-

ule, Ni, j is the number of connections between the ith and jth modules, eu and ev refer to

the intra- and inter-module connectivity respectively, and Nintra and Ninter refer to the total

number of intra- and inter-module connectivity, again respectively. The larger the ratio, the

more compact the modules are.

3.2.3 Graph-theoretical metrics

We also use graph-theoretical metrics as global measures of performance comparison.

For each algorithm and subject, the Npost selected components are used to construct the

graph. With the Npost components of interest as nodes and the normalized MI between

them as the edges, a fully connected graph, G, is constructed. Beginning with G, an edge

threshold, et, is used to retain only the highest Pe percent of the edges, thus generating a

new graph G′. We define the percentage of the edges that remain after thresholding as the

link density, which increases as the threshold decreases. The weighted graphs are binarized,
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with the edges below the threshold et having a value of 0 and those above having a value

of 1. In order to avoid very sparse graphs with small link densities and those with too high

link densities, we limit the link density to range from 20% to 70%.

Graph metrics highlight different topological characteristics of graphs, see e.g.,

[31,39,40]. The characteristic path length, global efficiency and centrality are measures that

can quantify the ability of a node to facilitate functional integration in graphs [164]. These

are global measures as all the nodes are taken into consideration in their calculation, and

provide measures of how information is transferred in the functional network. The cluster-

ing coefficient can capture the segregation of networks by measuring the transfer of infor-

mation in the immediate neighborhood of each node. We use global graph clustering coef-

ficient that is averaged across all the nodes. The small-worldness (SW) of the network is

also calculated to measure the degree of small-world organization in the overall functional

network. Table. 3.1 presents the metrics that are used in this work. The formulas of these

metrics are described in detail in [32,33,164]. All the implementations are performed using

Matlab code from the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/).

3.3 Experimental results

3.3.1 Implementation

Model order One important parameter in the application of an ICA algorithm is the

model order, i.e., the order of signal subspace, N. However, for fMRI data, classical order

estimation techniques based on information theoretic criteria may overestimate the order

due to the inherent sample dependence of fMRI data [130, 132]. A common way to over-

come this issue is by using downsampling to obtain effectively independent and identically

distributed samples [130, 132]. However, methods based on downsampling suffer from a

loss of information associated with it. More recently, two entropy rate (ER)-based order

estimation techniques are proposed that account for sample dependence without the use of
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Fig. 3.1. The relative contribution of statistical independence and sparsity (a)–(c) in
SparseICA-EBM, the violin plot of the time course power ratio (d) and the spatial maps
of motor components estimated by SparseICA-EBM when λs = 10−5 and λs = 10−4 (e). In
(a)-(c), the x-axis denotes the number of SparseICA-EBM iterations and y-axis denotes the
cost. In (e), Z-maps corresponding to the mean components averaged across all subjects
for motor components are shown. The maps are thresholded using a threshold Zt = 2.
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downsampling: ER using a finite memory length model (ER-FM) and ER using an autore-

gressive model (ER-AR) [78]. Since the sample correlation structure in ER-FM is a better

match to that in fMRI data due to the finite span of correlation in the point spread function,

ER-FM is used to estimate the order of signal subspace. The mean and standard deviation

of the order across subjects are 72.86 ± 10.40. We use an order equal to the mean plus

one standard deviation, which is rounded up to 85 to retain a significant level of the signal

across multiple subjects while introducing minimal noise. The use of this high model order

is also well motivated in the literature for achieving a more useful functional segmentation

of the brain, see e.g., [11, 113].

Finally, in group ICA, the order of subject-level PCA is set to T ′ = 100, a little

higher than 85, seeking to retain as much variability as possible [71]. In DL, we first try to

determine a decomposition without any dimension reduction but this results in very noisy

estimates regardless of the parameter values. We thus perform subject-level PCA using the

same order, T ′, with group ICA, then perform DL on the concatenated data, Ỹ ∈ RKT ′×V ,

and set the number of dictionary atoms to be 85, which is estimated by ER-FM in a data-

driven manner.

Back-reconstruction Direct group ICA back-reconstruction (GICA) is used to ob-

tain subject-specific time courses and spatial components for the ICA algorithms [48].

Group ICA estimates the group components after performing two levels of PCA on the

original data as introduced in Chapter 2.3.1. GICA provides a clear flow of the back-

reconstruction of the subject-specific time courses and spatial components [71] as all the

dimension reduction matrices in PCA are known. Indirect back-reconstruction approaches,

that is, spatio-temporal regression, or dual regression as used in [22, 52] for fMRI analysis

can also recover the subject-specific time courses and spatial components. In this article,

we perform spatio-temporal regression, which is the most suitable back-reconstruction ap-
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proach for DL to obtain the time courses and spatial maps. Because only the dictionary D

is given by the online DL and regression is suggested for the recovery of the spatial maps

given a dictionary D [142]. To make the DL estimates comparable with those from ICA,

GICA1, a GICA back-reconstruction method that partitions the group-level PCA reducing

matrix G† as described in Chapter 2.3.1, is used to perform back-reconstruction for ICA,

since it has been shown to have similar performance to dual regression [71].

Random initialization is used for each algorithm. For DL, the dictionary D is ran-

domly initialized from the input data. The most stable run is selected using minimum

spanning tree method [66] for EBM from 10 runs and for ERBM and SparseICA-EBM

from 25 runs. We use fewer number of runs for EBM because compared with ERBM and

SparseICA-EBM, EBM takes only HOS as type of diversity into consideration, resulting in

less variability across solutions. Hence using smaller number of runs is sufficient for EBM

to provide a robust solution compared with ERBM and SparseICA-EBM. For Infomax,

multiple runs are performed and the result shows that the spatial maps and time course

power ratio statistics are very similar across different runs. Multiple runs are not performed

for DL due to the consistency of its decompositions. Using back-reconstruction, the 85

components are estimated for individual subjects associated with their time courses. All

the post analyses in this chapter are performed on the mean components that are generated

by averaging the back-reconstructed components across all subjects.

SparseICA-EBM As introduced above, SparseICA-EBM seeks to achieve the de-

composition by balancing the roles of independence and sparsity using a sparsity parameter

λn, which enables the sparse solution for the nth source, ŝn. The balance between indepen-

dence and sparsity can be adjusted by tuning λn. Smaller λn in (2.5) emphasizes statistical

independence while larger λn places greater weight on the sparsity of the sources. Another

parameter for SparseICA-EBM is the smoothing parameter εn. Since in (2.5), the regular-
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ization term, f (ŝn) = ‖ŝn‖, is non-differentiable, it is replaced by the sum of multi-quadratic

functions [122], as given by (2.6). A higher smoothing parameter εn will produce smoother

sources [36]. However, the effect of this parameter with application to the analysis of real

fMRI data has not been explored. For this reason, in this work, different values of λn and εn

are considered. We use the same regularization and smoothing parameters for all estimates,

thus the index n is dropped, resulting in λs and ε. As noted in [36], higher values of ε yield

consistent results across different levels of noise and sparsity and lead to decompositions

that are better than those of lower values. While for λs, the performance varies based on

the sparsity levels of the sources. Hence, we first try to find a suitable value of λs for our

dataset by fixing ε = 10, a relatively high value. Further, with the selected λs, different

values of ε are used. The final values of each parameter are selected by investigating the

cost function, spatial maps and time course power ratio.

In order to select λs, a wide range of values from 10−8 to 104 are used to study the

contribution of independence and sparsity in the sparse ICA cost function. As shown in

Fig. 3.1(a) and (c), when λs = 10−5, the independence term is larger which means that

independence contributes more and when λs = 10−4, sparsity contributes more. For 10−4.5,

the contribution of independence and sparsity is balanced as seen in Fig. 3.1(b). The

spatial components are visually inspected for different values of λs. We notice that the

decomposition fails to estimate all possible latent sources when λs is too large (e.g., ≥ 102).

The estimated sources are very focal, which means that the activated area of this estimate

is compact with little noise and similar components are estimated multiple times. This

comes at the cost of not estimating sources whose activated area is expected to be larger or

dispersive, such as the DMN and frontoparietal, which are of interest in resting-state fMRI

data [11, 84]. When λs is small (e.g., ≤ 10−6), the decomposition becomes very similar to

that of EBM, i.e., sparsity scarcely contributes in these cases.
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Fig. 3.2. Comparison of several components from DL using different values of λ. Z-maps
corresponding to the mean components averaged across all subjects for DMN, auditory
(AUD), motor, sensorimotor (SM) and frontoparietal (F-P) component are shown. The
maps are thresholded using a threshold Zt = 2. The peak coordinates in mm are shown to
the right. Note that for λ = 102, there are two FP components that are estimated.
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Fig. 3.3. The violin plot of the time course power ratio for all 85 mean components of
(a) DL using different values of λ and (b) five algorithms. Note that s-EBM refers to
SparseICA-EBM.

The frequency power ratio of time courses for different values of λs is shown in Fig.

3.1(d). Only those values of λs that between 10−5 and 0 are investigated. The black curve

is the smoothed density histogram of power ratios of all subjects. The box plot displays

the median, the 25th and 75th percentiles of the time course power ratio with whiskers ex-

tending to the 99.3% confidence interval and some outliers in red asterisks beyond whisker.

The mean and standard deviation are shown in magenta. Horizontal magenta and blue lines

refer to the global average, 4.20, and median power ratio, 3.50, across components from

all decompositions, respectively. From Fig. 3.1(d), we can see that when λs = 10−4.5, the

independence and sparsity is balanced, the decomposition does not give the best statistics

for power ratio summary. The mean, 25th and 75th percentiles are lower for λs = 10−4.5 as

compared with λs = 10−5 and λs = 10−4. Even though when λs = 10−5 (with mean as 4.55

and median as 3.58), the decomposition gives slightly better power ratio summary than

when λs = 10−4 (with mean as 4.42 and median as 3.57). The components when λs = 10−4

look more focal compared with those when λs = 10−5, e.g., in Fig. 3.1(e), the motor com-

ponents when λs = 10−4 are cleaner than that when λs = 10−5. Therefore, we decide to use
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λs = 10−4, in which case that sparsity contributes slightly more than independence.

To explore the influence of ε, we fix λs = 10−4 and change the value of ε from 10−2

to 104. By visual inspection, we notice that with small ε (e.g., ≤ 1), certain components

are estimated repeatedly. Most of the repeated components are the ventricle components

whose activated regions are focal and localized. Usually, the time course power ratio of

ventricle component is low. But when they are estimated repeatedly, some of the repeated

ones have power ratios as high as 10. Though this leads to slightly better power ratio, they

are not reliable. For larger ε ( e.g., ≥ 10), the spatial maps are not estimated repeatedly.

The power ratio statistics are higher when ε = 102 (with mean as 4.65 and median as 3.90)

than when ε = 10 (with mean as 4.42 and median as 3.57), ε = 103 (with mean as 4.57 and

median as 3.47) and ε = 104 (with mean as 4.37 and median as 3.69). Therefore, we use

λs = 10−4 and ε = 102 for SparseICA-EBM.

DL There is only one regularization parameter λ for DL.The performance of DL is

highly dependent on the selection of λ to achieve a desirable tradeoff between accuracy and

level of sparsity. Different values, from 10−2 to 102, are explored to study its effect on the

performance for our relatively large real fMRI data. Another parameter to be determined

is the number of atoms in dictionary, and in this work, we set the number of atoms to be

N = 85, the order of signal subspace estimated by the data-driven order selection method

ER-FM. For each λ, we check both the spatial components and the time course frequency

power ratio. Components estimated from smaller λ are much noisier than those from larger

λ, which can be seen from the examples in Fig. 3.2. The activated area of the spatial maps

from λ = 102 is a little smaller than that from λ = 10. Additionally, components from

λ = 102 are not well-aligned with those from the other values of λ, and some of them seem

to split, such as the frontoparietal component as shown in Fig. 3.2. Power ratio distributions

obtained for each λ are shown in Fig. 3.3(a). Notice that when λ = 10, both the mean, 4.83,
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and median, 4.12, are much higher than the global mean, 3.76, and median, 3.33. When

λ = 10, the decomposition appears to provide the best performance, and hence we use this

value for DL in our further experiments.

3.3.2 Power ratio comparison

Spatial maps of a set of mean components from each algorithm are shown in Fig.

3.4. These are selected among the components that can be easily matched. For those func-

tional networks that only contain one single relevant area, all five algorithms produce a

good decomposition. However, for the DMN component, EBM and ERBM estimate more

relevant activated areas since they use a more flexible density estimation model. Infomax

only uses a fixed unimodal super-Gaussian density model which can hurt the quality of

its decomposition if the data does not correspond to this model. Consequently, the com-

ponents estimated by Infomax all have very focal activated areas and have similar PDFs.

SparseICA-EBM and DL emphasize the sparsity of the sources, which makes the estimated

components have fewer activated voxels outside the regions of interest. However, the am-

plitude levels in the parietal regions marked by the cyan circles in Fig. 3.4 for the DMN

component from Infomax, SparseICA-EBM and DL are significantly lower than that from

EBM and ERBM.

The time course power ratio comparison of the 85 mean components among the five

algorithms is shown in a violin plot in Fig. 3.3(b). Horizontal magenta and blue lines

refer to the global average, 4.52, and median power ratio, 3.53, across components from

all five algorithms, respectively. The results indicate that Infomax yields the lowest mean,

4.26, and median, 3.13, of the power ratio and DL yields both the highest mean, 4.83, and

median, 4.12. This implies that emphasizing sparsity results in components that are more

likely to be related to BOLD signal on average.
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Fig. 3.4. Comparison of several components from five algorithms. Z-maps corresponding
to the mean components averaged across all subjects for the anterior DMN, DMN and
frontoparietal (F-P) component are shown. The maps are thresholded using a threshold
Zt = 2. The peak coordinates in mm are shown to the right. Note that s-EBM refers to
SparseICA-EBM.

3.3.3 Network connection summary

In order to find Npost functionally relevant components to construct the network con-

nection, a threshold of tPR is selected by rounding off the global median value (3.53) across

all components from all five algorithms to the closest integer less than this value, which is

selected as tPR = 3 experimentally. Finally, Npost = 50 components corresponding to known

networks are selected for each algorithm. The network connection summary of the 50 mean

components is created for each algorithm using the normalized MI as a measure. We group

these components into six domains, motor, cognitive control (COG), default mode (DM),

auditory (AUD), visual (VIS) and cerebellum (CB), according to their anatomical and pre-

sumed functional properties as in [11]. Fig. 3.5 shows the composited spatial maps for

each cluster, the functional network connectivity matrix and the network connection sum-

mary for EBM. The functional network connectivity matrix exhibits some patterns of the

brain network connection, for example, the modular organization within motor, DM and

so on. These patterns are consistent with the observations in prior literature [10, 193]. The
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connection summary visually illustrates these patterns. The intra- and inter-module con-

nectivity ratio Rm is 2.4, 3.2, 1.9, 3.1 and 1.7 for Infomax, EBM, ERBM, SparseICA-EBM

and DL, respectively. This reveals that EBM and SparseICA-EBM yield better clustering

within each functional network cluster rather than across.

3.3.4 Graph-theoretical analysis

A graph-theoretical analysis is performed on the selected 50 components for each sub-

ject. The graph, G, is formed, where the retained components are nodes and pairwise nor-

malized MI between the spatial components forms the edges. For each binarized graph, G′,

both the nodal and global metrics are calculated. Permutation testing [41,194] is performed

on nodal metrics to obtain the corrected p-value to detect the significance level (p < 0.05)

of difference between SZ and HC groups. For each nodal graph metric, 10,000 random

permutations are generated independently. We first perform two-sample t-test on the graph

metric based on the SZ and HC groups, and record the test statistic, t0. To implement the

permutation test, all the subjects are randomly divided into two groups. A two-sample t-test

is performed between the two groups in each division and all the test statistics are stored.

Finally, the p-value is calculated by counting the number of permutations for which the test

statistic is greater than t0 and normalizing by 10,000. In order to prevent nodes from being

declared significant by chance, only those nodes that show significant differences in at least

three successive graphs are declared to be truly significant.

Our results reveal that for the globally calculated nodal graph metrics, i.e., degree,

characteristic path length, global efficiency and three versions of centrality, more compo-

nents from ERBM show consistent significance in graphs for the majority of link density

values, which gives us a greater ability to explore the differences between the patient and

control groups. Fig. 3.6 shows the plot for the number of significant components at each

link density for path length and betweenness centrality, and the plots for the other nodal

47



Fig. 3.5. Network connection summary of components from EBM. (a) Spatial maps of 50
functional networks. Functional networks are divided into groups based on their anatomi-
cal and functional properties. COG: Cognitive control; DM: default mode; AUD: auditory;
VIS: visual; CB: cerebellum. (b) The functional connectivity matrix. Connectivity is mea-
sured using normalized MI. (c) Network connectivity visualization. The outermost circle
demonstrates one slice of the spatial map of individual mean component. The colored circle
indicates the index corresponding to each component and different colors refer to different
functional network clusters. Curves in the center carry the exact connectivity among these
components.
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Fig. 3.6. Number of nodes showing significant group difference in each graph as a function
of link density for (a) characteristic path length (PL) and (b) betweenness centrality. Note
that s-EBM refers to SparseICA-EBM.
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Fig. 3.7. Comparison of the normalized STD of (a) clustering coefficient (CC) and (b)
small-worldness (SW) in SZs and HCs. Note that s-EBM refers to SparseICA-EBM.

graph metrics are similar with these two (not shown here due to the space limitation).

Fig. 3.7 compares the standard deviation (STD) of clustering coefficient and SW

between SZs and HCs. Usually, higher variability is expected for SZs than for HCs in

fMRI analysis [64]. The normalized STD difference is calculated by first subtracting the

STD of HCs from that of SZs then normalizing it by the STD of HCs. The result reveals that

ERBM yields the highest contrast between SZs and HCs using both clustering coefficient
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and SW.

3.3.5 Discussion

We consider two key classes of data-driven algorithms used for multi-subject fMRI

data analysis, those that are based on independence and sparsity and compare their perfor-

mances by fully taking the properties of the task, fMRI analysis, into account. We also

include a promising new method SparseICA in the comparison that balances the contri-

bution of the two objectives and demonstrate its first application to real fMRI data. An

important goal of this article has been providing feedback to practitioners who are mainly

focused on using the methods without the need to perform full performance evaluations.

We address issues in two categories in that respect in this section.

Parameter selection Parameter choice for optimized performance is always an im-

portant issue, and for practitioners, this might not always be an easy task, especially for

approaches that aim to include the right amount of sparsity through regularization param-

eters into the decomposition such as DL and SparseICA. We investigate the influence of

parameters in SparseICA-EBM and DL, and rather than using cross-validation that focuses

on prediction performance [115, 190], we consider the ultimate goal in fMRI analysis and

use suitable metrics for the task. For different values of λs and ε in SparseICA-EBM, we

use cost, time course power ratio and visual inspection to determine the suitable values.

Our experimental results from real fMRI data show that when λs is too large, components

are estimated repeatedly by SparseICA-EBM. Some important components, such as DMN

and frontoparietal, are missed. Large ε appears to produce good performance, which is

consistent with the results in [36]. For different values of λ in DL, time course power ra-

tio and visual inspection are performed to determine its suitable value. The experimental

results suggest that λ = 10 yields the best estimation. Even though different values of
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sparsity parameters are selected, i.e., λs = 10−4 for SparseICA-EBM and λ = 10 for DL,

the sparsity level imposed by them are similar. The Gini index is computed to measure

the sparsity level of a source. It is a normalized quantity with 1 corresponding to very

sparse sources while 0 to dense ones [92]. The results show that the distribution of Gini

indices of all 85 components estimated from DL is close to that from SparseICA-EBM.

The Kullback-Leibler divergence from the distribution of DL to that of SparseICA-EBM is

estimated as 0.0393.

For ICA, the main parameter of choice is the signal subspace order that determines the

total number of components to estimate. In this work, the model order is set as 85. Recently,

many fMRI studies that use data-driven techniques such as ICA favor a higher model order,

typically within the range [70, 100] since this yields a more detailed decomposition of the

RSNs which are also more repeatable [2, 11, 62, 113]. Small orders such as those in the

range [20, 40] are not favored in newer studies since they most often include overlapping or

combined estimates of RSNs. However, model orders that are greater than 100 decrease the

stability of ICA which is as expected in other data-driven techniques as well [2]. There are

a number of methods for performing order selection in a data-driven manner, and ER-FM

provides a desirable match to fMRI data characteristics as the span of sample correlation

is modeled as finite in this model, and is what we have used in this analysis. Thus for

parameter-free algorithms like Infomax and EBM, the fMRI analysis can be totally data

driven, which might also explain the popularity ICA has enjoyed from the point of view of

practitioners. For DL, one advantage that has been noted is that dimensionality reduction

stage can be bypassed [3, 186], however our study using global metrics demonstrate that

estimates tend to be noisy without dimensionality reduction regardless of the parameter

values including dictionary size. Hence the observation of our experiment suggests that

DL is not able to separate signal components from noise components effectively without
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dimensionality reduction when applied to the COBRE data used in this article. Thus it is

advisable to incorporate dimension reduction into DL as well either directly using PCA or

by imposing low rank structure. Therefore, subject-level PCA with the same order as in

ICA is performed before applying DL.

Component estimation From the comparison results using time course power ra-

tio, network connection summary and graph-theoretical analysis, we can see that different

algorithms stand out in different cases. This can be explained by the intrinsic variance of

these decompositions which depend on dissimilar modeling assumptions.

DL provides better identification of the components that describe the BOLD response.

As observed in Fig. 3.3(b), the power ratio mean and median of the components from DL

are higher than those from the other algorithms, which illustrates that on average, DL has

the capability to estimate components that are more likely to describe the BOLD response.

Fig. 3.4 shows that the activated area in components that are estimated from Infomax,

SparseICA-EBM and DL are very focal and localized. However, components, such as

DMN and frontoparietal, that have multiple relevant regions are not completely estimated

by these three algorithms. It is known that DMN contains multiple areas, the ventral ante-

rior cingulate cortex (vACC), posterior cingulate cortex (PCC), left and right inferior pari-

etal cortex (IPC). Usually, PCC is estimated together with the left and right IPC, and vACC

is estimated in another individual component called anterior DMN. The DMN components

from Infomax, SparseICA-EBM and DL are only activated in PCC. Similar observations

are noted for frontoparietal network where ERBM yields a frontoparietal component with

both the frontal and parietal region activated. Consequently, EBM and ERBM provide

better estimation of functionally relevant components.

Fig. 3.5 shows the network connection summary of EBM and it illustrates that com-

ponents from EBM can help to reconstruct a good functional connectivity of brain. The
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reconstructed connection from EBM shows dense connectivity within functional networks

and also demonstrates reasonable inter-connectivity among different functional networks.

The close-packed connectivity within functional networks may provide valuable clues for

the development of those automatic clustering algorithms for the estimated components.

Though DL provides better identification of the components that describe the BOLD

response, it yields the lowest intra- and inter-module connectivity ratio Rm. To account

for higher-order dependence, we use mutual information between pairwise spatial maps

to measure connectivity. Time course power ratio is a metric for time course comparison,

while Rm is used to summarize the spatial dependence. Therefore, there is no expectation

of higher Rm for DL. This is also an evidence that it is to study higher-order dependence

rather than only concentrating on second order dependence, i.e., correlation.

In the event that one is analyzing data from two groups and seeking to find group

differences, ERBM appears to be more preferable as ERBM can produce components with

more relevant regions activated thus leading to more effective discrimination in a graph-

theoretical analysis. From the graph-theoretical analysis results shown in Fig. 3.6, ERBM

estimates more components that show significant group difference when using globally

calculated nodal graph metrics, such as degree, path length, global efficiency and central-

ity. Usually, dysconnectivity is observed for individuals with SZ [38, 173]. Therefore,

higher variance is expected in connectivity analysis for patients compared to HCs. In Fig.

3.7, ERBM demonstrates improved ability to capture the contrast of the variability of SZs

and HCs using the global graph metrics, clustering coefficient and SW. We also note that

there is no scenario where widely-used Infomax algorithm provides the best performance,

demonstrating the cost of exploiting fewer forms of diversity. This suggests that different

algorithms can be chosen for different purposes.
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3.4 Summary

In this chapter, we conducted a comparative study to investigate the performance of

different BSS algorithms when applied to multi-subject fMRI data. For this task, we chose

Infomax, EBM, ERBM, online DL and SparseICA-EBM as they are good representative

set of algorithms that make use of different types of diversity. We proposed the use of

global metrics to assess the performance of data-driven algorithms, namely, time course

spectra power ratio, network connection summary and graph-theoretical metrics. With the

use of time course spectra power ratio, DL yielded components that are most likely to

describe the BOLD response. By using network connection summary, EBM illustrated

a better ability to reconstruct the brain connectivity with normalized mutual information

as the measure. When graph-theoretical analysis is applied, ERBM demonstrated a better

capability to capture the group differences between SZs and HCs, especially the higher

variance in SZs as expected.

Our results suggested that no one particular method had the best performance using

all metrics, implying that the optimal method will change depending on the goal of the

analysis. In general, exploiting more forms of diversity yields better performance. Addi-

tionally, we should note that there is no scenario where the widely used Infomax has shown

the best performance, which demonstrates that incorporating multiple types of diversity is

more desirable. This successful application motivates the use of additional global metrics

to assess the performance for unbiased algorithmic comparison on real fMRI data analysis,

or even on other real data analysis such as electroencephalograph data.

54



Chapter 4

IVA FOR SUBSPACE ANALYSIS OF MULTI-SUBJECT
FMRI DATA

The extraction of common and distinct biomedical signatures among different popu-

lations allows for a more detailed study of the common, group-specific as well as distinct

information across populations. A number of subspace analysis algorithms have been de-

veloped and successfully applied to data fusion, however they are limited to joint analysis

of only a couple of datasets. Since subspace analysis is very promising for analysis of

multi-subject medical imaging data as well, we focus on this problem and propose a new

method IVA-CS for multi-subject data analysis. IVA-CS leverages the strength of IVA in

identification of a complete subspace structure across multiple datasets along with an effi-

cient solution that uses only SOS. We propose a subset analysis approach within IVA-CS to

mitigate issues in estimation in IVA due to high dimensionality, both in terms of the number

of components and datasets. We introduce a scheme to determine a desirable size for the

subset that is high enough to exploit the dependence across datasets and is not affected by

the high dimensionality issue. We demonstrate the success of IVA-CS in extracting com-

plex subset structures and apply the method to analysis of multi-subject fMRI data. More

importantly, IVA-CS helps identify subgroups of SZs that show significant differences in

terms of their brain networks and clinical symptoms.
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4.1 Introduction

The study of multi-subject fMRI data using data-driven techniques is prevalent in the

neuroimaging field with a goal to identify differences in the brain function of different

populations such as the SZ and HC groups [1,87,141,156,170]. Identification of common

and distinct subspaces from multiple datasets transforms the high dimensional datasets into

lower dimensional joint and disjoint subspaces, and allows for a more detailed analysis of

the common, group-specific as well as distinct information. In these models, the assump-

tion is that each observed dataset is explained by a sum of linearly mixed latent variable

models. The common subspace is defined as a subset of latent variables that are highly

correlated across the given datasets. The distinct subspace is a subset of latent variables

that have very low correlation to each other. The joint subspaces bring the datasets to a

common ground, thus allowing for a fair and reliable comparison among different popula-

tion groups. Meanwhile the distinct components can be used to study individual differences

such as the unique connection pattern of a patient with a mental disease.

Clinical heterogeneity of patients with mental disorders, especially in SZ has been

recognized [69, 101, 102], and there has been significant interest in studying their subtypes

[82, 89, 150]. The study of subtypes can be made possible by identifying subgroups of

patients that share specific common information and can help better understand the un-

certainty in the need of precision medicine [167] during clinical diagnosis and treatment.

Subtypes of SZ have been well studied using genetic information [89, 150] but not yet us-

ing other neuroimaging modalities such as fMRI data, which has been successfully used

in the study of SZ [45, 82, 140]. The common subspace analysis motivates us to find a

way to identify subgroups of patients with potential subtypes of SZ by summarizing their

shared information. Therefore, along with identifying a common subspace comprised of

components correlated across all subjects, the extraction of common components across a
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subgroup of subjects is also of interest.

Given the importance of common and distinct subspace analysis in medical image

analysis, a number of recent studies had a focus on this aspect, in particular for fusion of

different modalities such as fMRI, structural MRI and electroencephalograph, or of fMRI

data from different tasks [5, 65, 114, 126, 135, 161, 176, 184]. However these cases have

only been demonstrated for joint decomposition of a small number of datasets. As we have

discussed, distinct and common subspace analysis also promises to be attractive for multi-

subject analyses. The models used for identification of common and distinct subspaces in

fusion study have not been well-studied in the context of the joint analysis of more than

a couple of datasets. Multi-subject data analysis involves joint analysis of at least tens,

or more typically hundreds of subjects. A recently proposed method Shared and Subject-

Specific Dictionary Learning (ShSSDL) [97] targets multi-subject task fMRI analysis and

identifies shared components across subjects as well as subject-specific components. How-

ever, ShSSDL assumes common time courses across datasets and is not able to identify

components that are common across subgroups of subjects. Another ICA-based algorithm,

hierarchical ICA [86], simultaneously estimates the population-level and subject-specific

sources. However, the complexity of the density model used in hierarchical ICA grows

when the number of datasets increases and it does not account for the dependence structure

of these sources.

In this chapter, we propose a new method IVA-CS to extract subspaces from large-

scale datasets and demonstrate its successful application to the analysis of fMRI data col-

lected from 179 subjects. We first use simulation studies to investigate the strengths and

challenges of IVA when applied to multi-subject fMRI data analysis. The proposed IVA-

CS method takes advantage of the strengths and addresses the challenge of IVA. We show

that IVA-CS using IVA-G (IVA-G-CS) that takes only SOS into consideration is powerful
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in discovering the subspace structure and estimating the subspaces through a careful study

of the correlation structure of SCVs. We also demonstrate that IVA-CS enables the study

of the heterogeneity of mental disease such as SZ by identifying subgroups of subjects with

potential subtypes of SZ.

4.2 Strengths and challenges of IVA

IVA has been successfully used for multi-subject fMRI data to effectively capture

subject variability hence preserving subspace structure which provides a good starting point

for subspace analysis [119,148]. We investigate the strengths and challenges of IVA in this

section to take advantage of the strengths for subspace analysis and address the challenges.

4.2.1 Identification condition for IVA

Identification condition of IVA is studied by analyzing the Fisher information matrix

of the objective function (2.9) with respect to the demixing matricesW [4,16]. Compared

with the identification condition of ICA that is associated with two individual sources, the

identification condition of IVA is introduced for two SCVs. It is shown that the identifi-

cation condition of IVA depends on the SOS of subsets of sources in an SCV. If the SOS

defined through covariance matrices provide the required diversity across SCVs, the SCVs

are separable even when they are multivariate Gaussian distributed since their SOS can be

accurately captured by any type of multivariate distribution prior. We define an α-SCV as

an SCV with a particular subset of source components that are Kα-dimensional multivariate

distributed and independent from the complementing subset in the same SCV. Note that all

sources are assumed to have unit variance and zero mean for simplicity. Let α ∈ NKα be a

subset of source indices within an SCV, where 0 ≤ Kα ≤ K. The complementing subset of

α in 1, 2, · · · ,K is denoted as αc ∈ NK−Kα . In two arbitrary α-SCVs, the subsets of sources,

Sn,α ∈ R
Kα×V and Sm,α ∈ R

Kα×V , cannot be identified if and only if there exists a full rank
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diagonal matrix D ∈ RKα×Kα such that

Rm,α = DRn,αD, (4.1)

where Rn,α , E{Sn,αST
n,α} ∈ R

Kα×Kα refers to the correlation matrix of the subset of sources

[16]. This suggests that the correlation matrices of the subsets of sources in two unseparable

α-SCVs have the same structure but different scaling. If an IVA algorithm only takes SOS

into consideration, any subset of sources within an SCV that possess this property will not

be separated into individual ones. An example of two unseparable α-SCVs is shown in

Fig. 2.3. The change in value of Kα indicates that two SCVs can be unseparable either in

whole or in subsets of components. However, this is no longer a problem when other types

of diversity, such as HOS and sample dependence, of the data are taken into consideration.

MCCA is another data-driven algorithm for the joint analysis of multiple datasets

which is based on SOS only and achieves the decomposition in a deflationary manner.

MCCA-GENVAR is shown to have equivalent cost function with IVA-G. The identification

condition for MCCA is given by pairwise correlation values

∀k, l ∈ {1, 2, · · · ,K}, |r[m]
k,l | , |r

[n]
k,l |, 1 ≤ m < n ≤ N, (4.2)

where r[n]
k,l is the element of Rn [133]. Hence MCCA cannot preserve the structure of SCVs.

In contrast, IVA-G has a more general identification condition given in (4.1) that is synchro-

nized for all SCVs, which enables one to discover subspace structures as we demonstrate

by simulation results in next section.

Simulation study To study the ability of IVA to maintain the structure of SCVs

to effectively identify the subspaces, we design a set of simulations. Our application is

fMRI data analysis and the latent fMRI sources are likely to be super-Gaussian distributed

[44]. Therefore, all the SCVs are generated from an MGGD with the shape parameter β
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Fig. 4.1. The definition of common subspace and other two sets of SCVs in signal space (a)
and the subset analysis and common subspace identification of IVA-CS (b). The number
of SCVs in each of the three sets in (a) are denoted by NC, NG and ND separately.

randomly selected from the interval [0.1, 0.8], which generates super-Gaussian marginals.

The SCVs are mixed by randomly generated mixing matrices, A[k], from a standard uniform

distribution to form the datasets using (2.7). A total of N = 30 SCVs are generated with

V = 10000 voxels and K = 20 datasets. Note that all the MGGD sources are normalized

to zero mean and unit variance hence the covariance values and correlation (coefficients)

coincide. These SCVs are grouped to imitate three subspaces and the details are as follows:

• The first group of 14 SCVs are simulated as common sources with high correlation
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Fig. 4.2. Correlation matrices of true SCVs (a), the estimated ones from IVA-G (b),
MCCA-GENVAR (c), MCCA-MAXVAR (d), and MCCA-SSQCOR (e) in simulation.

value ρc. The correlation matrix of a common SCV is shown in Fig. 4.2(a1).

• The second group of 6 SCVs have structured correlation matrices with some higher

value of ρc and some lower value of ρd. This indicates that the sources with higher

correlation values are common within a subgroup of datasets. The structured corre-

lation matrices are shown in Fig. 4.2(a2)–(a7).

• The last group of 10 SCVs are simulated as distinct sources with low correlation

value ρd. Fig. 4.2(a8) shows the correlation matrix of a distinct SCV.

Different cases are studied in the simulation with different values of ρc and ρd: Case 1,

ρc = 0.9, ρd = 0.1, Case 2, ρc = 0.8, ρd = 0.2, Case 3, ρc = 0.7, ρd = 0.3, and Case 4,

ρc = 0.6, ρd = 0.4.
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Fig. 4.2 shows the correlation matrices of the true SCVs and the estimated SCVs for

a random run for Case 1. To demonstrate that IVA identification condition enables pre-

serving the structure of SCVs compared to MCCA due to its identification condition, we

perform IVA-G and three versions of MCCA, i.e., MCCA-GENVAR, MCCA with MAX-

VAR cost function (MCCA-MAXVAR), and MCCA with SSQCOR cost function (MCCA-

SSQCOR), on the mixtures of sources, X. MCCA-MAXVAR and MCCA-SSQCOR be-

have similar to MCCA-GENVAR and Fig. 4.2 shows the results of IVA-G and the three

MCCA algorithms. Both IVA-G and MCCA-GENVAR successfully extract the common

subspace spanned by SCVs 1–14. But for the SCVs 15–20, as we can see there are only a

subset of components highly correlated with each other. It is possible for some components

in one SCV to have a certain level of correlation with the components in another SCV.

MCCA-GENVAR estimates one SCV by maximizing the correlation among the sources

across datasets. MCCA tends to group as many correlated sources as possible in the SCVs

that are estimated first, due to its deflationary nature. Hence we observe some SCVs that

are merged together, as shown in Fig. 4.2(c2)–(c5), and that the SCV15 and SCV16 contain

more correlated sources than SCV17 and SCV18. This breaks the structure of true SCVs

and makes it impossible to identify the subgroups of sources within an SCV, i.e., to iden-

tify subspaces. As a result, MCCA yields fewer SCVs with structured correlation matrix

and more distinct SCVs compared with the ground truth. In contrast, IVA-G successfully

preserves the structure of all SCVs. Note that these SCVs are estimated subject to permu-

tation ambiguity due to the nature of all BSS algorithms. This illustrates the desirable use

of IVA-G to extract subspaces to identify subgroups.

IVA-G and IVA-L-SOS Identification condition of IVA-G implies that IVA-G is

not able to separate α-SCVs that have proportional correlation matrices no matter which

distribution the latent sources are drawn from. The unseparable sources can be the whole
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Fig. 4.3. Boxplots of the correlation values between the estimates and the ground truth for
IVA-G in blue and IVA-L-SOS in magenta for the four cases. Statistics are calculated from
100 independent runs with different initialization. The box plot displays the median, the
25th and 75th percentiles of the correlation values with whiskers extending to the 99.3%
confidence interval using the default settings.

SCVs or a subset of sources in the SCVs since 0 ≤ Kα ≤ K. In our simulation SCVs

1–14 have the same correlation matrix hence IVA-G identifies the whole subspace success-

fully while not the individual SCVs. The same situation for SCVs 21–30. As noted in

Chapter 4.2.1, an IVA algorithm that takes both SOS and HOS into consideration like IVA-

L-SOS can solve this problem. We can either perform IVA-L-SOS on the original datasets

or perform a secondary IVA-L-SOS decomposition on the subspace identified by IVA-G.

Reliably identifying subspaces of interest by IVA-G followed by a secondary decompo-

sition of an IVA algorithm that takes both SOS and HOS (and hence is computationally

more complex) into consideration on the subspaces helps save considerable computation

time. This two-step procedure guarantees better performance by first identifying a desir-

able starting point. This strategy is favorable in the applications of BSS problems and is the

core in the common practice of performing PCA first to provide an orthogonal initialization

for an ICA decomposition.

The correlation between the estimates and the ground truth is calculated to evaluate

the performance. IVA-G yields good estimation of SCV15-20 and their average correlation
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is 0.996 ± 0.014 across all four cases. To explore the ability of IVA-L-SOS to separate

α-SCVs with proportional correlation matrices, a secondary IVA-L-SOS decomposition

is performed on the common and distinct subspace separately. The common and distinct

subspaces are constructed separately by multiplying the common and distinct SCVs from

IVA-G with their associated mixing matrices calculated as the inverse of the estimated

demixing matrices. Fig. 4.3 shows that IVA-G yields common components that are not

highly correlated with the ground truth. However, these components are very reliably esti-

mated by the secondary IVA-L-SOS with correlation values close to 1. This verifies that the

identification issue of IVA is not a problem anymore when HOS is taken into consideration.

4.2.2 Dimensionality issue of IVA

The curse of dimensionality of IVA notes that the performance of IVA degrades with

increase in the number of sources and datasets for a fixed number of samples. Hence for

a high model order and relatively large number of datasets, IVA requires a proportionally

large number of data samples for efficient estimation of the demixing matrices. However,

the number of samples is fixed in many real-world applications such as fMRI data analysis

since the resolution of the data is predetermined. On the other hand, the dependent infor-

mation across datasets is not sufficient for IVA to exploit in the case with a relatively small

number of datasets.

To achieve a reliable IVA decomposition, we need sufficient number of samples per

estimated parameter so that IVA can effectively take dataset dependence into account. The

performance of IVA degrades as the number of datasets, K, or the number of sources, N,

increases beyond a certain point, when number of samples, V , is fixed. The estimation of

the source covariance matrix that determines the multivariate Gaussian distribution of each

SCV is required in IVA-G for each update of demixing matrices W, which in turn is used to

estimate the SCVs. The total number of samples in a dataset is NV×K. The number of free
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Fig. 4.4. Plot of joint-ISI as a function of the number of subjects when performing IVA-G
on the hybrid data. The mean and standard deviation calculated from the results of 20 runs
are shown.

parameters to be estimated in the covariance matrix for each of K SCVs is K(K−1)
2 . Hence

the number of samples per free parameter is NV×K
N× K(K−1)

2
= 2V

K−1 , which is inversely proportional

to K. When updating the demixing matrices Wk, there are KN2 free parameters hence

the number of samples per free parameter is NV×K
KN2 = V

N , which is inversely proportional

to N. To explore the optimal value of K that balances the effect of high dimensionality

and maximal subject information when the N is fixed—i.e., determined using a data-driven

approach—we design a hybrid simulation. The estimated 85 COBRE sources as presented

in our previous study [137] are used as the sources and mixed by the randomly generated

mixing matrices to produce the hybrid data. With a fixed model order and a fixed number

of voxels, the number of subjects K is changed from 30 to 80 with increments of 10. The

performance is measured by joint-ISI which is defined as

ISIJNT(G[1],G[2], · · · ,G[K]) , ISI

 1
K

K∑
k=1

|G[k]|

 , (4.3)
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where

ISI(G) =
1

2N(N − 1)
·

N∑
n=1

(∑N
m=1 ‖gnm‖

maxp‖gnp‖
− 1

)

+
1

2N(N − 1)
·

N∑
m=1

(∑N
n=1 ‖gnm‖

maxp‖gpm‖
− 1

)
(4.4)

and G[k] = W[k]A[k] with elements denoted as gnm [13]. A[k] is the true mixing matrix and

W[k] is the estimated demixing matrix. If W[k] is perfectly estimated, G[k] is identity sub-

ject to permutation and scaling ambiguities, thus yielding zero ISI that indicates a perfect

separation. Therefore, the smaller the joint-ISI, the closer the estimates are to the ground

truth.

From Fig. 4.4 we see that the performance of IVA-G improves with increase in the

number of datasets until a certain value of K, after which the performance degrades. This

illustrates that when the number of datasets used in an IVA decomposition is too small,

the interaction information across datasets is not sufficient for an accurate estimation of

the sources. Hence the performance improves with more number of datasets. However,

for a larger number of datasets, IVA suffers from the curse of dimensionality. Thus, the

performance degrades. The experimental results show that there indeed exists an optimal

value of the number of datasets for an IVA decomposition that balances the requirement

of interaction information and the dimensionality issue. The optimal number of subjects

in this application is determined as K = 50, where IVA yields the best performance, i.e.,

the lowest joint-ISI as shown in Fig. 4.4. This value is then used as the subset size in

subset analysis of IVA-G-CS. We randomly selected five subsets of subjects for each group

to ensure that each subject is included at least once in the decompositions. Note that in this

work the values of all dimension parameters are determined in a data-driven manner.
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4.3 IVA for common subspace analysis

Common and distinct subspace analysis has proven useful in identifying distinct

biomedical signatures of different populations in order to better understand the unique fea-

tures of different brain disorders. Most subspace analysis algorithms introduced to date that

have shown superior performance are designed specially for fusion study where only a few

datasets are analyzed [5,114,135,161,176,184]. However, these models become extraordi-

narily complex as the data size increases to tens or even hundreds of datasets. Most medical

imaging data like fMRI data is collected from tens or hundreds of subjects and a joint anal-

ysis of the multiset data enables one to leverage its rich information especially across the

datasets. This motivates the exploration of an algorithm which can identify common and

distinct subspaces from relatively large-scale datasets.

We assume that the source space of the observed data consists of three sets of SCVs.

The first set of SCVs, {YCn = [y[1]
Cn, · · · , y

[K]
Cn ]T}, 1 ≤ n ≤ NC, define the common subspace

where the sources within each SCV are highly correlated (across all datasets) and the third

set of SCVs, {YDn = [y[1]
Dn, · · · , y

[K]
Dn ]T}, 1 ≤ n ≤ ND, consist of low correlated sources

(correlation values less than σ2
t ) as shown in Fig. 4.1(a). Another set of group-specific

SCVs, {YGn = [y[1]
Gn, · · · , y

[K]
Gn ]T}, 1 ≤ n ≤ NG, can be used to determine subgroups of

subjects that have more highly correlated RSNs in an unsupervised manner. Therefore, the

observed dataset for the kth subject is a mixture of three types of sources:

X[k] = Â[k]Y[k]

= Â[k]
C Y[k]

C + Â[k]
G Y[k]

G + Â[k]
D Y[k]

D

= [Â[k]
C Â[k]

G Â[k]
D ]


Y[k]

C

Y[k]
G

Y[k]
D

 , k = 1, 2, · · · ,K, (4.5)
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where Â[k]
C , Â[k]

G , and Â[k]
D are corresponding estimated mixing matrices of the common

sources Y[k]
C = [y[k]

C1, · · · , y
[k]
CNC

]T, the sources Y[k]
G = [y[k]

G1, · · · , y
[k]
GNG

]T that compose the

group-specific SCVs, and the distinct sources Y[k]
D = [y[k]

D1,

· · · , y[k]
DND

]T, respectively.

We propose a new method called IVA-CS that is able to extract subspaces from at least

couple of hundreds of datasets. IVA-CS leverages the strength of IVA that its identification

condition enables successful preservation of the SCV structure, which makes it highly ef-

fective for subspace analysis. However, IVA suffers from the curse of dimensionality when

applied to real-world applications with a high number, e.g., hundreds, of datasets such as in

multi-subject fMRI data analysis. In this scenario since the number of samples (voxels) is

fixed, as the number of datasets and the number of sources increases, it does not guarantee

an accurate estimation of the demixing matrices W and calculation of SCV correlation

matrices any more. Therefore, our IVA-CS method is composed of two stages, (i) subset

analysis and (ii) common subspace identification. The subset analysis stage overcomes the

challenge of dimensionality issue by first performing multiple individual IVA decomposi-

tions on subsets of subjects that are randomly sampled from the population. The explo-

ration of subset size, K, is introduced in detail in Chapter 4.2.2. The common subspace

identification stage determines a consistent common subspace for the whole population as

well as a set of the group-specific SCVs. The details of IVA-CS method are given next.

4.3.1 IVA-CS: Subset analysis

The flowchart of IVA-CS is shown in Fig. 4.1(b). In subset analysis, R subsets of K

subjects are randomly selected from all subjects of a group. IVA is performed on each sub-

set yielding N SCVs. We define the whole signal space as Y that includes all N estimated

sources, where y[k]
n denotes the nth source of the kth dataset. For each subset, its signal

space is denoted as Yr, 1 ≤ r ≤ R. Note that all source components are normalized to have
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unit variance and zero mean hence their covariance values and correlation values coincide.

For each SCV we compute a K×K correlation matrix with K×(K−1)/2 distinct correlation

values. Using these correlation values, we can study how close these components are to

each other and determine whether the corresponding source component is common across

all the datasets or not. For an SCV corresponding to the common component, we expect

that all the correlation values are significantly high. We measure the “commonality” of an

SCV by computing the ratio of the number of correlation values that are greater than σ2
t , an

empirically determined threshold, to the total number of correlation values for each SCV

as follows,

q =
Nσ2

t

K(K − 1)/2
, (4.6)

where Nσ2
t

denotes the number of correlation values that are greater than σ2
t in the cor-

relation matrix of an SCV. An SCV corresponding to a common component is expected

to have high commonality hence the value of q is close to 1. Another relevant metric is

“dissimilarity” which is defined as the ratio of the number of low correlation values to the

number of high correlation values

q̃ =
K(K − 1)/2 − Nσ2

t

Nσ2
t

. (4.7)

The dissimilarity, the value of q̃, for a common SCV is expected to be close to 0.

For each subset r, r = 1, · · · ,R, N SCVs are sorted in descending order by the mean

value of the correlation, which roughly arranges the SCVs from those with high source cor-

relation to those with low source correlation. The number of common SCVs in each subset,

Mr, is determined as the largest number that allows for most of the first Mr SCVs having

q ≥ δ1 and q̃ ≤ δ2. Here not all the Mr SCVs are required to satisfy the criteria, seeking to

allow flexibility for a further examination of the commonness of these components. After

determining the first subspaceYrI that is spanned by the Mr common SCVs for each subset,

P percent of the remaining SCVs that have a mix of both high and low correlation values
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forms the second subspace YrII. The other SCVs form the third subspace YrIII, which is

the distinct subspace.

4.3.2 IVA-CS: Common subspace identification

The second stage, common subspace identification has the goal to find a consistent

common subspace YC for all subjects of a group. To enable a comprehensive comparison

across R subsets, we adjust the number of components in the subspaceYrI to be common as

M across all subsets. The M SCVs are candidates for the common subspace identification.

The value of M is determined as the largest value of Mr, seeking to select as many candi-

dates as possible. The mean component, ymr,m = 1, · · · ,M, r = 1, · · · ,R, is calculated by

averaging the K components in the mth SCV for each subset r. The cross-correlation of

each mean component is defined as the average correlation with its corresponding compo-

nents in the other R − 1 subsets:

ρmr =
1

R − 1

∑
l,r

|ρmrl|, (4.8)

where ρmrl, 1 ≤ l ≤ R, l , r is the Pearson correlation coefficient between the mean com-

ponents ymr and yml. For each subset, its cross-correlation is defined as the average cross-

correlation of its M mean components

ρr =
1
M

∑
m

ρmr. (4.9)

The subset r0 with the most consistent components is selected as the one with the largest

cross-correlation ρr and is used to identify the common subspace for all the subjects. The

identified common components should be not only common across the subjects within

subset r0 but also consistent across all subsets. To achieve this goal, we use a data-driven

decision tree to determine whether a component is common or not as shown in Fig. 4.1(b).

A threshold t is determined from the M(R − 1) cross-correlation values. For each candi-
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date, if more than a given percentage of its cross-correlation values are higher than t, it is

determined to be a common component. First, the determined common component comes

from the first subspace of subset r0 which means it is common across all the subjects within

subset r0. Second, this decision tree ensures that this component is correlated with its cor-

responding components from most of all the subsets hence it is consistent across subsets.

The identified common subspace of all subjects therefore consists of all the determined

common components. The components that are filtered out as not common are merged

with subspace YII to form a new set of SCVs to identify subgroups of datasets that have

more highly interfered components through an unsupervised analysis.

4.4 Experimental results

We apply IVA-G-CS with a block Newton update that provides desirable convergence

properties [14] to the resting COBRE data and show that IVA-CS extracts interpretable

common RSN components for the SZ and HC groups separately.

4.4.1 Common subspace identification using IVA-G-CS

IVA-G-CS is applied to SZ group and HC group separately to identify their subspaces.

Five subsets of 50 subjects are randomly selected for each group and 85 SCVs are estimated

from each subset. The value at each voxel of the estimated source is transformed into Z-

scores before any calculation of metrics hence the covariance and correlation coincide. For

each SCV, there are 50 × (50 − 1)/2 = 1225 distinct correlation values. The smoothed

distribution of correlation values is plotted as a function of the index of SCVs for the five

subset of SZs and the five subsets of HCs as shown in Fig. 4.5–4.8. The similar plots of the

other subsets are provided as supplementary materials. The SCVs are sorted by the mean

value of correlation to roughly order them from high correlation to low correlation. From

Fig. 4.6(e), the plot for the fifth subset of SZs, we can see there is a group of SCVs with
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Fig. 4.5. (Part 1) Smoothed distribution of the correlation values of the five subsets of SZ
group. The red crosses and the green squares denote the mean and median. Two ratios q
and q̃ are plotted in yellow and purple. Two vertical red lines denotes the margins between
different groups of SCVs. Blue and magenta horizontal lines denotes 0.6 and 0.2 which are
used for a comparison of the three groups of SCVs.

all their correlation values higher than 0.2. Using σ2
t = 0.2, the commonality q and dis-

similarity q̃ are calculated and plotted in yellow and purple, respectively. In the application
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Fig. 4.6. (Part 2) Smoothed distribution of the correlation values of the five subsets of SZ
group. The red crosses and the green squares denote the mean and median. Two ratios q
and q̃ are plotted in yellow and purple. Two vertical red lines denotes the margins between
different groups of SCVs. Blue and magenta horizontal lines denotes 0.6 and 0.2 which are
used for a comparison of the three groups of SCVs.

to this dataset, we chose δ1 = 0.98 and δ2 = 0.02. More than 90% of the first 28 SCVs

have q ≥ 0.98 and q̃ ≤ 0.02 in the fifth subset of SZs. This suggests that the first 28 SCVs

are common across the subjects in this subset. Finally, the numbers of common SCVs Mr

for all five subsets of SZ group are determined as 23, 30, 33, 35, 28, respectively. For HC

group, the numbers are 31, 32, 28, 34, 34, respectively. The number of candidates, M, in

the subspace YrI is determined as 35, which is the largest one among the ten values. The

25th percentile of the cross-correlation values of the M candidates is used as threshold t for

the identification of common components. Each identified common component is consis-
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Fig. 4.7. (Part 1) Smoothed distribution of the correlation values of the five subsets of HC
group. The red crosses and the green squares denote the mean and median. Two ratios q
and q̃ are plotted in yellow and purple. Two vertical red lines denotes the margins between
different groups of SCVs. Blue and magenta horizontal lines denotes 0.6 and 0.2 which are
used for a comparison of the three groups of SCVs.

tently estimated in at least 80% of the subsets. Note that the values of σ2
t , δ1, and δ2 are

selected such that the average correlation values in the subspaces are as different as pos-
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Fig. 4.8. (Part 2) Smoothed distribution of the correlation values of the five subsets of HC
group. The red crosses and the green squares denote the mean and median. Two ratios q
and q̃ are plotted in yellow and purple. Two vertical red lines denotes the margins between
different groups of SCVs. Blue and magenta horizontal lines denotes 0.6 and 0.2 which are
used for a comparison of the three groups of SCVs.

sible. Determining the value of M as the largest one across multiple subsets mitigates the

sensitivity of the choice of parameters by allowing more candidates available for common

component identification.

Artifact removal Using the common component identification method presented

in Chapter 4.3.2, 25 and 24 common components are determined for SZ and HC groups

separately. Among the determined common components, some of them have high ventricle
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Fig. 4.9. Spatial maps of the common components in six categories: Motor; COG, cogni-
tive control; DM, default mode; AUD, auditory, VIS, visual; CB, cerebellum. (a)-(d) for
SZ group and (e)-(h) for HC group. The number of independent components (ICs) that
are composited in each subfigure is listed and different colors refer to the spatial maps of
individual components.

effects and hence should be removed from further analysis. We utilize the grey matter

and cerebrospinal fluid MNI templates included in SPM 12 to distinguish the components

[24, 175]. The correlation between the common components and the two templates, CGM

and CCSF, are calculated. Each component is normalized to Z-score and thresholded by

Z = 2 which means that the voxels with Z < 2 are set to zero. The components are divided

into two groups with respect to the median value of CGM − CCSF. The components in the

first group are with CGM − CCSF higher than the median hence they are more likely to be

RSNs and those in the second group are more likely to be ventricle effects. To ensure all

the RSNs are retained and the ventricle effects are removed, we further do a visual check.

The grouping by the correlation reduces the burden of a visual check. The median value of

CGM − CCSF is 0.18 for SZs and 0.22 for HCs. Finally, 14 common RSNs are obtained for
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SZs and 16 for HCs after artifact removal. The average correlation values of the 14 common

RSNs of SZs is 0.66 ± 0.15 and that of the 16 common RSNs of HCs is 0.68 ± 0.10.

The identified common components of each group are typical RSN components like

those found in previous studies [11, 113]. They are grouped into six domains, motor, cog-

nitive control (COG), default mode (DM), auditory (AUD), visual (VIS) and cerebellum

(CB), according to their anatomical and presumed functional properties as in [11]. Fig.

4.9 shows the composite spatial maps for each cluster. The results show that two common

components of SZs include two different interesting RSNs, the first one merges the motor

cortex (precentral and postcentral gyrus) and the auditory cortex (superior temporal gyrus)

and the other one merges the precuneus gyrus and the right frontoparietal network. The

merging of two different RSNs into a single source component does not occur in the HC

group. This observation suggests a high correlation between these RSN pairs might result

from decreases in connectivity in the brain of individuals with SZ [38,74,173] hence more

networks are involved in its functioning.

4.4.2 Analysis of group-specific SCVs

From the violin plots in Fig. 4.6(e), we can identify two more subspaces, YII and YIII

(distinct subspace). The subspaceYII has a mix of both high and low correlation values and

YIII has very low correlation values. The value of P that is used to determine the subspace

YII is set as 40. Further analysis of these two groups is of interest as well. The SCVs in

subspace YII are called group-specific SCVs since they suggest that the components from

some subgroups of subjects have higher correlation hence can be used to identify those

subgroups. As we know that the brain functions differently in patients of SZ compared

with HCs. Using the group-specific SCVs, we seek to identify subgroups of patients that

have RSNs with significant correlation which may result from similar functional patterns.
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Fig. 4.10. The clustering and modularization processes of the correlation matrices of group-
specific SCVs and the two clusters that yield clear subgroups of patients (a-c). Subgroup
1, 2, and 3 are labeled by orange, magenta, and red squares separately. The differences
of spatial activation patterns across subgroups in Cluster I (d) and Cluster II (e) are rep-
resented by the t-statistic from a two sample t-test with FDR (≤ 0.05) control and the
associated confidence interval (CI) is reported. The brain regions that show significant
subgroup (SG) differences including: posterior cingulate gyrus (PCG), BA31, secondary
visual cortex (SVC), anterior cingulate gyrus (ACG), primary somatosensory and motor
cortex (SSM), angular gyrus (Ang), inferior frontal gyrus (IFG), and BA30.

The results indeed show that the subgroups identified using group-specific SCVs reflect

similarity within each subgroup and significant differences across subgroups in terms of

the spatial activation patterns of their RSNs. We also conduct statistic test on their clini-

cal symptoms that are scored by PANSS and discover differences with certain significance

level.
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From the distribution plots of correlation values shown in Fig. 4.6(e), the subspaceYII

is determined as that located within two vertical red lines. Meanwhile, those SCVs that are

filtered out by common subspace identification are treated as group-specific SCVs as well.

Consequently, NG = 30 group-specific SCVs are identified for SZs. A k-means clustering

is performed on the correlation matrices of the group-specific SCVs to find out clusters

that have similar correlation matrices to help identify source components that are common

within the same subgroup of subjects. The mean correlation matrix of a cluster is used to

identify the subgroups of subjects. As shown in Fig. 4.10(c) and (d), the mean correlation

matrix is rearranged to assemble the subgroup modules by maximizing the modularity of

the matrix, which is called modularization. Modularity is a measure that quantifies the

community structure of a network that is summarized in a matrix [153]. As shown in Fig.

4.10(c), two clusters with higher modularity, 0.39 and 0.21, each yields three separate clear

subgroups. There is no significant difference associated with age among the subgroups

(p ≥ 0.1541).

To compare the spatial activation patterns of the RSNs across subgroups in each clus-

ter, we perform a two-sample t-test on the activation value at each voxel of the spatial

map across the subjects within each subgroup. False discovery rate (FDR) correction is

conducted throughout all comparisons and the associated confidence interval after FDR

correction is reported. Cluster I includes three components and two of them show signifi-

cant differences in spatial activation patterns, as shown in Fig. 4.10(d). Subgroup 1 yields

higher activation in the posterior cingulate gyrus and Brodmann area (BA) 31, and lower

activation in the secondary visual cortex compared with subgroups 2 and 3. Subgroup 2

has lower activation than the other two subgroups in the anterior and posterior cingulate

gyrus. Cluster II includes five components and three of them show significant differences

in spatial activation patterns, as shown in Fig. 4.10(e). Subgroup 3 has lower activation
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Fig. 4.11. The median (connected by solid lines), minimum, and maximum (connected by
dash lines) values of each PANSS score of subgroups in Cluster I (a) and Cluster II (c), and
the dominant (bright orange, magenta, and cyan) and absent (fade orange, magenta, and
cyan) symptoms of each subgroup in Cluster I (b) and Cluster II (d). In (b) and (d), the
bold symptoms refer to those that are unique for a subgroup and the translucent symptoms
refer to those that are absent from all three subgroups.

in the primary somatosensory and motor cortex, and higher activation in the secondary vi-

sual cortex. Subgroup 2 has lower activation in angular gyrus and higher activation in the

inferior frontal gyrus. A particular case is the very small area of activation in BA30 that

shows significant differences with 100% confidence interval after FDR correction between

subgroups 1 and 3.

A multivariate analysis of variance (MANOVA) is conducted on five statistics—mean,

standard deviation, median, minimum, and maximum—of all the thirty PANSS scores

[108], including seven positive, seven negative, and sixteen general scales. The MANOVA

yields in F-score=3.978 (p = 6.816× 10−5) that demonstrates significant differences across

the three subgroups in Cluster I (Cluster II was not significant). Fig. 4.11 summarizes the
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dominant and absent symptoms of each subgroup. The dominant symptoms of a subgroup

refer to those that have median value greater than 2 or the median value is 2 for one sub-

group while is 1 (which means absent) for the other two subgroups. In Cluster I, as shown

in Fig. 4.11(b), subgroup 3 has more dominant symptoms, subgroup 2 has more absent

symptoms, and subgroup 1 has obvious broader range for a number of symptoms such as

delusions, tension, lack of judgment and insight, and active social avoidance. In Cluster

II, as shown in Fig. 4.11(d), all three subgroups have several dominant symptoms. Sub-

group 2 has more absent symptoms and subgroup 3 has broader range for symptoms such

as stereotyped thinking, anxiety, and tension. All subgroups possess their unique dominant

and absent symptoms. We also conduct a MANOVA on the symptoms present in all three

subgroups. The MANOVA detects significant differences among the subgroups in Clus-

ter I with F-score=4.1367 (p = 8.302 × 10−5). In Cluster II, only the standard deviation

demonstrates significant differences among subgroups with F-score=3.3846 (p = 0.0404).

4.4.3 Discussion

Through the investigation of spatial activation patterns of the networks across sub-

groups, we find several interesting networks that show significant subgroup differences.

Most of the networks such as the cingulate gyrus [152], somatosensory and motor cortex

[17], angular gyrus , inferior frontal gyrus [107], and secondary visual cortex [172] are re-

ported to be related to SZ [177, 191]. One particular case is the third component in Cluster

II because the activated region that shows significant differences between two subgroups

is very small yet very interesting. This network is BA30 which does not have a specific

name and only the function of its left part, where the activation pattern shows significant

subgroup differences, is reported in [157,188]. Its function is related to attending to speech

and listening to sentences. Hearing voices is the most common type of hallucination—one

of the typical symptoms—in people with SZ.
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In addition to studying the differences across the identified subgroups using the spa-

tial maps of the networks extracted from fMRI data, we also investigate the differences in

terms of their clinical data—PANSS scores. PANSS scores—1 means absent and 7 means

extreme—are medical scales used for measuring symptom severity of patients with SZ

[108]. The self-reported symptom scores are, in general, subjective and noisy, and hence

not effective in terms of categorization of disease. Focusing the analysis on individual

PANSS scores is not sufficient to describe the subgroups. By investigating the PANSS

scores via a MANOVA, we find significant differences across the subgroups and identify

unique dominant and absent symptoms for each subgroup. The high significance level

provides more confidence in the identified subgroups in Cluster I. Extracting reliable infor-

mation of the subgroups of SZ from both the neuroimaging data and clinically diagnostic

data can potentially lead to a better understanding of the underlying heterogeneity of the

disorder and in the future may lead to improved categorization and treatment strategies.

4.5 Summary

Given the importance of common and distinct subspace analysis in medical imaging

data analysis, a number of recent studies had a focus on this aspect, in particular for fu-

sion of different modalities or tasks where only a couple of datasets are jointly analyzed.

However, joint analysis of large-scale medical imaging data such as multi-subject fMRI

data collected from tens, or typically hundreds of subjects enables one to leverage the rich

information across the datasets. In this chapter, we introduced a new method called IVA-

CS to extract subspaces from at least a hundred of datasets by leveraging the strength of

IVA in identification through successful preservation of the complete SCV structure. This

allows for efficient identification and estimation of subspaces by carefully studying the de-

pendence structure of SCVs. IVA-CS also mitigates the high dimensionality issue of IVA
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by introducing subset analysis to determine a desirable number of datasets that is high

enough to exploit the dependence across datasets and is not affected by issues regarding

high dimensionality. The simulation study verified the ability of IVA to preserve subspace

structure and its application to real fMRI data demonstrated its effectiveness. The identi-

fied common components with two linked networks provided evidence of the functional

dysconnectivity in the brain of SZs. A subspace of group-specific SCVs was identified

by IVA-CS for the SZ group as well. The subgroups of SZ recognized using the group-

specific SCVs exhibited significant differences in terms of their brain networks as well as

their clinical symptoms that are measured by PANSS. These findings emphasize the impor-

tance of interpreting subtypes of SZ in terms of both the neuroimaging data analysis and

the clinically diagnostic data. A better understanding of the underlying heterogeneity of

the disorder may lead to improved categorization and treatment strategies.
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Chapter 5

QUANTITATIVE STUDY OF RESTING-STATE DFNC

The study of the dynamics of human brain using fMRI data emerged due to evidence

that the brain exhibits changes in functional patterns, in terms of BOLD activation over

the scanning period [95]. Studies of the dynamics of the brain enabled the identification

of unique functional network connectivity states and provided new insights into mental

disorders [18, 30, 72, 125, 141, 162, 181]. DFNC summarizes the association among func-

tional networks and is widely used for the study of dynamics. However, most of previous

studies extracted dFNC information using the temporal variabilities of networks though

spatial variability is gaining increasing attention recently. In this chapter, we propose the

use of a recent method, acIVA, to simultaneously capture the temporal and spatial vari-

abilities of brain networks. Through a graph-theoretical analysis, we demonstrate that the

rich dynamic information captured in the spatial domain enables the identification of more

distinguishable features compared with that in the temporal domain. We also propose a

goal-driven scheme for the determination of the number of transient states in a dynamic

study. We apply the proposed methods to the resting-state COBRE data to demonstrate

their effectiveness.
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5.1 Introduction

There is evidence that shows that the intrinsic functional patterns in the human brain

change over time, and those time-varying—dynamic—patterns are studied using resting-

state fMRI data [58,90,94,95]. The dFNC information that measures the association among

the BOLD activation patterns of RSNs has been the most commonly used feature for the

dynamic study of human brain [10, 30, 51, 62, 79, 103, 155, 189]. Unique FNC patterns are

identified in studies to gain a better understanding of mental disorders such as SZ either

when compared with an HC group or in a longitudinal study [125, 141, 162, 189].

However, previous studies conducted a dFNC analysis using the time courses of

BOLD activity by assuming the spatial domain is static [10,51,103,189]. Spatial variation

of BOLD activity is observed as changes in the volume of a functional network or varia-

tions in the activated regions within a functional network and has started to attract attention

because they enrich the dynamic study of brain function [98–100]. Previous studies have

shown that simultaneously considering temporal and spatial changes yields more distin-

guishable RSNs between subject groups [100,105,116]. Studies that compute dFNC using

the spatial maps of brain networks also have emphasized the importance of the assumption

of spatial variability in a dynamic study by detecting significant differences between the

patients with mental disorders such as between those with SZ and the HCs [25, 27, 141].

The rich samples in the spatial domain of the RSNs guarantee a more reliable computation

of dFNC using spatial maps compared with using time courses. Therefore, it is desirable

to propose the use of an algorithm that can accurately capture the spatial variabilities of

RSNs and make effective use of the spatial variability for dynamic study such as the dFNC

analysis.

Identifying discrete transient states that are characterized by FNC patterns is a com-

mon strategy in studying the dynamic evolution of brain function [141, 196]. The determi-
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nation of the number of states is essential while there is no effective method for its selection.

People either select the value that yields the lowest error or cost regarding the clustering

methods they use to identify the states, or use multiple values and conduct a comparison. In

the study of brain functions of patients with mental disorders, a key point is to find biomed-

ical patterns that are unique for the patients and hence are distinguishable between patients

and HCs. A scenario where a specific number of states with different distinguishable fea-

tures are identified is preferable. We propose to determine the number of states through a

comprehensive study with the research goal, i.e., a goal-driven scheme.

Graph-theoretical analysis has been widely used in the study of brain FNC and there

are a variety of metrics being defined to characterize FNC [39,178]. After the identification

of transient states by clustering dFNC, conducting a graph-theoretical analysis enables one

to quantitatively compare dFNC across states [124, 197]. The graph-theoretical metrics

that demonstrate significant group differences are of special interest. In this work, we

demonstrate that a comprehensive study of the graph-theoretical metrics is a good practice

of the proposed goal-driven scheme for the selection of the number of states in dynamic

study. Through a comprehensive study of the graph-theoretical metrics, we are able to

identify a scenario where all states have unique characteristics in terms of the summary of

graph-theoretical metrics that are distinguishable between subject groups.

To ensure a successful graph-theoretical analysis that yields distinguishable graph-

theoretical metrics between groups, it is important to extract RSNs that preserve as much

individual subject variability as possible. Both temporal and spatial variabilities of BOLD

activity are important in order to gain a better understanding of brain dynamics. However,

existing methods such as group ICA [48] and joint ICA [47] can only effectively capture ei-

ther temporal variability or spatial variability by making relatively strong assumptions. The

recent method, acIVA, inherits the ability of IVA to capture the variability of RSNs in both
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temporal and spatial domains and enables a more efficient decomposition by making use

of reference signals such as the spatial maps of RSNs. AcIVA is able to precisely preserve

spatial variability by adaptively tuning the constraint parameter that controls the spatial

association between reference signals and the source estimates. This makes it desirable to

compute FNC matrices using spatial maps that have rich samples, hence leading to success-

ful graph-theoretical analysis of sdFNC. The acIVA method also reduces the undesirable

effects of high dimensionality that frequently arise during a dynamic study. We describe

the issue of high dimensionality and its relation to the dynamic study in Chapter 5.2.2.

In addition, acIVA eliminates the tough alignment process across multiple decompositions

due to the use of reference signals [27].

Therefore, in this chapter, we apply acIVA using the IVA-L-SOS algorithm to the

resting COBRE data to effectively capture both temporal and spatial variabilities of RSNs

for dynamic study. We compute tdFNC and sdFNC and perform k-means clustering on

dFNC matrices to identify transient states. A graph-theoretical analysis is conducted on

FNC to characterize each state by summarizing the global graph-theoretical metrics that

show significant group differences. We propose a goal-driven scheme for the determination

of an optimal number of states, which is a comprehensive study of the graph-theoretical

metrics in this case. A following analysis of nodal graph-theoretical metrics is conducted.

5.2 Methods

In this section, we present the framework of using acIVA for dynamic analysis of

fMRI data, including data formation by adopting the sliding window approach, a detailed

introduction of acIVA algorithm, the extraction of reference signal, the graph-theoretical

analysis that is used for a quantitative study of dFNC, and the proposed goal-driven scheme

for the determination of the number of states Ns.
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Fig. 5.1. Dynamic study using acIVA with windowing strategy

5.2.1 Data formation for dynamic analysis

The sliding window approach facilitates dynamic study of fMRI data that is acquired

within a certain duration [141]. In a sliding window approach, the entire scanning period

is divided into overlapping windows of length Tw, yielding L windows for each subject, as

shown in Fig. 5.1. In our case, this results in L × 179 datasets. Joint analysis of a large

number of datasets typically involves estimation of a large number of parameters with a

limited number of samples, which degrades the estimation of the spatio-temporal dynamic

features. This motivates the use of an algorithm that effectively captures the variability in

both the spatial and temporal domains from a large number of datasets.

IVA is a data-driven technique that extends ICA to multiple datasets and makes ef-

fective use of the dependence across datasets [4]. IVA also relaxes the assumptions made

in other joint blind source separation solutions, such as group ICA [48] which assumes a

common spatial signal space, and joint ICA [47] which assumes a common temporal signal

space. IVA simultaneously estimates the demixing matrices of all datasets in order to ob-

tain dataset-specific time courses and spatial maps, effectively capturing both the temporal

and spatial variability of functional networks across datasets [25, 27, 118, 141]. However,
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this flexibility comes at a cost. With a limited number of samples the performance of

IVA degrades as the number of datasets and/or the model order—the number of sources—

increases [27,136]. This issue is referred to as the curse of high dimensionality in IVA and

is addressed by using a novel algorithm, acIVA, that incorporates reference information

into the IVA decomposition.

5.2.2 Adaptively constrained IVA

The acIVA algorithm is a semi-blind source separation technique that incorporates

reference information regarding the time courses or spatial maps into the IVA decompo-

sition. This reference information guides the decomposition towards a desirable solution

in high-dimensional scenarios thereby addressing the issue of high dimensionality [27]. In

this section, we introduce the general IVA model followed by a description of the acIVA

technique.

As we introduced in Chapter 2.3.2, given K datasets each containing V samples, IVA

finds K demixing matrices by minimizing the mutual information among the SCVs, which

results in the following cost function

J(W) =

N∑
n=1

H(yn) −
K∑

k=1

log|detW[k]|

=

N∑
n=1

H(yn) −
K∑

k=1

N∑
n=1

log
∣∣∣∣(h[k]

n

)>
w[k]

n

∣∣∣∣ (5.1)

such that the estimated sources of each dataset are obtained as y[k](v) = W[k]x[k](v) for k =

1, · · · ,K, where W = {W[1],W[2], · · · ,W[K]} denotes the demixing matrices, yn denotes

the estimated SCV,H(·) denotes the (differential) entropy, and h[k]
n is a unit vector resulting

from the decoupling process that is perpendicular to all rows of W[k] except w[k]
n [26, 131].

The acIVA algorithm guides the decomposition with prior information such as prop-

erly selected reference signals for the source components. The IVA decomposition is
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hence achieved by minimizing the cost function in (5.1) subject to an inequality constraint

gn(y[k]
n ,dn) = ρn − |corr

(
(y[k]

n )T dn

)
| ≤ 0, where 0 ≤ ρn ≤ 1 is the constraint parameter

that provides the lower bound for the similarity between the estimate y[k]
n and the reference

signal dn that is measured using Pearson correlation. The cost function of acIVA is defined

by incorporating an inequality constraint in the IVA cost function, yielding

Jc(W) = J(W) −
K∑

k=1

1
2γk

M∑
m=1

{[
max{0, µ[k]

m + γmgm(y[k]
m ,dm)}

]2
− (µ[k]

m )2
}
, (5.2)

where J(W) is the IVA cost function as defined in (5.1), M (0 ≤ M ≤ N) is the number

of source estimates to be constrained, µ[k]
m is the regularization parameter, and γm > 0 is

the penalty parameter [27]. Through an adaptive parameter-tuning process, acIVA yields

different values of the lower bound ρ̂ for the similarity, which allows the estimate to vary

across datasets.

The use of reference signals also effectively reduces the effect of high dimensional-

ity, providing a more robust estimation. Additionally, it eliminates the alignment problem

across multiple decompositions. When applied to the dynamic study of resting-state CO-

BRE fMRI data, it is possible to divide the 179 subjects into multiple subsets of K0 subjects

(yielding K = L × K0 datasets) and perform multiple individual IVA decompositions with-

out considering the challenging issue of component alignment. We use the IVA-L-SOS

algorithm that uses a multivariate Laplacian distribution model for the sources, like IVA-L

[111], and additionally considers the SOS [27], since the Laplacian distribution is a good

match for fMRI data and the adding of SOS enables a full statistical characterization of a

Laplacian multivariate random vector.
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5.2.3 Reference signal extraction

In the implementation of acIVA for extracting dynamics from multi-subject resting-

state fMRI data, we use the spatial maps of exemplar RSN components as reference signals.

Possible choices for the exemplar RSNs include the pre-defined RSN templates [11] or the

group-level RSN components extracted from the same dataset using group decomposition

algorithms such as group ICA [25]. In this work, we apply acIVA to the resting COBRE

data collected from a SZ group and a HC group, seeking to gain a better understanding

of SZ through a fair comparative study of dFNC. Therefore, instead of using arbitrarily

pre-defined or estimated RSNs, it is desirable to use common static RSNs that are shared

across the subjects of two groups as the reference signals. We extract common RSNs from

the data of all 179 subjects using a common subspace analysis method [136] and use their

spatial maps as reference signals. All the spatial maps are normalized to have zero mean

and unit variance.

5.2.4 Graph-theoretical analysis

The dFNC matrices are computed for each subject by measuring the association

among the components of interest—the constrained estimates in acIVA. We perform a

graph-theoretical analysis by treating each dFNC matrix as a graph, G, with the compo-

nents as nodes and the association among them as edges. Beginning with G, we compute

the graph-theoretical metrics on a sequence of graphs with the link density changes from

20% to 70%, as described in Chapter 3.2.3. In addition to the nodal graph-theoretical met-

rics introduced in Chapter 3.2.3, we also compute local efficiency for each graph. Local

efficiency is computed by taking only the neighbors of a node into consideration and mea-

sures the efficiency of information transfer within the neighborhood of each node. The cor-

responding graph-level global graph-theoretical metric is computed by averaging the values
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of each nodal graph-theoretical metric across all the nodes in a graph. The formulas of these

metrics are described in detail in [32,33,164]. All the implementations are performed using

Matlab code from the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/).

5.2.5 A goal-driven scheme

In an analysis of fMRI data collected from subjects of different populations, such as

a group of subjects with SZ and a group of HCs, the goal is to identify distinguishable

biomedical patterns between groups. These distinguishable patterns help us understand the

functional differences in the brain between them hence enabling a better interpretation of a

disorder. In the dFNC analysis, we perform a k-means clustering on the dFNC matrices to

identify several transient states and use Ns to denote the number of states, which is a crucial

parameter to be decided. In order to determine distinguishable graph-theoretical metrics

that are computed for the dFNC matrices, we perform a two-sample t-test on these metrics

between SZs and HCs in each state. The detected significance is reported with FDR con-

trol. Along with the goal of identifying distinguishable biomedical features, we propose the

use of a goal-driven scheme—a comprehensive study of graph-theoretical metrics in this

work—to investigate the influence of Ns. The comprehensive study of graph-theoretical

metrics can tell which metrics are distinguishable between groups and how the distinguish-

able metrics change across states. It would be desirable if in the scenario of the optimal Ns,

all the identified states yield distinguishable graph-theoretical metrics that are different in

terms of the number and types of metrics.

5.3 Application to multi-subject resting-state fMRI data

We apply acIVA using the IVA-L-SOS algorithm to the resting-state COBRE data.

We obtain L = 16 datasets for each subject using a sliding window of length Tw = 24

with a 50% overlap, yielding 2864 datasets in total. Instead of performing a single acIVA
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Fig. 5.2. Spatial maps of the eight common components of HC and SZ groups. SP-V-C:
super parietal-visual-cerebellum, F-P: frontoparietal, SMA: supplementary motor area.

on the whole data, we divide the subjects into 45 subsets of K0 = 4 subjects and perform

acIVA decomposition on each subset. Each subset has K = L × K0 = 64 datasets, a value

that is higher than the optimal value of the number of datasets that allows a reliable regular

IVA decomposition [136]. Note that the last subset of HC only has three subjects hence

48 datasets. The model order used for each acIVA decomposition is 20 and the dimension

of each dataset is reduced from 24 to 20 using principal component analysis. Using the

common subspace extraction method, we obtain eight components that are shared across

all 179 subjects. The spatial maps of M = 8 common components are used as reference

signals to constrain eight out of 20 components that are estimated. The use of reference

signals help avoid the component alignment problem across multiple decompositions. The

eight common components include medial visual (RSN1), sensorimotor (RSN2), cerebel-

lum (RSN3), DMN (RSN4), super parietal-visual-cerebellum (SP-V-C, RSN5), frontopari-

etal (F-P, RSN6), supplementary motor area (SMA, RSN7), and frontal (RSN8) compo-

nents as shown in Fig. 5.2.

We compute two types of dFNC for the estimated RSNs. the first type of dFNC

is tdFNC by measuring the correlation among the time courses, and the second type is
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Fig. 5.3. Ratio of the number of dFNC matrices in each state for SZ and HC groups as
the value of Ns changes when using sdFNC (a) and tdFNC (b). The number of states with
different ratios between the two groups is summarized in (c). The detailed results of the
knee point detection that determines the number of states with different SZ and HC subjects
are shown in (d).

sdFNC that is computed as the normalized MI among the spatial maps. For each type

of dFNC, a k-means clustering is performed to identify the transient states with different

values as the number of states, Ns = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, to enable an investigation

of the influence of Ns. Each dFNC matrix is a graph and the graph-theoretical metrics are
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calculated for the graph with different levels of link density as described in Chapter 3.2.3.

A two-sample t-test is performed on each graph-theoretical metric between the SZs and

HCs in each state and the detected significance is reported with FDR control.

5.3.1 Graph-theoretical analysis based quantitative study of dFNC

The ratio of the number of dFNC matrices in each state for the SZ and HC groups

as a function of Ns is shown in Figure 5.3(a) and (b) for the cases when using sdFNC and

tdFNC separately. Figure 5.3(d) and (e) show the ratio difference between SZ and HC

groups in each state for the two cases. The elbow criterion that is calculated as the ratio

of within-cluster distance to between-cluster distance [10, 196] is used to find the knee

point before which the ratio difference is large, indicating the number of dFNC matrices

are obviously different between SZ and HC groups in a state. The summary of the number

of states with a large ratio difference is shown in Figure 5.3(c). When using tdFNC, the

number of states with a large ratio difference is the largest 7 when Ns = 11. While when

using sdFNC, the number of states with a large ratio difference is bounded between 2 and

4. The results indicate that the identified states using sdFNC are more balanced between

SZ and HC groups regarding the number of dFNC matrices.

The statistical test results show that when using tdFNC, in most cases only a few

graph-theoretical metrics demonstrate significant group difference. The clustering coef-

ficient and SW always yield significant differences hence whenever the value of Ns is,

there are more than one state that have the same characterization in terms of the summary

of the distinguishable global graph-theoretical metrics. In contrast, when using sdFNC,

more graph-theoretical metrics yield significant group differences, making it possible to

uniquely characterize the states by using a comprehensive study of the distinguishable

metrics. Moreover, this suggests that the rich spatial variabilities provide more chances

to identify unique biomedical patterns of the subjects with SZ. Next, we will introduce the
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Fig. 5.4. Summary of the statistical test results of global graph-theoretical metrics for the
cases with Ns = 5, 6, 7, 8, and 9. In each plot, the boxplot on the top summarizes the p-
values with FDR control, the barplot gives the number of graphs with different link density
that has a p-value survives the FDR correction, and the triangular over a bar means the test
results show the graph-theoretical metric has higher value in SZs (red) or HCs (blue). The
red dot in the upper right corner indicates the number of SZ and HC subjects are different
in a state. Ef-g: global efficiency, Ef-l: local efficiency, PL: path length, CC: clustering
coefficient, SW: small-worldness, BCt: betweenness centrality, CCt: closeness centrality,
ECt: eigenvector centrality

results of a comprehensive quantitative study of sdFNC using graph-theoretical analysis.

The two-sample t-test results of the global graph-theoretical metrics when using

sdFNC is summarized in Fig. 5.4. There are ten cases with different values of Ns ∈

{3, 4, 5, 6, 7, 8, 9, 10, 11, 12} but only five cases, Ns = 5, 6, 7, 8, 9, are shown as examples.

In each plot, the boxplot on the top summarizes the p-values with the FDR control, the

barplot gives the number of graphs with different link density that yield graph-theoretical

metrics with significant group difference, and the triangular over a bar means the graph-

theoretical metric has higher values in SZs (red) or HCs (blue). If there is no triangular

over a bar, it means among the graphs some have higher metric values in the SZ group

while the others have higher metric values in the HC group. The red dot in the upper right
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corner indicates the number of sdFNC matrices are not balanced in SZ and HC groups in a

state. There are three states, as labeled in magenta, red, and green rectangular separately,

that are robustly estimated. When Ns ≤ 5, there are missing states compared with the cases

where Ns ≥ 6. The cases with Ns ≥ 7 yield multiple states that are not distinguishable

through the characterization using a summary of global graph-theoretical metrics. There-

fore, Ns = 6 is the optimal case where all six states are unique regarding the summary

of global graph-theoretical metrics. The results illustrates that the comprehensive study of

the global graph-theoretical metrics as an example of the goal-driven scheme effectively

determines of the optimal number of states Ns. We also use the elbow approach to es-

timate the optimal value of Ns. The mean value and standard deviation of 100 runs are

6.0200 ± 0.9426, coinciding with the value suggested by a comprehensive study of graph-

theoretical metrics. However, the goal-driven scheme determines the optimal value of Ns in

a more interpretable way, which is the distinguishable graph-theoretical features that help

us compare between groups.

We take a close look at the nodal graph-theoretical metrics in the case when Ns = 6

in order to find interesting individual RSNs. There are two states, states 5 and 6 as shown

in Figure 5.5, where all eight components have at least one graph-theoretical metric that

demonstrates significant group difference. In state 5, only the complex component (RSN5)

that merges multiple brain regions and the component (RSN7)—the supplementary motor

area—that consists of superior and middle frontal cortex yield higher values of centrality in

SZ while the other components yield higher values of centrality in HC. This high centrality

of RSN5 infers that the SZ subjects tend to have more brain regions involved for a certain

intrinsic brain function, which may illustrate the dysconnectivity in the brain of SZ. In

state 6, RSN6 and RSN8 that are parts of the cognitive control network yield higher values

of centrality in HC compared with SZ, potentially suggesting a more efficient cognitive
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Fig. 5.5. Summary of the statistical test results of nodal graph-theoretical metrics for states
5 and 6 when Ns = 6. In each plot, the boxplot on the top summarizes the p-values
with FDR control, the barplot gives the number of graphs with different link density that
has a p-value survives the FDR correction, and the triangular over a bar means the test
results show the graph-theoretical metric has higher value in SZs (red) or HCs (blue). Ef-g:
global efficiency, Ef-l: local efficiency, PL: path length, CC: clustering coefficient, BCt:
betweenness centrality, CCt: closeness centrality, ECt: eigenvector centrality

control system in the brain of HCs.

The two components RSN5 and RSN7 even yield graph-theoretical metrics with sig-

nificant group differences in all six states, as shown in Fig. 5.6. Except for the closeness

centrality in state 2 for RSN5, the values of all the other graph-theoretical metrics are

higher in SZ group than in HC group, indicating the increased involvement of the two

components in the brain function of SZs. The increased involvement of RSN5 that merges

multiple brain regions once more suggests the dysconnectivity in the brain of SZ. The other

component RSN7 that consists of superior and middle frontal cortex has been reported in
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Fig. 5.6. Summary of the statistical test results of nodal GT metrics for the complex com-
ponent (IC5) and the supplementary motor area component (IC7) when Ns = 6. In each
plot, the boxplot on the top summarizes the p-values with the false discovery rate (FDR)
control, the barplot gives the number of graphs with different link density that has a p-value
survives the FDR correction, and the triangular over a bar means the test results show the
GT metric has higher value in SZs (red) or HCs (blue). Ef-g: global efficiency, Ef-l: local
efficiency, PL: path length, CC: clustering coefficient, BCt: betweenness centrality, CCt:
closeness centrality, ECt: eigenvector centrality

many studies to have different level of activation in SZ compared with HC. The other two

interesting components, RSN6, the frontoparietal component, and RSN8, the frontal com-

ponent, yield graph-theoretical metrics with significant group differences in five and four

states separately, as shown in Fig. 5.7. All the values of centrality are higher in HCs in

these states. The high involvement of RSN6 and RSN8 again supports the conclusion that

HCs may have a more efficient cognitive control system.

From the analysis of nodal graph-theoretical metrics, we find that the most interesting
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Fig. 5.7. Summary of the statistical test results of nodal GT metrics for the fronto-parietal
component (IC6) and the supplementary motor area component (IC7) when Ns = 6. In each
plot, the boxplot on the top summarizes the p-values with the false discovery rate (FDR)
control, the barplot gives the number of graphs with different link density that has a p-value
survives the FDR correction, and the triangular over a bar means the test results show the
GT metric has higher value in SZs (red) or HCs (blue). Ef-g: global efficiency, Ef-l: local
efficiency, PL: path length, CC: clustering coefficient, BCt: betweenness centrality, CCt:
closeness centrality, ECt: eigenvector centrality

graph-theoretical metric is centrality. An analysis of the centrality yield differences among

individual components in terms of their role on the brain function. Four interesting compo-

nents that yield interpretable graph-theoretical analysis results include RSN5 that merges

multiple brain regions, RSN7 that relates to movement control, and RSN6 and RSN8 that

are parts of the cognitive network. A study of these four components helps get a better

understanding of the differences in the brain function between SZs and HCs, i.e., a less

efficient brain for SZs and a better cognitive control system for HCs.
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5.4 Summary

In this chapter, we applied acIVA to the resting-state COBRE data to capture both the

temporal and spatial variation of RSNs in order to enable a thorough dynamic study. We

emphasized the importance of taking spatial variabilities into consideration in the study of

brain dynamics using fMRI data by comparing the graph-theoretical analysis results using

tdFNC and sdFNC separately. The results showed that the analysis of spatial variabilities

yields more distinguishable features that are potential unique biomedical patterns of SZ. We

proposed the use of a goal-driven scheme to determine the optimal value for the number

of states Ns when conducting a dFNC analysis and used the systematic study of graph-

theoretical metrics as an example to investigate the effectiveness of the goal-driven scheme

in this work. The results illustrated that the goal-driven scheme successfully finds a case

where the value of Ns is optimal in a more interpretable way compared with using an ar-

bitrary statistical method such as the elbow approach that is independent from the analysis

goal. In the case with the optimal Ns, all states were uniquely characterized by graph-

theoretical analysis results. The study of nodal graph-theoretical metrics in these states

demonstrated that the centrality was the most interesting graph-theoretical metric in this

application. Four interesting components that yielded interpretable graph-theoretical anal-

ysis results include one component that merges multiple brain regions, one component that

relates to movement control, and two components that are parts of the cognitive network.

The component that merges multiple brain regions demonstrated increased involvement in

the brain function of SZs compared with HCs, illustrating the dysconnectivity of SZ brain.

The two components that are parts of the cognitive network had higher values of centrality

in HC group, potentially suggesting a more efficient cognitive control system in the brain

of HCs.
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Chapter 6

STUDY THE ACTIVITY-CONNECTIVITY
CO-EVOLUTION OF DBA AND DFNC

In last chapter, we conducted a quantitative study of dFNC. However, the temporal and

spatial dynamic properties of BOLD activity itself have not been well studied yet. In this

chapter, we investigate the dynamic characteristics of BOLD activity as well as the activity-

connectivity co-evolution in the brain. Furthermore, we investigate the possibility of using

dynamic information extracted from fMRI data for the study of heterogeneity of SZ since

we show the potential of using neuroimaging for studying subtypes of SZ in Chapter 4.

6.1 Introduction

There is rich work showing that both BOLD activity and F(N)C are related to mental

and cognitive processes, see e.g., [37, 93, 145, 146]. Differences in BOLD activity and

FNC have been separately reported in multiple mental disorders especially in SZ, such

as reduced amplitude of low-frequency fluctuation (ALFF) in cuneus [91, 180], reduced

BOLD activation in anterior cingulate gyrus [19, 165], dysconnectivity in default mode

network [183, 198], and dysconnectivity between thalamus and sensory regions [49, 117,

143, 149, 198]. However, the association between dBA and dFNC is not well studied and

it would be desirable to incorporate dBA to gain insight into the activity-connectivity co-

evolution by identifying highly correlated patterns between dBA and dFNC.
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In [80], the authors investigate the associations between dBA and dFNC in temporal

domain, i.e., they measure dBA and dFNC using the temporal variabilities of functional

networks. They observe that dBA and dFNC are significantly correlated in time in some

cases and not in others and SZ patients show lower or nonexistent associations between

dBA and dFNC compared with the HCs. However, like in [80], most previous studies

conduct a dFNC analysis using the time courses of BOLD activity by assuming the spa-

tial domain is static [10, 51, 103, 189]. Spatial variation of BOLD activity is observed as

changes in the volume of a functional network or variations in the activated regions within a

functional network and has started to attract attention, since they enrich the dynamic study

of brain function [98–100]. Previous studies have shown that simultaneously considering

temporal and spatial changes yields more distinguishable RSNs between subject groups

[100, 105, 116]. Studies that compute dFNC using the spatial maps of brain networks also

have emphasized the importance of the assumption of spatial variability in a dynamic study,

by detecting significant differences between the patients with mental disorder such as be-

tween those with SZ and the HCs [25, 27, 141]. However, the spatial activation patterns of

dBA themselves are not well explored primarily due to the lack of effective quantification

strategies of the spatial property of dBA. An efficient quantification of sdBA does not only

enable the investigation of the spatial activation patterns of dBA but also leads to a study

of activity-connectivity co-evolution using sdBA and sdFNC of functional networks.

The extraction and efficient quantification of the dynamic features captured through

temporal and spatial variation leads one to analyze their importance in studying a mental

disorder such as SZ. In Chapter 4, we introduced the significant interest in studying the

subtypes of SZ and show that fMRI alone can identify subgroups of SZ that demonstrated

significant differences in terms of clinical symptoms and helps understand the heterogene-

ity of SZ. However, these subgroups were identified through static imaging features. This
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motivates an investigation of the effectiveness of dynamic neuroimaging features for iden-

tifying and studying the heterogeneity of mental disorders such as SZ.

In this chapter, we propose the novel use of acIVA that enables us to simultaneously

capture the dFNC and dBA in the spatial and temporal domains, and also provides an ef-

fective quantification of sdBA, as part of the algorithm. We demonstrate that measuring the

association between reference signals and the source estimates as part of the acIVA algo-

rithm provides an efficient quantification of sdBA. In order to study the novel use of acIVA

to capture the dynamic features, we propose a simulation study and demonstrate that acIVA

yields a desirable performance in capturing spatial dynamics by accurately recovering the

association between reference signals and the targeted estimates. We then apply acIVA to

the resting-state COBRE fMRI data to investigate the association between tdBA and sdBA

and study the activity-connectivity co-evolution of sdBA and sdFNC.

6.2 Efficient quantification of sdBA

In the application of acIVA to real fMRI data, we use the spatial maps of RSNs as ref-

erence signals in order to emphasize the importance of spatial variabilities and the efficient

metric of sdBOLD that is provided by acIVA. As was introduced in Chapter 5.2.2, through

an adaptive parameter-tuning process, acIVA yields different values of the lower bound ρ̂

for the similarity, which allows the estimate to vary across datasets. Consequently, acIVA

is able to effectively capture the variability across datasets that describes sdBA. The use

of reference signals in acIVA also provides us with a useful metric for quantifying spatial

variation. In this work, we propose a novel use of acIVA to efficiently quantify the spatial

variability using the similarity between the estimates and corresponding reference signals.

We first use a simulation study to demonstrate that acIVA is able to accurately recover

the spatial variabilities due to the adaptive parameter-tuning process. When applied to real
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fMRI data, we investigate the association between the temporal and spatial properties of

dBA.

6.2.1 Simulation study

Fig. 6.1. Visualization of the correlation matrices and the decomposition results of acIVA
in the four cases of simulation. In the ticklabels of x-axis in the boxplots, “H” refers to the
results of components that are highly correlated (c1) with the reference signal, “L” refers
to the results of components that are not highly correlated (c2), and “diff” refers to the
cases where we summarize the differences between the tuned values of ρ̂ and the ground
truth. The boxplot displays the median, the 25th and 75th percentiles of the values with
whiskers extending to the 99.3% confidence interval and some outliers in red asterisks
beyond whisker.

The acIVA implementation enables the quantification of sdBA by adaptively tuning

the amount of correspondence between the estimated functional networks and the reference
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signals. We use simulated data to demonstrate the ability of acIVA to accurately capture the

underlying spatial variability of dBA. In order to simulate fMRI-like sources that are super-

Gaussian distributed, we generate N = 10 SCVs that are multivariate generalized Gaussian

distributed with randomly selected shape parameter β ∼ U(0.1, 0.8) that forms a super-

Gaussian distribution, and different correlation matrices Rn ∈ R
16×16, n = 1, · · · , 10, as

described below in the four cases and shown in Fig. 6.1. Out of the ten SCVs, we constrain

six SCVs, where the first component in each of the first six SCVs is used as the reference

signal, and the other fifteen components are used to generate K = 15 datasets. The sources

for the kth dataset are obtained by concatenating the kth row from all SCVs. Each dataset,

X, is computed by mixing the ten sources using a mixing matrix, whose elements are

randomly drawn from a uniform distribution U(0, 1). We apply acIVA using the IVA-L-

SOS algorithm on the K datasets with the first M = 6 components are constrained using

the reference signals. The value of constraint parameter ρ in acIVA is tuned from a default

set P= {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The details of four cases where the SCVs

are generated to have different correlation matrices are as follows and the visualization of

correlation matrices is illustrated in Fig. 6.1. If the components within an SCV are highly

correlated with the reference signal, it means the spatial activation of the component is

relatively stationary and does not vary much across datasets. If the components are barely

correlated with the reference signal, it means the component varies a lot across datasets in

terms of its spatial activation.

• Case 1: SCVs 1-3 are generated to have a uniform correlation structure with cor-

relation value c = 0.9, which means all the components are highly correlated with

the reference signal. SCVs 4-6 are generated to have a subset of components that

are highly correlated with the reference signal and have high correlation values

c1 = 0.9. Those components that are not highly correlated with the reference sig-
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nal have correlation values that are randomly selected from a uniform distribution

c2 ∼ U(0.1, 0.2). SCVs 7-10 are generated to have a correlation matrix with random

entries, C = QQ>,Q ∼ U(−0.2, 0.8), that allow the components to have different

correlation values with the reference signal.

• Case 2: SCVs are generated using the same parameters as in Case 1 except

that the low correlation values in SCVs 4-6 are randomly selected from a uni-

form distribution c2 ∼ U(′.′′∞, ′.∈). The default set is updated to be P=

{0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

• Case 3: SCVs 1-3 are generated to have correlation values c ∼ U(0.8, 0.9). The high

correlation values in SCVs 4-6 are c1 ∼ U(0.8, 0.9) and the low correlation values are

c2 ∼ U(0.1, 0.2) for SCV 4, c2 ∼ U(0.2, 0.3) for SCV 5, c2 ∼ U(0.3, 0.4) for SCV

6. The correlation values are set to be in a specific range to investigate the sensitivity

of the adaptive parameter-tuning process to varying values in acIVA. SCVs 7-10 are

generated in the same way as in Case 1 and 2.

• Case 4: SCVs 1 and 2 are generated to have correlation values c ∼ U(0.8, 0.9). SCVs

3 and 4 have correlation values c ∼ U(0.6, 0.7). SCVs 5-10 are generated to have a

correlation matrix C = QQ>,Q ∼ U(−0.2, 0.8). The components in SCVs 5 and 6

have random correlation with the reference signal.

We quantify sdBA using correlation between the spatial maps of the estimates and the ref-

erence signals. This metric is reflected in the tuned value of ρ̂, which we use for measuring

the performance of the algorithm. The ground truth of ρ, the lower bound of the correla-

tion, is 0.1 if c ∈ [0.1, 0.2), 0.2 if c ∈ [0.2, 0.3), and so on. In most cases, ρ is a single value

hence we summarize the tuned values of ρ̂ for a direct comparison between ρ̂ and ρ. How-

ever, the true ρ for components with small correlation values in SCVs 4-6 of Case 2 and all
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the components in SCVs 5-6 of Case 4 is not a single value because their correlation values

have a large range. For example, the components in SCVs 5-6 of Case 4 have correlation

values that change from 0 to 1, hence the true ρ of some components with c ∈ [0.1, 0.2) is

0.1 while for those with c ∈ [0.2, 0.3) is 0.2. We then summarize the differences between ρ̂

and ρ to assess the performance of acIVA in these scenarios.

The simulation results summarized for 100 realizations demonstrate that the values

of ρ̂ are very close to the ground truth values, suggesting that acIVA is able to tune the

closest lower bound for the correlation between the estimates and reference signals in dif-

ference scenarios, as shown in Fig. 6.1. With the constraint of the reference signals, the

estimates are accurately recovered and hence yield high correlation values with the ground

truth. When applied to real fMRI data for a dynamic study where the sources come from

a sequential of windows, the correlation between the spatial maps of the estimates and the

reference signals can be a good measure for sdBA.

6.2.2 Application to real fMRI data

We apply acIVA using the IVA-L-SOS to the COBRE data to extract the temporal

and spatial variations of BOLD activity of RSNs using the model shown in Fig. 5.1 with

the constraint of the eight common components shown in Fig. 5.2, the same process as

in Chapter 5. An example of the tuned value of ρ̂ and the computed value of ρ̃ across 16

windows for one SZ subject and one HC subject is shown in Fig. 6.2. We can clearly

see that the spatial variabilities of dBA in the same functional network varies significantly

across different subjects. We use spatial maps of the DMN component as an example to

demonstrate how ρ̃ quantifies spatial variability. High values of ρ̃ means the estimates are

very similar to the reference signal while low values means the estimates deviate from the

reference signal, indicating higher variability. It shows that the DMN component varies

more across windows for the HC individual than for the SZ individual.
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Fig. 6.2. The tuned values of ρ̂ in acIVA and the computed correlation ρ̃ between the
estimates and the reference signals as a function of windows for a HC subject and an SZ
subject (a). The spatial activation of the DMN component varies across windows in HC
subject (b) and SZ subject (c). The values of spatial activation are normalized to be z-scores
and thresholded using zt = 2.

Spontaneous slow fluctuations of correlated activity is a fundamental feature of the

resting brain and can be captured as the BOLD signal that reflects neural synchrony be-

tween brain regions [29, 182]. A related measure is fALFF that quantifies the amplitude of

these low frequency oscillations. Therefore, we measure tdBA by computing the fALFF

of time courses as the fraction of the square root of power spectrum integrated in a low
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frequency band [0.025-0.15 Hz] that summarizes the most dominant frequencies of BOLD

signal during resting-state [195, 199]. Since the variabilities of the spatial maps of RSNs

reflect the spatial property of dBA, we quantify sdBA using correlation between the spa-

tial maps of the estimates and the reference signals, ρ̃n = |corr
(
(y[k]

n )T dn

)
|. We hence

introduce an effective metric to quantify the spatial variability of dBA which enables an

investigation of the relationship between the temporal and spatial properties of dBA for

identifying synchronized patterns. We compute the cross-correlation between ρ̃ and fALFF

in order to study the association between sdBA and tdBA and denote the ρ̃-fALFF cross-

correlation matrix as C[k] for each subject, as shown in Fig. 6.3(a). The mean ρ̃-fALFF

cross-correlation matrices C̄ that are averaged across the subjects in SZ group and HC

group are shown in Fig. 6.4(a) and a one-sample t-test is performed on C[k] with FDR

control at p ≤ 0.05. The statistical test results demonstrate that the temporal variabilities

and spatial variabilities of dBA of the same brain functional network are more likely to

be significantly correlated than those of different networks. SZ group has fewer signifi-

cantly correlated sdBA and tdBA pairs when compared with HC group, indicating a less

efficiently organized brain function in SZ.

6.3 Co-evolution of dBA and dFNC

As there is evidence that both BOLD activity and network connectivity are related to

mental and cognitive processes in brain, it is desirable to study the activity-connectivity co-

evolution. In this work, we make use of an effective metric ρ̃ for sdBA, enabling the study

of activity-connectivity co-evolution in spatial domain using sdBA. We measure sdFNC

using the normalized MI among the spatial maps. Pearson’s correlation between ρ̃ and

sdFNC is calculated and the activity-connectivity co-evolution matrix is denoted as E[k]
n for

each component and each subject, as shown in Fig. 6.3(b).
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Fig. 6.3. Cross-correlation between sdBA (ρ̃) and tdBA (fALFF) (a) and
activity-connectivity co-evolution computed using sdBA (ρ̃) and sdFNC (b).

Fig. 6.4. Cross-correlation matrices of two types of dBA (a) and activity-connectivity co-
evolution matrices computed using dBA and dFNC (b) that are averaged across subjects in
SZ and HC groups. The values of t-statistic with an FDR control are shown.
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The investigation of the activity-connectivity co-evolution in spatial domain is shown

in Fig. 6.4(b) by demonstrating the mean co-evolution matrices C̄ for two groups and the

t-statistics of a one-sample t-test with FDR control. There is a component (RSN5) yielding

significant co-evolution between its sdBA and sdFNC in both SZ and HC groups. This

component is a complex component that merges multiple brain regions—super parietal,

visual, and cerebellum—and it’s the only component that show significant correlation be-

tween sdBA and sdFNC for SZ group. Its sdBA activity significantly correlates to more

connectivity patterns in sdFNC for SZs compared with HCs. Note that these connectiv-

ity patterns are associated with this complex component. The preference of the complex

component suggests the reduced efficiency of brain function in SZ because more regions

are simultaneously activated for a certain intrinsic function in their brain. HC group has an

additional component (RSN7), the superior and middle frontal component (supplementary

motor area), that yields significant co-evolution between its sdBA and sdFNC. This illus-

trates that HCs show better functional organization in terms of the spatial variation patterns

in the superior and middle frontal cortex compared with SZ group. The frontal cortex has

been widely studied to better understand SZ and there is rich work showing the functional

deficits in frontal lobe for SZ [54–56, 88, 144, 151, 159, 168].

6.4 Study of heterogeneity of SZ using dynamic features

The successful use of static features extracted from fMRI data for studying the het-

erogeneity of SZ motivates a further investigation of the effectiveness of using dynamic

features for the study of subtypes of SZ. We study the heterogeneity of SZ by identi-

fying subgroups of SZ subjects using k-means clustering to cluster the ρ̃-fALFF cross-

correlation matrices C[k] and the activity-connectivity co-evolution matrices E[k]
n separately.

The unique entries of each matrix form a feature, with a length of 64 in the case of C[k] and
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Fig. 6.5. Mean cross-correlation matrices of each subgroup and the statistical test results
(with an FDR control) for three scenarios with different values of Ns. The robust clusters
of SZ subjects are listed under the correlation matrices using different colors. The colored
font in bold refer to clusters that are robustly detected in all three scenarios and the regular
colored font refer to clusters that are detected in two scenarios. The font in black refer
to subjects that are not belong to any robust clusters. The numbers in brackets denote the
number of subjects in each subgroup.

28 in the case of E[k]
n . We use the elbow criterion, which is calculated as the ratio of

within-cluster distance to between-cluster distance [10, 196], to determine the number of

subgroups Ns. We run the elbow algorithm 100 times, yielding the mean value and stan-

dard deviation of 4.31 ± 0.51 and 4.63 ± 0.69 for the two cases respectively. We conduct

an extensive investigation on the influence of Ns by forming three scenarios where four,

five, and six subgroups of SZ subjects are identified by clustering the dynamic features into

four, five, and six clusters.

The mean cross-correlation matrices C̄SGi, i = 1, · · · , 6 that are averaged across the

subjects in each subgroup for the three scenarios are shown in Fig. 6.5 for the case where

we use cross-correlation matrices C[k]. We perform a MANOVA on the correlation values

across subgroups in order to identify differences across subgroups, and the fours different
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Fig. 6.6. (Part 1) Mean activity-connectivity co-evolution matrices ĒSGi, i = 1, 2, 3, 4, 5, 6,
of each subgroup and the statistical test results (with an false discovery rate control at
p < 0.05) for three scenarios with Ns = 4, 5, and, 6. The robust clusters of SZ subjects that
are denoted using numbers k = 1, · · · , 88 are listed on the top of the figure using different
colors. The colored font in bold refer to clusters that are robustly detected in all three
scenarios and the regular colored font refer to clusters that are detected in two scenarios.
The font in black refer to subjects that are not belong to any robust clusters. The numbers
in brackets denote the number of subjects in each subgroup. (cont.)

test statistic values—Pillai’s, Wilks’, Hotelling’s, and Roy’s—are reported. The MANOVA

test results show that there exist significant differences across subgroups in all three sce-

narios with different values of Ns. To visually compare the correlation patterns across
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Fig. 6.7. (Part 2) Mean activity-connectivity co-evolution matrices ĒSGi, i = 1, 2, 3, 4, 5, 6,
of each subgroup and the statistical test results (with an false discovery rate control at
p < 0.05) for three scenarios with Ns = 4, 5, and, 6. The robust clusters of SZ subjects that
are denoted using numbers k = 1, · · · , 88 are listed on the top of the figure using different
colors. The colored font in bold refer to clusters that are robustly detected in all three
scenarios and the regular colored font refer to clusters that are detected in two scenarios.
The font in black refer to subjects that are not belong to any robust clusters. The numbers
in brackets denote the number of subjects in each subgroup.
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subgroups, we plot the statistic values of a one-sample t-test on C[k] for each subgroup

and an univariate analysis of variance (ANOVA) on C[k] across subgroups with an FDR

control at p < 0.05. The results from Fig. 6.5 show that each subgroup has a unique cross-

correlation patterns and within each subgroup, the correlation values are statistically signif-

icant, except for subgroup 4 when Ns = 6. These results indicate that the dynamic features

extracted from imaging data are effective in identifying unique subgroups of SZ subjects.

We check subjects that are clustered into each subgroup, finding some subject clusters that

are robustly grouped together, as shown in Fig. 6.5 with numbers denoting subject indices

(k = 1, · · · , 88) under the correlation matrices. The numbers in bold font and color refer

to clusters that are robustly detected in all three scenarios and those in regular font and

color refer to clusters that are detected in two arbitrary scenarios. The black numbers refer

to subjects that do not belong to any robust clusters. The numbers in brackets denote the

number of subjects in each subgroup. In the case where the co-evolution matrices E[k]
n are

used to identify the subgroups of SZ subjects, we also detect significant differences across

subgroups using statistical tests and find clusters of subjects that are robustly grouped to-

gether in three scenarios of different values for Ns. The results are summarized in Fig. 6.6

and 6.7.

The identified subgroups of SZ subjects are further verified by comparing the clinical

symptoms, which are measured by PANSS scores [108]. There are a total of seven positive,

seven negative, and sixteen general scales. A MANOVA is performed on five statistics—

mean, standard deviation, median, minimum, and maximum—of all the thirty PANSS. The

MANOVA detects significant difference across subgroups for the scenario of Ns = 6 with

F-score=2.1148 (p = 0.0012) when using C[k] and F-score=1.7942 (p = 0.0100) when us-

ing E[k]
n . We investigate the correlation between the positive, negative, and general PANSS

scores for each subgroup for Ns = 6. The subgroups demonstrate different trends in the
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Fig. 6.8. Correlation between the positive, negative, and general PANSS scores for each
subgroup when Ns = 6 for the case using C[k] (a)-(c) and E[k]

n (d)-(f). The large chart plots
the data of six subgroups together for a easier visual comparison and the small charts on
its right plot the data of individual subgroups with the correlation value and its associated
significance level listed.

correlation between the positive and negative PANSS as shown in Fig. 6.8. In the case

of C[k], subgroups 1 and 2 show positive correlation, subgroups 3 and 4 show negative

correlation, and the positive and negative PANSS of subgroups 5 and 6 are almost not cor-

related. Though all subgroups show positive correlation between their positive/negative

PANSS and general PANSS, only the correlation of the two subgroups—subgroups 1 and

2—that show positive correlations between their positive and negative PANSS are signif-

icant. In the case of E[k]
n , four subgroups show positive correlation between their positive

and negative PANSS scores and the other two subgroups show negative correlation. More

subgroups show significant positive correlation between their positive and general PANSS

than between their negative and general PANSS.
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6.5 Summary

Besides the dFNC information that is widely used in dynamic studies, BOLD activity

is also shown to be related to mental and cognitive processes in human brain, making a

strong case for the desirability of using both BOLD activity and functional connectivity

when studying the brain dynamics. We proposed a novel use of a recent method, acIVA,

to effectively capture temporal and spatial properties of dBA and to quantify sdBA as part

of the algorithm. The efficient quantification of sdBA allows the study of the association

between tdBA and sdBA as well as the activity-connectivity co-evolution in spatial domain

using sdBA and sdFNC. We conducted a simulation study to demonstrate the adaptive

parameter-tuning process in acIVA helps to accurately capture the spatial variabilities and

provides a nice metric to efficiently quantify the sdBA. The application of acIVA to the dy-

namic study of multi-subject resting-state fMRI data showed that dBA demonstrated syn-

chronized patterns in temporal and spatial domains and dBA and dFNC were significantly

correlated in spatial domain. SZs showed fewer significantly correlated sdBA and tdBA

pairs and favored a complex component that merges multiple brain regions—super pari-

etal, visual, and cerebellum—when compared with HCs, suggesting that the brain function

is less efficiently organized in SZ hence more brain regions are simultaneously activated

for a certain intrinsic function. In addition, we investigated the effectiveness of dynamic

functional features extracted from fMRI in studying the heterogeneity of SZ by identify-

ing unique subgroups of SZ subjects that demonstrate different dynamic patterns using the

cross-correlation and co-evolution matrices separately. More importantly, significant dif-

ferences were detected across the subgroups in terms of their clinical symptoms that are

measured by PANSS. This observation again inspires further study of the heterogeneity of

mental disorders using neuroimaging modalities such as fMRI.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

In this work, we made a number of important developments for the analysis of multi-

subject resting-state fMRI data. We studied different forms of diversity used in important

data-driven BSS algorithms that are common for fMRI data analysis and developed new

methods by leveraging their strengths and addressing the key challenges in the process. In

this chapter, we summarize our contributions. Also, we discuss several related directions

for future research in multi-subject fMRI data.

7.1 Conclusions

Due to the popularity of using data-driven BSS techniques in extracting interpretable

functional brain networks from fMRI data, there are a number of algorithms being devel-

oped. Different algorithms make use of different forms of diversity hence are expected to

perform differently. However, there is no work performing a fair comparison across algo-

rithms mainly due to the lack of objective metrics for performance assessment. As was

discussed in Chapter 3, we provided insight into the comparative advantage of emphasiz-

ing one form of diversity over another in the decomposition of multi-subject fMRI data by

using group analysis algorithms that assume a common signal space across datasets. Such

a comparison is made more difficult due to the differences in the modeling assumptions

among different algorithms. We proposed the use of objective global measures, such as
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time course frequency power ratio, network connection summary, and graph-theoretical

metrics, to gain insight into the role that different types of diversity have on the analysis of

fMRI data. Four ICA algorithms that account for different types of diversity in addition of

the independence assumption and one DL algorithm that makes use of the sparsity property

are studied. We applied these algorithms to the resting-state COBRE data collected from

subjects with SZ and a HC group. Our results suggested that no one particular method

has the best performance using all metrics, implying that the optimal method will change

depending on the goal of the analysis. However, we noted that in none of the scenarios we

test the highly popular Infomax provides the best performance, demonstrating the cost of

exploiting limited form of diversity.

Unlike the common signal space assumption made in the group analysis algorithms,

IVA, another data-driven BSS technique, is developed to extend ICA to the analysis multi-

ple datasets in a more flexible way. IVA makes effective use of dependence across datasets.

In Chapter 4, we studied the strengths of IVA-G through a simulation study. IVA-G has a

strong identification condition—i.e., the ability to uniquely identify the underlying latent

variables—that enables the preservation of subspace structure even by taking only SOS

into consideration. IVA-G also provides efficient estimation with reliable convergence due

to its desirable analytical properties. By leveraging these strengths of IVA-G, we proposed

a new method, IVA-CS, for the subspace analysis of multi-subject fMRI data that is col-

lected from at least a hundred of subjects and addressed the dimensionality issue of IVA.

We showed that IVA-G-CS is powerful in discovering the subspace structure and estimating

the subspaces through a careful study of the correlation structure of SCVs. The applica-

tion of IVA-CS to real fMRI data identified interpretable common RSNs of the SZ and

HC groups. The identified common components with two linked networks provided evi-

dence of the functional dysconnectivity in the brain of SZs. More importantly, subgroups
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of SZ subjects that demonstrate significant differences in terms of their brain networks as

well as their clinical symptoms were identified by studying the extracted group-specific

RSNs. This finding inspires further study of the heterogeneity of mental disorders using

neuroimaging data.

Dynamic study of brain function using fMRI emerges due to the fact that the func-

tional patterns in human brain change over the scanning period of fMRI. One commonly

used feature in dynamic study is dFNC that measures the association among different func-

tional networks. GT analysis is shown powerful in quantitatively summarizing the topolog-

ical characteristics of an adjacent matrix—graph. In Chapter 5, we studied the dynamics

of the brain of SZs and HCs by applying acIVA to the resting-state COBRE data to capture

both the temporal and spatial variabilities of BOLD signal. We quantitatively studied dFNC

using GT analysis and demonstrated that the analysis of sdFNC yielded more distinguish-

able GT metrics compare with a tdFNC analysis. We showed that the proposed goal-driven

scheme, which is the systematic study of global GT metrics in this work, successfully de-

termined the optimal value for the number of sdFNC states in a more interpretable way.

The study of nodal GT metrics showed that the centrality is the most interesting GT metric

in this application. We found four interesting components that yield interesting GT analysis

results. The component that merges multiple brain regions demonstrated increased involve-

ment in the brain function of SZs compared with HCs, illustrating the dysconnectivity of

SZ brain. The two components that are parts of the cognitive network had higher values of

centrality in HC group, potentially suggesting a more efficient cognitive control system in

the brain of HCs.

Due to the fact that both the BOLD activity and FNC are related to mental and cog-

nitive processes, it is desirable to investigate the activity-connectivity co-evolution of dBA

and dFNC to gain a better interpretation of the dynamics in human brain. In Chapter 6,
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we introduced our work of studying the activity-connectivity co-evolution in spatial do-

main using sdBA and sdFNC. We proposed the novel use of acIVA to efficiently quantify

sdBA as a part of the algorithm along with its powerful ability to capture dynamics in both

temporal and spatial domains. The efficient quantification of sdBA allows the study of the

association between tdBA and sdBA as well as the activity-connectivity co-evolution in

spatial domain using sdBA and sdFNC. We first conducted a simulation study to demon-

strate that the adaptive parameter-tuning process in acIVA helps accurately capture the

spatial variabilities and provides a nice metric to efficiently quantify the sdBA. The appli-

cation of acIVA to the resting-state COBRE data showed that tdBA and sdBA pairs of the

same functional network had higher correlation than those of different networks, and sdBA

yielded higher correlation with the network connectivity that are associated with the same

network. However, SZs showed fewer significantly correlated sdBA and tdBA pairs and

favored a complex component that merges multiple brain regions—super parietal, visual,

and cerebellum—when compared with HCs, suggesting that the brain function is less effi-

ciently organized in SZ hence more brain regions are simultaneously activated for a certain

intrinsic function. Most importantly, we identified subgroups of SZ using the tdBA-sdBA

association and the sdBA-sdFNC co-evolution, and detected significant differences across

subgroups in terms of their clinical symptoms that are measured by PANSS. This observa-

tion again inspires the study of the heterogeneity of mental disorders using neuroimaging

modalities such as fMRI.

7.2 Future directions

The development of effective methods for the analysis of multi-subject fMRI data in

this work motivates several promising directions for future research.
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7.2.1 Full automation of IVA-CS

IVA-CS is shown to be powerful in subspace analysis of multi-subject fMRI data

especially in identifying subgroups of subjects. Others have shown interest in applying

IVA-CS to other datasets to find meaningful subgroups. As was introduced in Chapter 4.3,

the identification of subgroups, starting with the dividing of three subspaces from IVA-

G decomposition results, involves a set of user determined parameters. The use of these

parameters potentially limits the generalization of IVA-CS. It is desirable to improve the

subgroup identification process to make it as automatic as possible, hence it is easier to be

used in other applications. We propose a pipeline as shown in Fig. 7.1 that reduces the

number of parameters and identifies the subgroups of subjects using a clustering method

instead of the modularization-permutation approach. The process starts from the IVA-G

decomposition results. First, we compute the commonality q for each SCV. SCVs with

q = 1 span the common subspace and SCVs with q < q0 refers to the distinct components.

We concentrate on the NG SCVs with q0 ≤ q < 1 and perform a k-means clustering on

them with the number of clusters being round(NG/3), allowing a relatively small number of

components to be clustered together on average. Another k-means clustering is performed

on the mean correlation matrix of each cluster by using each row as a feature for each

subject to find the subgroups of subject. The number of subgroups will be determined

using the elbow criterion.

Compared with the method described in Chapter 4.3 that requires a set of parameters,

including correlation threshold t, σ2
t , δ1, δ2, and some percentage values, and so on, in the

improved method, the users only need to determine the values of σ2
t and q0. In the example

shown in Fig. 7.1, σ2
t = 0.2 and q0 = 0.6. The determination of σ2

t and q0 is highly related

with the correlation level across datasets.
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Fig. 7.1. Improved method for the identification of subgroups of subjects.

7.2.2 Subspace study across multiple groups/tasks/modalities

Studies that make use of the data collected from subjects of multiple groups when they

are doing different tasks by using different techniques is common. In medical imaging data

analysis such as neuroimaging data, studying the data of multiple groups enables us to gain
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Fig. 7.2. IVA for joint study of multi-group/multi-task/multimodal data. Note that M de-
notes the number of groups/tasks/modalities, K denotes the number of datasets in each
group/task/modality, and V denotes the sample number.

a better understanding of the connection and similarity of them as well as the uniqueness

of each population. A joint analysis of the neuroimaging data of a subject collected when

he is doing different tasks helps us to better interpret the functional patterns of his brain.

Multi-modal data collected using different techniques is expected to provide complemen-

tary information that will benefit the extraction of useful details from the data. This forms

an important research domain–data fusion—where the researchers develop effective algo-

rithms that can jointly analyze multi-group, multi-task, and/or multi-modal neuroimaging

data.

Among the data fusion techniques, many aim at extracting common and distinct sub-

spaces of the data collected from multiple groups/tasks/modalities [5, 114, 135, 161, 176,

184]. However, most of these methods are suitable for a small number of datasets, which

typically equals to the number of groups/tasks/modalities. To deal with the data collected

from a large number of subjects, different kinds of features are extracted for individual

subjects to form a single dataset for each group/task/modality [8, 174], as shown in Fig.

7.2. The performance of these methods therefore are highly dependent on the quality of
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the extracted features. Reducing the original data from the dimensionality of hundreds to

a one-dimensional feature is a rough process that might disregard a great deal of useful

information.

IVA-CS, as was introduced in Chapter 4, is demonstrated to be able to jointly analyze a

large number of datasets and powerful in identifying their common subspace without doing

feature extraction. This makes it possible to make full use of the data collected from a large

number of subjects of different groups, different tasks, and/or different modalities. There-

fore, another possibility of the future work is to apply the proposed IVA-CS to the joint

study of a large number of datasets with original dimensionality collected from multiple

groups, tasks, and/or different modalities.

7.2.3 Subspace analysis of task-evoked fMRI data

Task-evoked neuroimaging modalities such as fMRI are also important in gaining a

better understanding of the human brain. In the scenario where the fMRI data is acquired

when the participants are doing a certain task and there are a number of stimuli involved

in the task, it is possible to break down the problem into a number of subspaces. Each of

these subspaces highly associates with a specific stimulus. For example, in the auditory

odd-ball task fMRI data, there are three stimuli, the standard tone, the novel tone, and

the target tone. We first perform a transposed IVA with a small model order N on the

original multi-subject fMRI data. Among the N estimated independent temporal signals,

we find three that are the highest correlated with the three stimuli. The corresponding

back-reconstructed spatial maps are expected to merge multiple brain regions. The merged

brain regions in each spatial map refer to the functional networks that are mostly associated

with the brain function that is evoked by each stimulus. We then multiply the spatial maps

with their corresponding temporal signal for each subject, yielding the subspaces that are

mostly associated with the stimuli. Post-analysis such as individual IVA decompositions
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Fig. 7.3. Transformed IVA model for task subspaces extraction using task-evoked fMRI
data.

can be performed on each subspace to extract both the temporal and spatial variabilities of

BOLD and study the BOLD activity and FNC information that is only evoked by a specific

stimulus.
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