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Abstract

Directory based service discovery mechanisms are unsuitable for ad-hoc m-commerce environments. Working towards
finding an alternate mechanism, we developed Allia: a peer-to-peer caching based and policy-driven agent-service
discovery framework that facilitates cross-platform service discovery in ad-hoc environments. Our approach achieves
a high degree of flexibility in adapting itself to changes in ad-hoc environments and is devoid of common problems
associated with structured compound formation in mobile commerce environments. Device capabilities and limitations,
user preferences regarding device usage, application specifics with respect to mobile commerce are factors that our
framework adapts to. We have described our initial implementation of Allia over ThinkPads and iPAQs by extending
the LEAP Agent Platform and using Bluetooth as the underlying network protocol. In addition, we evaluated Allia’s
performance by running simulations of our protocol in Glomosim simulator. We also compared our framework against
a structured compound-based architecture.
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1 Introduction

Recent years have witnessed a tremendous growth in the field of mobile computing, software agents and electronic
commerce. E-commerce systems often use the agent oriented abstraction in viewing their components and the
interaction between clients and servers [4]. Of late, there has also been the push to make e-commerce systems
accessible from wirelessly connected thin clients. In both academic and leading edge industry research, often the
connectivity comes from not the traditional infrastructure based wireless networks (e.g. cell phones), but from short
range ad-hoc networks such as Bluetooth (or even 802.11). The merger of these three fields has created a new class
of problems that must be solved in order to make commerce in pervasive computing environments a reality.

As in the more traditional wired environments, one such problem is service discovery. For wired networks, many
service discovery techniques have been proposed (e.g. Jini, UDDI, SLP). Agent platforms used in e-commerce
[6, 5, 22] have also been designed to facilitate flexible service/agent discovery within an agent community. In all
these platforms, an agent that belongs to a certain platform registers itself and its services to some service/agent
management/registration component like a Directory Facilitator (DF) and an Agent Management System (AMS)[22].
Agents searching for services query this component (DF/AMS) to discover other agents/services. These manager
entities (DF and AMS) are assumed to reside on relatively powerful high-end static machines and the communication
links between agents and these components (AMS/DF) are assumed to be wired or stable. Most service discovery
mechanisms for wired networks (e.g. UDDI, Jini) make very similar assumptions about some kind of a directory
server, often centralized.

Ad-hoc networks, a key component of future mobile electronic commerce environments, further compound the
problem of discovering services, since they can no longer be discovered using a static platform structure as discussed
above. This is because all the machines/nodes hosting services or directory are mobile and hence can move out of
the vicinity at any time. Moreover, mobile devices may be extremely resource-poor and may never be able to act as
directory servers. We now describe some recent efforts in the agent community to address such problems. Recently,
the Foundation for Intelligent Physical Agents (FIPA), which is an industry led standards body in the agents area,
introduced the idea of forming agent compounds between FIPA agents operating in ad-hoc environments [27]. An
agent in such an architecture could be part of a fragment (part of a platform) or a compound (a platform formed

between multiple mobile nodes where one of the nodes that is resource-rich enough would host a DF/AMS). The



main aim behind compound formation between agents is to facilitate flexible agent interoperability and discovery of
other agent-services in such an environment.

An obvious solution for forming compounds is requesting some node in the ad-hoc environment that is relatively
resource-rich to maintain information about services and agents present in its neighborhood. All other peer nodes
would utilize the services of this resource-rich node in discovering services. This resource-rich node would provide
the mandatory AMS and DF services, thus acting as an agent platform. Such an approach is probably adequate
for the near term m-commerce systems. For instance, a fixed computer in a strip mall, or even a vending machine,
could provide the resource-rich platform that will host the directory server (or the AMS/DF servers). However,
we anticipate that m-commerce in the future will also have a peer-to-peer component. This could be as simple as
people exchanging MP3s from their players, to more complex transactions that involve payments and commitments.
In other words, the m-commerce system of today, which is essentially a case of few service providers and many
consumers (essentially a supermarket), will get transformed to a bazaar, where many devices in our vicinity will
provide a variety of services [9]. In such environments, there is an overhead associated in “electing” a resource-rich
node to host an agent platform. Moreover, a new device moving into this structured compound would have to
discover this agent platform and register its services with it. Another major drawback with this approach is that
if the resource-rich node moves out of the network, all other peer nodes would have to reconfigure themselves to
the peer-to-peer mode. Highly dynamic environments where nodes keep moving in and out of the network would
further aggravate this problem. For enabling service and agent discovery across multiple hops, “leaders” in different
compounds have to federate with each other. In the context of ad-hoc networks, this would require those “leaders”

to be in direct connectivity range of each other and this might not always be the case.

1.1 Design Overview

In this paper, we introduce a different approach towards handling the problem. We introduce the concept of
peer-to-peer caching of services between nodes in an ad-hoc environment. The main goal of platform formation is
to provide an agent better access to services in the vicinity (to facilitate interoperability). Our solution describes a
policy-based distributed architecture towards achieving best-effort service discovery in ad-hoc networks for mobile

commerce environments.



We envision that each participating device will be able to run a lightweight version of the platform components like
yellow pages and white pages service. Putting an agent platform on extremely resource-constrained devices might
overload such devices. It is essential for each device to have a set of bare minimum platform components like A MS
and DF so that it can host an agent platform and operate even in regions of disconnections or stay independent. An
agent in that case does not have to depend on other peer devices to host itself. The Main Container of LEAP[6]
that contains the AMS and the DF runs on standard laptops and 3870 iPAQs. Looking at other devices with lesser
resources and smaller footprints, we see that they have the capability to host advanced runtime environments (like
Java Virtual Machine). For example, most i-mode phones support Java Micro Edition[15], Mobile Information Device
Profile[16] or Connected Limited Device Configuration[12] and have capability to store around 12Mb of static memory
space like Sony Ericsson P800. Some phones have a run time heap of 180K (e.g. Samsung x350 series). While this is
less than what the current version of LEAP on Personal Java[l13] requires (around 700K of dynamic memory), it is
well within the limits that will be feasible on even cell phones shortly considering the rate at which the capabilities
of these phones are increasing. Cell phones can be considered one of the least resource-rich devices amongst the
plethora of heterogeneous mobile devices existing around us. In addition to these platform components, the device
will be able to host at least one agent. The main purpose behind formation of compounds was to enable agents on
a device to better utilize services/agents in its vicinity. Our approach concentrates on providing a solution to this
issue without imposing the dependence that devices sharing a distributed compound will have on each other. The
yellow pages service component (DF) registers only the services that are hosted on that local platform. The white
pages service component (AMS) registers only the agents that are hosted on the local platform. Each device has a
policy that reflects the device capabilities, user preferences, application specific settings, etc. The policy governs the
way this device is going to present itself to the other platforms/devices in its vicinity. It also describes the way in
which the device takes advantage of resources/services in other platforms in its vicinity.

In our approach, every node advertises its services to other nodes in its vicinity in accordance with the local policy.
These advertisements are broadcasted. On receiving an advertisement, an agent decides based on its policy, whether
to cache it or reject it. We introduce the concept of “alliance” of a node. An Alliance of a particular node is a set
of nodes whose local service information is cached by this node. Thus, a node explicitly knows the member nodes in

its alliance. However, each node does not know the alliances in which they are members. Whenever a node leaves



a certain vicinity, and enters a new vicinity, it constructs its own alliance by listening to advertisements. It also
becomes a member of other alliances by advertising its local services. Its exit from other alliances is passive since
the nodes governing these alliances detect its absence and remove the node from their alliances.

The local policy of a node dictates the ways in which the node wants to advertise itself to peer nodes in its
vicinity. The rate of advertisements is also controlled by the policy. The policy can specify algorithms to allow
dynamic adjustments of advertisement rates based on mobility of nodes in a neighborhood. Policies also determine
the number of members that a node can have in its alliance (by limiting the number of remote advertisements this
node can cache). An alliance of a node can span across multiple hops. The advertisements in that case also are sent
across multiple hops.

When an agent needs to discover a certain service, it first looks at its local platform to check whether that service
is available. On failure, by looking at its own cache, it checks the members of its alliance to discover the service. If
the service is still unavailable, the source platform tries to broadcast or multicast the request to other alliances in
its vicinity. The local policy determines the method (broadcasting or multicasting). Multicasting is used to prevent
broadcast storms in the network. We use policy-based multicasting where the node multicasts the request to other
nodes in its vicinity where there are greater chances of obtaining the service. A node on receiving a service request
chooses, based on its policy to either process it or drop this request.

We have named our system Allia. Allia’s design handles service discovery and service advertisements as application-
level interactions. Services are essentially applications; their advertisement and discovery is dependent on policy
settings that govern these services (policy management and enforcement is also an application-layer task). This
application-level approach ensures flexibility and responsiveness to the policies governing advertising and discovery.
However, application layer employs essential features of broadcasting and unicasting of the underlying network layer
to achieve advertising and discovery.

Allia’s design employs push-based approach during distribution of advertisements and pull based mechanism to
request service information in the case of a cache miss. In essence, Allia uses a hybrid approach that avoids global
broadcasting and at the same time is able to have a network-wide reachability through inter-alliance communication.
Plain push-based or pull-based approach essentially has to do global broadcast leading to immense network load.

Plain push-based approach will increase the alliance size of each node to the total number of nodes in the network



and that would have effect on Cache Size and Network load. In addition, Nodes far away will become part of the
alliance. This could increase the overhead without an effective increase in the efficiency since that node might be
unreachable after a short time.

Our flexible approach towards alliance formation does not have the overhead of explicit leader election. Every
device in this environment is self-sufficient. However, it utilizes resources/services in the vicinity whenever they are
available. Dynamic network topology changes are automatically reflected in the alliances that are formed. A node
does not need to register or deregister with the neighborhood alliances when it changes its location. Our policy-based
approach towards alliance formation buys us the advantages of a compound-based agent formation mechanism. Using
such policies, more traditional compounds like those utilizing explicitly elected leaders can also be achieved. With
the help of policy, our architecture can also take user preferences into consideration. This is a major advantage since
users of mobile commerce applications need the ability to control the ways in which their own resources are utilized.

Other improvements and optimizations of our design are possible. For instance, security in ad hoc networks is an
important issue. Such dynamic environments are particularly vulnerable to denial of service attacks. However, the
main focus of this paper is development and design of service advertisement and service discovery mechanisms in ad
hoc environments. Since security is such a major concern in the ad hoc and wireless networks, there is large research
community working on solutions to these security problems. Solutions provided by this research can be directly
applied to our design since Allia security vulnerabilities are not different form other ad hoc systems and applications

In the following sections will discuss related work, device architecture and platform components. We will also
describe communication protocols, typical application of our approach and finally we will discuss the simulation work

that we have done to study the validity of our approach.

2 Related Work

There are a number of platforms, architectures and protocols that provide service discovery and multi-agent
communication and collaboration. The Service Location Protocol (SLP) [14] is one such protocol. SLP is a protocol
for automatic resource discovery on IP based networks. It bases its discovery mechanism on service attributes, which
are essentially different ways of describing a service. SLP service agents are responsible for advertising service handles

to the directory agents thus making services available to the user agents. This protocol also supports a simple service



registration leasing mechanism.

Another service discovery architecture is Jini [3]. Jini is a distributed service-oriented architecture developed by
Sun Microsystems. Jini Lookup Service (JLS) maintains dynamic information about the available services in a Jini
federation(a collection of Jini services). When a Jini service wants to join a Jini federation, it first discovers one or
many Jini Lookup Service from the local or remote networks. The service then uploads its service proxy (i.e. a set
of Java classes) to the Jini Lookup Service. The service clients can use this proxy to contact the original service and
invoke methods on the service.

Yet another solution to service discovery is Universal Plug and Play (UPnP) [19], supported by Microsoft. This
architecture is designed to extend the original Microsoft Plug and Play peripheral model. UPnP works primarily
at a lower layer network protocols suite (i.e. TCP/IP). UPnP uses the Simple Service Discovery Protocol (SSDP)
for discovery of services on Internet Protocol based networks. When a service joins a network, it sends out an
advertisement message, notifying the world about its presence. The advertisement message contains a Universal
Resource Locator (URL) that identifies the advertising service and a URL to a file that provides a description of
the advertising service. When a service client wants to discover a service, it can either contact the service directly
through the URL that is provided in the service advertisement, or it can send out a multicast query request.

Another in-house framework that was developed for dynamic distributed systems is the Ronin Agent Framework
[7]. Ronin is a Jini-based distributed agent development framework. It offers a simple but powerful agent description
facility that allows agents to find each other and to find an infrastructure. In Ronin, agents are described using the
Common Agent Attributes and the Domain Agent Attributes. The Common Agent Attributes defines the generic
functionalities and capabilities of an agent in a domain-independent fashion. The Domain Agent Attributes defines
the domain specific functionality of an agent.

One more in-house architecture that investigated how service discovery can be taken beyond their simple syntax-
based service matching approaches XReggie [8]. XReggie adds the facilities to describe service functionalities and
capabilities using Extended Markup Language (XML). At the heart of the XReggie is the enhanced Jini Lookup Ser-
vice that provides “service location” for Jini-enabled services. XReggie allows services to advertise their capabilities
in a well-structured descriptive format using XML. Service discovery is done using XML descriptions.

There are several FIPA compliant platforms that facilitate service discovery. Omne such platform is JADE [5].



Another platform is FIPA-OS [1]. Both JADE and FIPA-OS are convenient tools for agent application development
however they are intended for a static network infrastructure and are not really meant to handle mobility and various
other aspects of the dynamic nature of ad-hoc networks. Also both of these frameworks are too heavy to work in
resource limited devices that are common in mobile and ad-hoc environments. The limitations of JADE and FIPA-
OS were recognized and LEAP [6] and MicroFIPA-OS [17] were developed to extend the functionality and allow
mobile devices to participate. MicroFIPA-OS and LEAP have smaller footprint than the original frameworks and
fit well on the majority of the mobile devices like cell phones and PDAs. However the light-weightiness came at a
price of functionality. The mobile devices running LEAP or MicroFIPA-OS host only small and most critical parts
of the platform. This setup forces the devices to heavily depend on the static and resource-rich infrastructure around
them to advertise or host Agent Management Systems and Directory Facilitators. A mobile device is unable to
effectively communicate with other mobile devices if the infrastructure is not present. Only when the infrastructure
is present the devices are actually able to participate and communicate with other entities on the platform. While, it
is clear that LEAP and MicroFIPA-OS were the steps in the right direction it is also clear that it is not enough. This
resulted in FIPA to introduce the concept of structured compounds between agents operating in ad hoc environments
to facilitate agent discovery and interoperability.

The problem of finding information has also been addressed in the peer-to-peer systems. Specifically, [11] presents
the idea of routing indices which allow nodes to forward queries to the neighbors that are likely to have the needed
answers. If the node is unable to generate a reply to the query, it forwards the request to a subset of the neighboring
nodes. The subset is identified by evaluating an index table that contains the inventory of the neighboring nodes.
The request is routed to the subset of neighbors with the largest inventory of relevant information. There also
has been a great amount of work done in the area of P2P file sharing systems. Majority of initial P2P file sharing
systems have been developed to operate on wire line Internet. Typically, P2P file sharing system operates by employs
a search algorithm to discover a file. Once file is found the file transfer protocol downloads a files that matching a
the file request. Efficient searching is an active area of research for wire line P2P systems. Early P2P file sharing
systems transferred files directly between peers using TCP connections. This approach is clearly unsuitable for ad
hoc and wireless connections. One such example of early P2P system is Gnutella [36]. Gnutella implemented a fully

distributed file search. Gnutella’s queries are broadcasted to all peers using an application-layer overlay network.



Initial design of Gnutella suffered form scalability problems. Some improvements or performance were achieved once
the number of query messages generated by a user request was reduced.

Another relevant area or research is cooperative web proxy caching. The popular message-based protocol is the
Internet cache protocol, ICP [31]. There is also CARP protocol [33] which is a hash based cooperative Web caching
protocol. These protocols could be categorized as message-based, directory-based, hash-based, or router-based.
WCCP protocol [35] is an example of a router-based protocol. All these protocols assume that mobile devices will
have access to wired infrastructure. Thus they cache data on the wired side of the network.

There is also a substantial amount of research that has been done in the area of ad hoc routing. The key leading
protocols of ad hoc routing are Destination-Sequenced Distance Vector (DSDV) [30], Dynamic Source Routing (DSR)
[29] and Ad Hoc On-Demand Distance Vector (AODV) [28]. DSDV is loop-free hop-by-hop distance vector routing
protocol. It maintains Routing table on each node. Sequence number used for making decision. DSR is a source
routing protocol rather than hop-by-hop routing. Thus there is no need for intermediate nodes to maintain up-to
date routing information. DSR provides mechanisms of routing on demand, route discovery and route maintenance.
AODV protocol is a combination of both DSR and DSDV. It provides functionalities of route discovery and route
maintenance from DSR. It also uses hop-by-hop routing, sequence numbers, and periodic beacon from DSDV. The
key goal of these routing protocols is to provide communication infrastructure in ad hoc environments. These
protocols are independent and are unaware of applications running the device. Allia is an application layer service
advertisement and discovery system. It relies on the communication infrastructure provided by these protocols.

Much of the above presented work does not take into account preferences and constraints of users, their device
limitations and the highly dynamic topology of ad-hoc networks. Our framework presents an alternative approach
towards facilitating agent-service discovery in ad-hoc networks. The policy-driven approach gives users the flexibility
to configure the agent platform based on their needs. Moreover, it makes the agent platform adaptable to the
differing resource availability on different devices. Our solution is much more flexible than structured compound
formation of agents and is adaptable to the changes of the environment both due to mobility and due to changes
in user preferences. Also, the Allia framework is independent of any description mechanisms and protocols that
could be used to describe services. A description matching mechanism during service discovery is not specified or

constrained by Allia framework. Services could be Jini compliant and be described and accessed though Jini proxies,



XML, DAML[24] or OWL[25] could also be used to describe the services. Other alternatives could also be employed.

3 Device Architecture and Platform Components

Every mobile device will run a lightweight platform comprising of the following mandatory components. A Generic
Container component that can host agents (the device must be able to run at least one agent). A lightweight yellow
pages service component that registers services on the local device (the Directory Facilitator (DF) of the FIPA
Agent platform specification). A Lightweight white pages service component that registers local agents (the Agent
Management System (AMS) of the FIPA Agent platform specification. A Policy Manager that controls the behavior
of the platform. Local policies can be used to control various aspects of the platform like advertisement frequency,
caching policy etc. An AdvertisementManager which is responsible for advertising the local services that are hosted
on a mobile device. Broadcasting is used to transmit these advertisements in the neighborhood. A Cache Manager
component is responsible for caching service advertisements that have been received from the neighboring devices.
A Forwarding Manager is responsible for forwarding service advertisements and “request for service” messages to

other neighbors.
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Figure 1. Device Architecture

Figure 1 shows the different components in a single mobile device. We describe the new components briefly in the
following section.

3.1 Policy Manager

The Policy Manager is responsible for administration and enforcement of policies controlling the platform be-

havior. On initialization, policies are registered with the local Policy Manager. The policy can also be modified



during runtime and since it is referenced by other components, the changes in policy dynamically propagate these
components. The manager is responsible for ensuring that all components of the platform are in compliance with
the specified policies. In particular, Cache Manger, Advertising Manager and Forwarding Manager consult with
Policy Manager on the specifics of their behavior. Essentially, the mechanisms provided by Policy Manager may
be used to control the behavior of the platform. Policies can be used to restrict platform functionality and reflect
device capability. Policies can specify caching preferences like refresh rate, replacement strategy, etc. Also, policies
could describe advertisement preferences like frequency, time-to-live, algorithms, etc. Furthermore, policies could
state priorities among services and describe how to share available resources among the services. Policies can specify
advertisement and request message forwarding algorithms. Personal user preferences and application specifics can
be also expressed though policies. And finally, policies can used to detail security restrictions like access rights and
credential verification, etc. Components running on the platform would coordinate all their activities through the
Policy Manager. Because of its interactions, this manager can monitor the activities of the different components and

notify when policies are being violated.

3.2 CacheManager

The Cache Manager handles service advertisements from neighboring devices. These advertisements could describe
services that are running on the neighboring nodes or advertisements that are being forwarded by these neighboring
nodes. The Policy Manager coordinates with the Cache Manager to govern various characteristics like entry expiry,
replacement strategy, cache size, etc. The cache maintains hints. Due to the dynamic nature of the network topology,
it is not feasible to guarantee that services found in the cache are currently reachable. Whenever there is a hit in

the cache for a service that is not currently available, the cache entry is immediately deleted.

3.3 Advertising Manager

The Advertising Manager actively broadcasts service descriptions registered to the local DF. The Policy Manager
controls the rate of advertisements. Various policies can be employed to adjust the rate of advertisement. We have
described them in section 4.2. For example, if the network is fairly static, the advertisement rate can be slowed down.

Also policy could be event driven, events here being the arrival or departure of nodes in an alliance. Advertisements



can also be assigned different priorities. The Advertisement Manager also controls the alliance diameter (explained

in section 4.2.2).

3.4 Forwarding Manager

The Forwarding Manager receives Service Advertisements and Request for Service messages. It decides based on
the local policy whether to drop, or to propagate the advertisement. To prevent broadcast storms, this forwarding
mechanism can use multicasting to selectively forward service advertisements. For example, this can be used to
forward advertisements to more active or resource-rich devices in the network. To avoid a problem of duplicate

messages flooding the network, the Forwarding Manager uses sequence number based mechanism.

4 Protocol Details

In this section we describe the discovery, caching, advertising protocols and request routing protocols to be used

between mobile devices in ad-hoc networks.

4.1 Peer-to-Peer Caching

Every participating mobile device hosts an agent platform. Each mobile device that is connected to different
other heterogeneous devices in the network maintains a cache to store service descriptions of remote services. The
cache is controlled by a local Cache Manager. Fach Advertisement Manager in a device, after a finite time interval
(discussed later) broadcasts a list of its local services to other peer devices around it. To do so, it uses the local
Forwarding Manager. These local services correspond to services of local agents that are registered to the local DF.
The Forwarding Manager receives all messages from the network, then based on the local policy it decides whether
to process the message or not. For example, if the policy of the local node is such that it does not want to form its
own alliance, then it would not accept any advertisement. The Forwarding Manager passes the advertisement to the
Cache Manager. A Cache Manager in a remote device on receiving the advertisement, decides based on its policy
whether to cache it or not. For example, the policy of the Cache Manager could be that it will not store more than
a certain number of advertisements. This policy is driven by the resource richness of the device. The policy could

also be user-driven. The user might not want to store any advertisement.



The idea behind passive caching of advertisements rather than active pulling of service descriptions from neigh-
boring nodes has several advantages. One of the advantages is efficiency in detecting the change in the environment.
We follow the push paradigm for such service advertisements since it enables us to detect in an efficient manner
when the ad-hoc environment has changed. When a device receives a new advertisement from a new device, it
automatically knows that there is a new platform in the vicinity and could potentially be included in the alliance.
The pull-based approach of explicitly searching for new platforms in the vicinity would have imposed more burden
on the mobile device hosting a platform. As we shall see later, the frequency of advertisements could be adjusted
based on the relative stability of the alliance and hence, the burden imposed on the mobile device would be less.
Another advantage is that advertisement collisions are not as frequent as in pull-based paradigm. In a standard
pull-based paradigm, a mobile agent platform would have broadcasted a request to all its neighboring platforms
asking for a list of local services. The peer platforms would have sent a list of services to the querying platform.
Such a solution has a potential danger of the advertisements from different platforms colliding with each other at the
receiver’s end. Another advantage of this approach is the flexibility in handling advertisements. The device receiving
the advertisement has the option to either store or reject the advertisement based on its current policy.

The Cache Manager is responsible for handling remote advertisements, storing remote advertisements of services,
expunging the cache and also handling requests (from DF) to match services present in the cache. This is the way,
a platform implicitly makes its services available to other remote devices around it. The Forwarding Manager, on
receiving an advertisement might also decide to forward it to members of its alliance or broadcast the advertisement
to all other nodes in its vicinity. This is determined based on whether the advertisement is meant to traverse
multiple hops (determined by the sender node of the advertisement). The sender node becomes a member of the
alliances of the nodes that cache its advertisement. Figure 2 elucidates the concept of alliance formation in an ad-hoc
environment.

The cache expunge policy depends on the policy specified by the Policy Manager. Each advertisement contains a
lifetime (specified by a time-to-live field in the advertisement structure). When a new advertisement is received by a
Cache Manager, the Cache Manager decides to either accept it or reject it. An advertisement is accepted only when
there is sufficient space in the cache to hold this advertisement or when an old advertisement can be removed from

the cache.
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Figure 2. Alliance Formations

4.2 Policy-based Advertising

We introduce the concept of policy-based advertising of services. The policy may potentially reflect a combination
of the user’s preferences, resources present in the device, and application-related preferences. Various parameters
of the advertising are controlled based on the local policy. Thus, each platform in this environment may follow a

different policy in advertising. In this section, we describe the different aspects of the advertisement.

4.2.1 Advertisement Frequency Control

A very important aspect of advertising is to decide the frequency with which the advertisements are going to be
sent out to the platforms in the vicinity. One of the possibilities is to keep the advertisement rate at a constant
frequency. A local Advertisement Manager sends out a list of the local services that is registered with the DF at a
constant time interval. This time interval need not be uniform across all platforms. Each platform might have its own
frequency of advertising. The immediate advantage of such a design is that a platform having inter-advertisement
time interval of ¢ would be detected within ¢ + § where ¢ is a network delay in message propagation. However,
such a design choice has its disadvantage of network overhead. It is possible that the advertisement frequency is too
high for a relatively stable ad-hoc environment. On the other hand, in a highly dynamic ad-hoc environment, a low
advertisement frequency might not be sufficient to form an alliance.

Another possibility is to allow the advertisement to be set out with a varying frequency. Fach Advertisement



Manager in a platform may follow a Multiplicative Increase Linear Decrease (MILD) algorithm or a Binary Expo-
nential Backoff (BEB) mechanism to vary its advertisement frequency so as to adapt the advertisement rate. There
will be a threshold value for the inter-advertisement time. In this design, a node will send out advertisements at a
high frequency at the start. It will follow the MILD or BEB algorithm to adjust the frequency based on whether it is
receiving any new advertisement or not. If it receives a new advertisement, it knows that there is a new platform in
the vicinity and hence goes back to the starting frequency (in case of BEB) to advertise its local services to the newly
arrived platform in the alliance. Thus if the environment around a platform changes rapidly, the advertisement fre-
quency would be higher. Contrarily, if the environment is relatively stable, the advertisement frequency would be low
and hence would impose less network overhead. If in either algorithm, the threshold value of the inter-advertisement,
time is reached, the algorithm starts from the beginning. This type of advertisement policy would be adaptive to
the mobility and changes in the ad-hoc environment.

Yet another possibility is an adaptive mobility-based advertisement frequency rate. In this approach, each Ad-
vertisement Manager sends out an advertisement only when it receives a new advertisement. A new advertisement
signifies the existence of a new platform in the alliance. Thus, it sends a list of its own local services immediately
in order to be included in the alliance of the new node. This type of advertisement policy is highly adaptive to the
mobility and change of the environment. The overhead imposed on the network is also adaptive to the change in
the environment. In a highly dynamic ad-hoc alliance formation environment, the network load (due to advertise-
ments) would be relatively higher than the network load in a relatively stable environment (since there are no new
advertisements). However, problem with this policy is that a new platform might remain undetected for a long time
in a relatively stable environment where the advertisement frequency is low. A combination of variable frequency
techniques to alternate advertisement frequencies along with this scheme would be able to avoid that problem.

The advertisement scheme to be followed by a platform is handled by the local Policy Manager. This provides
the required flexibility to handle user preferences in using up the resources of its own mobile device. Figure 3 shows

the control flow of sending and receiving advertisements.
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Figure 3. Advertisement Flow between Nodes

4.2.2 Alliance Diameter Control

Each advertisement contains a hop-count field that would specify the number of hops the advertisement may be
propagated to by receiving platforms. This hop-count field determines the potential diameter of the alliance. Any
platform within the diameter would be able to cache the local service information of the source platform. In a highly
dynamic environment, a small diameter is more desirable. This is because, if the diameter were large, stability of a
platform in an alliance would be less. Hence, the information of services in the cache would become stale quickly.
For implementation purposes, we will be limiting the hop-count to one. Hence, a platform will only advertise its
services to its one-hop neighbors and the alliance diameter would be one.

A platform on receiving an advertisement will perform a set of tasks. First, if the local Policy Manager allows,
the platform will accept the advertisement and store it in the cache. Next it will decrement the hop-count field of
the advertisement. If after decrementing the hop-count the value is zero, then the advertisement is discarded. Else
if the Policy Manager permits, the advertisement is forwarded to the one-hop neighbors.

Due to resource consumptions and other user preferences, the policy in a platform might specify not to forward
any advertisement message. In this case, the advertisement would be silently discarded by the platform. When a
platform decides to forward an advertisement, it sends the advertisement to the Forwarding Manager. The Forwarding

Manager manages the re-broadcasting of the advertisement to its one-hop neighbors.

4.2.3 Advertisement Structure

There are two types of advertisement structures in our design, viz. a Service Advertisement and a Platform Adver-

tisement. A Service Advertisement is used to send out an advertisement describing the services that are registered to



the local DF of the platform. This type of advertisement is sent out only when a node receives a new advertisement
or somehow detects that there is a new platform in the vicinity that may potentially be included in the alliance. This
is determined by the local Policy Manager. This advertisement contains: service description(s), agent identifier(s),
platform identifier, network address (the actual hardware interface address through which the device can be accessed
in an ad-hoc network) and finally some accessory information like a time-to-live field that is used to convey informa-
tion about how long the platform is going to be in the vicinity, resources of the local platform (e.g. cache size) or
some important policy information (e.g. I don’t forward any advertisements or requests) that might help the receiver
node to decide whether to forward any requests / advertisements to this node later on. A Platform Advertisement
is used as a heartbeat message to notify the members of an alliance about the presence of a platform in its vicinity.
Clearly, it is not required for a platform to advertise all its services (and hence send a large volume of data) every
subsequent time interval in the event that the platform is relatively stable in the environment. It only needs to send
the whole information when a new platform (device) is in the vicinity. For the rest of the time, it suffices to send
only the information about the presence of the platform in the vicinity of the other platforms. The Cache Managers
in the other platforms can update the cache information accordingly. The Platform Advertisement contains only the
platform identifier and the network address of the sender platform. This reduces the network overhead in terms of

message size.

4.3 Request Routing

The main goal of our system is to make a best-effort service discovery amongst agent platforms in a mobile
commerce environment. Each platform or node in the system has a DF (Directory Facilitator) and an AMS (Agent
Management System) [22]. When there is a request from any agent to communicate with or discover an agent /service,
the request first comes to the local DF. If the DF does not have the service, the DF forwards the request to the
Cache Manager. If the service description is found in the local cache, then the service is hosed by one of the nodes
belonging to the current node’s alliance. This cached service information about the location of the agent (platform
identifier, network address) is taken as hint and provided to the requesting agent. Conceptually, the requesting
agent performs inter alliance communication. The requesting agent contacts the agent/service using standard Agent

Communication Language [21].



If the hint provided by the local Cache Manager is false, or if there is no match in the local cache, the Cache
Manager forwards the service request to the Forwarding Manager. The Forwarding Manager forwards the request to
selected agent platforms in its vicinity. Some of those platforms may be a member of the local alliance. Basically, it
is possible that not all of the services that are offered by the alliance nodes are stored in the local cache. Thus, in
search of a service, a node could be forced to forward a service request to both alliance and non alliance platforms.

The Forwarding Manager sets a hop-count field for the request to limit the number of hops or number of adjacent
alliances through which the request is going to traverse. The value of the hop-count field is decided by the local
Policy Manager. The standard policy that is used by the Policy Manager is to increment the hop-count from 1 to
MAX-HOP-COUNT (maximum number of hops the request might be allowed to traverse) before it discovers the
required service. There are two different ways of sending the request to neighboring platforms in the vicinity. The
request could be broadcasted to all the neighboring devices. In this case, the request will reach all the nodes in
the vicinity. Some of these nodes might not be resource-rich enough to even forward the request any further or
some of them might not be members of any other alliance. The request could be multicast to a set of particular
neighbors. The Policy Manager would specify the method (broadcasting or multicasting). The multicasting could
be used to prevent broadcast storms. The device could multicast the request to its most active neighbors. It could
identify the multicast group by looking into the local cache and evaluating advertisement patterns like “Accessory
Information” 4.2.3. For example, the “Accessory Information” could contain the cache size of the sender. This would
provide a measure of the resource-richness of that node. “Accessory Information” could also contain the number
of platforms/nodes that are in the vicinity of the sender node. If the sender node is a member of another large
alliance of powerful nodes, it might be advantageous to send a “Request for Service” to that node since it will in
turn broadcast/multicast it to all other nodes in its vicinity. Other factor can be used to further optimizations in
detecting the neighborhood can be done by utilizing lower layer information. The fundamental strength of our design
lies in the fact that all these decisions would be strategically influenced by the local Policy Manager. Since the Policy
Manager takes user preferences and local resources into consideration, the solution could be adapted to reflect these
demands and limitations.

Each device upon receiving a request message can chose to drop the message or process it. The local policy is used

to make this decision. If the device chooses to process the request message, it checks its DF to see if it is hosting the
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desired service. If the service is local then the service description is sent to the requesting node. If the device is not
hosting the needed service, it could check the local cache. If the cache contains information about the service then
the device replies with hint. Otherwise, the request is sent to the Forwarding Manager. The Forwarding Manager
decides to forward the request to other nodes in its vicinity depending on the local policy. Figure 4 shows the control
flow between the different components in processing the request. In the event that a service was discovered, the
reply is reverse-routed back to the source node. The intermediate nodes may or may not choose to record this as a
successful discovery to maintain hit-rate statistics or utility measure of itself. This utility measure could be sent to

remote platforms with advertisements to give the other nodes an idea of its efficiency.

5 Prototype Implementation

To substantiate our design we have come up with a preliminary implementation of our protocol. The platform used
to demonstrate our scheme is a JADE [5] based Lightweight and Extensible Agent Platform called LEAP [6]. We
have extended the implementation of LEAP to support agent discovery over Bluetooth [18] using our alliance-based
discovery protocol. Our implementation is called eLEAP. We selected LEAP since LEAP is light-weight enough to
run on selected mobile devices. However, the current implementation supports connectivity over TCP/IP over GSM
or IEEE 802.11 wireless LAN.

We use a set of laptops and Windows CE iPAQs as a test set of devices on which our architecture is implemented.
The laptops use Ericsson Bluetooth Development Kit as hardware components and the iPAQs use the embedded

Bluetooth in them. Every device (laptops and iPAQs) has a Main Container that has a DF and an AMS running.



In our system, the functionality of the Main Container has been extended to incorporate a peer-to-peer caching
mechanism for the discovery of non-local services in an ad-hoc network. The new components in the system include
a Cache Manager component, an Advertisement Manager component and a Service Discovery component. The device

architecture showing the various components of the current implementation is shown in Figure 5.

Agent | | Agent | | Agent
Directory Facilitator
spp/E | Advertisement| Cache AMS
Manager Manager

| Main Container |

| Open BT Bluetooth Stack |

Figure 5. eLEAP Device Architecture

We have implemented the prototype version on top of Bluetooth [18] using AXIS OpenBT [23] Bluetooth stack
for communication between two devices and service discovery. One big factor of choosing OpenBT amongst other
famous stacks like BlueDrekar [2] is because it is an open source stack. OpenBT stack provides a set of 8 device files
(ttyBT[0-6] and ttyBTC) for applications to use. Stack control is done using the blocking ioctl calls.

Currently, we use a simple policy to control the advertisement rate, advertisement acceptance and request for-
warding. We use a Multiplicative Increase Linear Decrease (MILD) algorithm for controlling the advertisement rate.
We accept an advertisement if there is a free entry in our cache. We forward a request if it generated a cache miss
in a local node. The advertisement diameter in our current implementation is restricted to 1 hop.

Current implementation of eLEAP has a footprint of 632K and during runtime uses a heap size of 817K and loads

only 11 extra classes than standard LEAP does.

5.1 Advertisement Manager

This component takes care of periodically advertising its local services to all of its one-hop neighbors in the
Bluetooth network. Current Implementation considers the alliance diameter as 1. Each advertisement packet has a
unique Advertisement Identifier, a DF agent description, the device cache size and the advertisement’s time to live.

We use MILD algorithm to determine the time interval between successive advertisements. The rate of incoming



advertisements will determine the value of this time interval. To send periodic advertisements each mobile device
does an HCI inquiry [20] and opens a RFCOMM connection [18] with all the devices found during inquiry. It then
closes the connection after sending the advertisement messages. All incoming advertisements are cached based on
the caching policy of the platform. In our case, the resourcefulness (measured as a function of memory, processor
speed etc.) of the device is taken into account to determine the cache size. Due to lack of space, we are unable to

present the function. Figure 6 shows an advertisement packet format.

DF Agent Description
Advertisement Cache
Identifier Agent Services Interaction Size

Ontologies Languages

TTL

Figure 6. Advertisement Packet

5.2 CacheManager

The Cache Manager maintains a cache entry for services that are present one hop away. The number of entries
in the Cache Manager determines the alliance formed by a node. When an agent searches for a service, it first looks
up the DF table. If no such service is available in the local DF, then the cache is checked if the service is available in
the node’s alliance. If there is no such entry in the cache, then a Bluetooth Service Discovery is initiated to look for
services in other nodes that might not have been cached. When a service is discovered, the DF agent description of
the service is sent to the agent that is performing the lookup. Further communication can be established using the

agent identifier of the service provider.

5.3 Service Discovery Component

We have used the Bluetooth SDP [18] to discover services on remote platforms. Every local DF registers its local
services to the local Bluetooth Service Discovery Manager (SDM). An SDM takes request from the DF service on the
platform and performs a Bluetooth service discovery. When a matching service is not found in the local DF or cache,
the SDM first discovers the devices that are in the vicinity of the source and then initiates a request to discover the

service in the remote SDM. The remote device may or may not be a member of the alliance of the requester node.



The request is passed in the form of an agent description which consists of the agent-id, service-type and the
attributes of the services. Since Bluetooth discovery is done through UUIDs we perform a mapping of these agent
service types into UUIDs. We assume that the UUID mapping is same on all the Bluetooth devices running agents.
We maintain a limited size-mapping table “MAP-UUID” to map the services into 16 bits UUIDs. We are currently
using 16 bit mappings. However, it can be enhanced to use the 32 bit or 128 bit UUIDs by modifying the mapping
function and SDP request Protocol Data Unit. We use the cache size as a parameter to judge the resource availability
of a device.

We observed in during our implementation that device discovery in Bluetooth takes a good amount of time.
Setting up of RFCOM connection also requires us to discover a channel identifier from the peer device. Our protocol
works on top of RFCOM and hence incur the associated delays in setting up a Bluetooth connection. Advertisement
forwarding by a Bluetooth device requires it to shift its mode from being a “slave” for a connection to the “master”

of the next connection. This adds additional delay since this leads to a “piconet switch”.

5.4 Typical Application Scenario

We tested our system to emulate an ad hoc environment created by a set of devices belonging to a group of coffee
shop customers. We assume that this small shop does not provide any infrastructure support. Thus, customers
are forced to rely on each other when searching for services. Device A-Customer is hosting a service called A-
Personal-Scheduler. This service is searching for local weather forecast services and local traffic conditions. Device
B-Customer coffee shop is running a it B-Weather Service. Device A-Customer uses the B-Weather Service and
satisfies part of the request that was put out by A-Personal-Scheduler. However, B-Customer does not host a service
that provides traffic conditions. Thus, device A-Customer is unable to find the needed service. A new customer with
device C-Customer comes in range of A-Customer. New services become available to the coffee shop customers. In
particular, C-Customer is hosting C-Traffic Service. A-Personal-Scheduler requests for the missing service and this
time receives the service from C-Customer. Thus, as ad hoc environment changes various services become available

and unavailable to each other.



6 Simulation Results

We simulated Allia on the well-known simulator Glomosim[26] under different mobility scenarios. We considered
a distribution of one service per node. However, multiple instances of the same service can be present on different
nodes. Several performance experiments were conducted to test the scalability and the efficiency of Allia in discovering
services in an ad-hoc environment. We also compared Allia’s performance against a standard structured compound-
based protocol to enable cross platform agent/service discovery. In this section, we report these two classes of results.

Scalability and performance of Allia is best studied by varying nodes advertisement diameter. The diameter
limits the number of hops a node can advertise which affects the node’s alliance size, average request hops, etc. The

simulation parameters including the network layer parameters (used by Glomosim) are detailed in the table below.

Parameter

Value

Simulation Time

500 Seconds

Node Placement

Grid (with Grid Unit 25)

Mobility

Random Way-point with value 10(2)

Propagation Limit

-111.0

Propagation Pathloss model

Two-ray

Parameter Value
Mobility 10(2)
Num of Nodes 100
Num of Agents 100
Topology 250m*250m
ADV_| NTERVAL 10 Seconds
ADV_LI FETI ME 40 Seconds

% of Nodes on which the
“Requested Agent’ resides

4% (4 nodes in our case,
which are at 4 corners of the
square at the start of the
simulation)

Radio Type Acknowledge Noise
Radio Frequency 2.4e9

Radio Bandwidth 20000

Radio Receiver Type SNR Bounded
Radio SNR Threshold 10.0

Radio Transmitting Power -11.2

Radio Antenna Gain 0.0

Radio Receiver Sensitivity -91.0

Radio Receiver Threshold -81.0

MAC-protocol 802.11

Table 1(left): Network Layer Parameters
Table 2(top): Policy Parameters

We used random way-point mobility pattern that was represent by P(S) where: P is a period of time (in seconds)
for which a node paused once it arrived to a new location and S is node’s speed (in meters/sec). The direction of
the node’s movement and the destination is generated randomly. Service requests were generated at regular time
intervals (using an application layer packet generation function). Note that, the design of Allia allows nodes to have
different policies (advertisement, request forwarding, agent cache timeout etc), however, in our experiments we have
kept an identical policy for all nodes. This helped us to analyze the impact that a change in the policy has on

Allia network environment. Our experiments do not impose any assumption on the processing delay in a node. We



consider node delay as the sum of the queuing delay and processing delay. Our experiments show how this delay
affects the working of our protocol. In our experiments we varied message forwarding policies and the advertisement
diameter. Other parameters of the policy are detailed in Table 2.

From our experiments we observed that average alliance size (over 100 nodes) is proportional to the node’s
advertisement diameter. An increase in the advertisement diameter causes the nodes in the network to receive and
cache more service advertisements, thus in turn increasing node’s alliance size. Advertisement diameter of 0 makes
each node its own alliance and hence attributes to an alliance size of 1. According to theory, the average number of
nodes receiving an advertisement should increase quadratically with the increase in the diameter (assuming uniform
node distribution). However that assumption is not valid when nodes are mobile. Our simulations showed that
the increase in the number of nodes (resulting in an increase in the alliance size) receiving advertisements is in fact

almost linear when they are mobile.

25
20
15

10

Average Alliance Size

0 1 2 3 4 5
Advertisement Diameter

Figure 7. Effect of Advertisement Diameter on Alliance Size

We performed experiments to determine the effect that advertisement diameter has on the number of hops a
request has to travel till it reaches a node that has the requested service as part of its alliance (a node that cached
service advertisement). With increasing advertisement diameter, the service advertisement is cached in more nodes
thus, making it easier to discover and therefore, the average request diameter decreases (Figure 8 left).

To show the versatility of Allia design, we conducted experiments that compared two message forwarding policies
to show how message traffic is affected by policy changes. The original policy was a simple broadcast policy where

a request for a service would be broadcasted to all potential alliances in the vicinity. We compared this broadcast
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Figure 8. Effect of Advertisement Diameter on (a) Request Hops, (b) Number of Request Messages with
Selective Forwarding’ and Broadcast policies.

policy with selective forwarding policy [10]. With this more sophisticated policy, a service request is forwarded only
to the alliances where an instance of the requested service has been seen in the past (this information is piggybacked
with service advertisement). We would like to mention over here that other policy parameters like advertisement
frequency, allocated memory in each node etc would also affect the over all discovery process. For example, increasing
the advertisement frequency would result in an increased network load and hence decreased packet delivery ratio.
Adaptive advertisement frequency would also affect the network traffic. We plan to conduct further experiments to
observe the results obtained by changing other policy parameters. In our experiments we observe that the improved
forwarding policy consistently achieves a lower network load (in terms of number of requests processed per node)
with changes in the advertisement diameter (over 5 runs). Figure 8 shows the results. We observe that at higher
values of the advertisement diameter, the average request hops for selective forward policy is marginally higher than
broadcast policy. This is because mobility of the nodes might affect selective forwarding in a manner so that the
request might get diverted to a region from where the service has already moved away. This happens more when
the information has not yet been spread and new alliances formed. Broadcasting adds a good overhead due to the
increase in the advertisement diameter. This results in increased network delay and hence alliance formation takes
more time resulting in an increased number of request hops.

We compared Allia’s performance with performance of structured compound formation protocol [27]. Under struc-



tured compound protocol, some nodes in the system were made compound heads. Only these nodes were allowed to
cache service descriptions advertised by other nodes. Hence, compound heads acted as registry/agent management
systems or directory facilitators. All other nodes were just members of compounds (structured compound scenario is
similar to mobile commerce scenarios in ad-hoc domains, where a more powerful node maintains a directory of the
services in the vicinity). Under structured compound protocol, only compound heads would cache service advertise-
ments and generate replies to service requests (if they found a match). In contrast, regular nodes would not cache
or respond to messages, they would simply rebroadcast the messages to neighboring nodes (if instructed to do so
and their policy allows it). We performed experiments under varying mobility conditions where all the nodes in the
simulation, including 20 compound head nodes (20% of all nodes), were mobile. We compared the results by running
Allia in an identical scenario. The effect on average request hops and average number of requests processed per
node are in Figures 9a and 9b. We observe that the average request hops as well as the average number of requests
processed per node are considerably lower in Allia as opposed to the structured compound protocol. This shows that
in an ad-hoc environment flexible alliance formation provides better support for agent service discovery than strict
compound formation. Average number of requests processed per node is also significantly lower in Allia in identical
scenarios. We also observe that the average number of requests processed per node does not show any distinctive

relationship with the mobility (evident from the uneven nature of the curves).
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Figure 9. Effect of Mobility on Structured Compound Protocol vs. Allia

Figures 10a and 10b show the effect that advertisement diameter (for a given mobility) has on average response
time and average request hops of Allia and structured compound protocol. For the purpose of the experiments we

considered random way-point mobility of 2 m/s with 4 seconds stoppage time. We observe that in general, Allia is
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Figure 10. Effect of Advertisement Diameter on Structured Compound Protocol vs. Allia

more efficient in terms of response time and average request hops when compared against these two metrics. This
is also intuitively explained, since in structured compound formation scheme, a service request most probably goes
across more hops to find a compound head. A compound head in turn has to contact another compound head to obtain
services that it does not have in its own alliance and so on. This increases the number of hops the request has to
travel and hence, the response time increases too. We also observe that increased advertisement diameter adds more
network delay to the discovery requests. Moreover, structured compound formation does not benefit a lot from the

increased advertisement diameter. This results in its response time growing much faster than Allia (figure 10a.).

7 Conclusions

In this paper, we have presented a peer-to-peer caching based and policy-driven approach towards flexible alliance
formation amongst agents in m-commerce environments. An agent actively forms its own alliance and passively
joins other alliances in an environment and hence, facilitates agent-service discovery. An agent knows the members
of its own alliance but it is not aware of the alliances where it is a member of. Our protocol follows a policy-
driven approach for advertisements, caching and request forwarding thus, letting user preferences to be taken into
consideration. An alliance helps in agent-service discovery in an ad-hoc environment. However, it removes the
leader election and other problems associated with structured compound formation to facilitate service discovery
amongst agents in ad-hoc networks. The dynamic nature of alliance formation and policy-based advertising achieves
high degree of adaptability in changing ad-hoc environments. We have presented an initial implementation of our

protocol using ThinkPads and iPAQs. We have extended LEAP to incorporate our protocol using Bluetooth as the



underlying ad-hoc networking protocol. We have used openBT stack of Bluetooth for implementation purposes. To
study the scalability and performance of allia, we conducted experiments by varying the node’s forwarding policy
and advertisement diameter. We also compared Allia’s performance with the performance ofstructured compound
formation scheme. The implementation and the simulation results efficiently demonstrate the flexibility of Allia in
mobile commerce environments. In future, we also plan to carry out comprehensive experiments by changing other

policy parameters like advertisement frequency, cache size and study the effect they have on the Allia protocol.
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