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Abstract—In recent years, machine learning approaches are
gaining popularity with the advent of big data. The massive
amount of data generated, when served as an input to machine
learning approaches, provides useful insights. Adoption of these
approaches in the agricultural sector has immense potential to
increase crop productivity and quality. In this paper, we analyze
the crop data collected from an agriculture site in Rajasthan,
India, that includes both Rabi and Kharif cropping patterns.
In addition, we utilize a smart farm ontology that contains
concepts and properties related to the agricultural domain. We
link the collected data and our smart farm ontology to populate
a knowledge graph. We utilize the generated knowledge graph
to provide structural information and aggregate data by using
SPARQL queries. The aggregated data is further used by our
machine learning models to predict the crop yield to benefit
farmers and various stakeholders. We also analyze and compare
our results obtained for various machine learning models used.

I. INTRODUCTION

With the increasing population, the demand for food has
risen across the world. According to the United Nations [1],
the world’s population will be around 8.5 billion by 2030.
Therefore, the need for technological advancements in the
agriculture sector is deemed necessary in order to increase
the crop productivity and prevent imminent food crises. Par-
ticularly, monitoring the yield of different crops for every
season is an important attribute in estimating crop productivity.
Analysis of various factors like soil, climate, temperature,
etc. can contribute to crop yield prediction. Incorporation of
machine learning (ML) models to analyze these factors present
in the agriculture data is an appealing solution, since these
models have shown accurate performance for prediction and
forecasting problems in various applications such as retail [2],
finance [3], healthcare [4], etc. At the same time cybersecurity
concerns [5], [6] have also been raised with the deployment
of smart faming technologies, which needs proper attention.

In this work, we focused on the agriculture sector in
India, since it has the second largest population in the world
and food security is of utmost importance, specially in the
state of Rajasthan. Agriculture is the backbone of Rajasthan’s
economy contributing 25.56% of the state’s total GDP in 2019-
2020 [7]. Further, it provides livelihood to a vast majority
of population in rural India. This means that many people
depend on the seasonal yield and, hence, crop yield prediction

is extremely important for planning and storage purposes.
Evidently, it is difficult for the Indian farmers to obtain remote
sensed images, vegetation indices, crop genotype data for crop
yield prediction. Therefore, insights like crop yield and what
factors contribute to increasing the crop yield can help the
farmers in making decisions such as the use of right quantity
of fertilizers, proper irrigation, etc. For example, an important
use case of crop yield prediction is the strategic planning to
maximize the crop productivity by using the forecast insights
[8]. These obtained metrics can help in protecting the crop, as
necessary steps can be taken by the government proactively to
increase crop yield and also maintain the food security.

In our research, we utilized crop data obtained from the
Open Government Data (OGD) platform, India as well as
publicly available data from the agricultural website of Ra-
jasthan [9], [10]. The data collected has two different sets,
representing seasons namely Rabi and Kharif. We integrated
the collected data set with an existing smart farm ontology
[11] which captures the relationship between different entities
of data. Further, we populated a knowledge graph that can
be queried using SPARQL query language [12]. The results
obtained after querying serve as input to the ML models. The
reason for incorporating ML models is to provide meaningful
insights like predicting crop yield, etc. which in turn aids the
farmers in making informed decisions that pertain to high
crop yield. Farmers can also use the knowledge in various
aspects while planning for the next crop season depending on
the predicted yield. Simultaneously, farmers can estimate the
crops that give maximum yield for a particular season and
can plan accordingly depending on the weather parameters.
For example, if the crop needs particular soil nutrients for im-
proving productivity, farmers can plan to use proper fertilizers
and try to maximize their crop yield. This way farmers can
predict crop yield based on a well trained ML model and use
those insights in strategic planning for the next season.

The rest of the paper is organized as follows: Section II
discusses the related work. Section III describes architecture
of our framework. Section IV explains the performance of
machine learning models by comparing the results obtained.
Finally, we conclude this paper in Section V.



II. RELATED WORK

Increasing the quality and quantity of the agriculture crop
has become a crucial task for the food industry in order to
ensure food sustainability for the growing population. There-
fore, farmers have started utilizing machine learning (ML)
models for managing their farms efficiently by making key
decisions with the help of data-driven insights. Earlier re-
searchers mostly implemented non-linear iterative multivariate
optimization approaches and empirical piecewise linear crop
yield prediction equations that make use of vegetation index
and meteorological parameters for predicting crop yield [13].

However, considering the capabilities of ML algorithms
such as data-driven insights in real-time scenarios widely used
in various CPS domains, researchers have started implement-
ing these algorithms in agriculture for better management and
efficiency of the agricultural farms. For example, Behmann et
al. described how ML models can be used for protecting the
crop in advance by detecting the biotic stress [14]. Another
example is irrigation recommendations provided by the ML al-
gorithms by utilizing farm data such as soil moisture, weather,
etc [15]. Similarly, Khaki and Wang developed a deep neural
network model that significantly outperformed methods such
as Lasso, shallow neural networks and regression tree [16] as
part of the 2018 Syngenta Crop Challenge where participants
had to predict yield performance in 2018. In order to predict
the rice yield, data from the Indian state of Maharashtra which
had parameters like precipitation, minimum temperature, av-
erage temperature, maximum temperature, etc. was utilized as
an input to the multilayer perceptron neural network where
the model showed an accuracy of 97.5% with a sensitivity of
96.3 and specificity of 98.1 [17].

Olivera et al. developed a novel yield forecast system
that has fewer data requirements compared to existing solu-
tions that depend on large amounts of remote sensing data.
Further, the developed system works on large regions and
provides forecasts at a resolution compatible with best input
data resolution. The system consists of a Recurrent Neural
Network (RNN) trained with precipitation, temperature, and
soil properties as features and historical observed soybean
and/or maize yield at municipality level for 1500+ cities in
Brazil and USA as labels [18]. Another study evaluated the
effectiveness of the Random Forest (RF) machine learning
model for its crop yield prediction ability in comparison with
Multiple Linear Regressions (MLR) serving as a benchmark
[13]. RF was found to outperform MLR benchmarks in all
performance statistics compared. Lately, other sophisticated
methods like empirical analysis have also been applied to crop
yield forecasting. Dharmaraja et al. described linear regression
and time-series models to predict crop yield using Bajra yield
data of Alwar district in Rajasthan, India [19].

Recently, various concepts of smart farms have also gained
wide popularity as there is a lot of research being done
in this field that exploits the prowess of Big Data, Cyber
Physical Systems (CPS), Machine Learning (ML), blockchain,
etc. to develop their application in agriculture [5]. Knowledge
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Fig. 1. System Architecture

Graphs have also played an important role in this domain. By
incorporating these technologies the farmers are maximizing
their benefits as they can radically improve the crop yield
prediction, detecting crop diseases,etc. Chukkapalli et al. [11],
[20] have discussed how the developed ontologies support
various Al applications in a single and co-op smart farm that
benefits the farmers in various aspects such as labor, supply,
marketing and distribution.

III. ARCHITECTURE

Estimating the crop yield ahead of time will be a great
boon to farmers and the agriculture industry. As it enables
proper planning and better decision making related to the
crop management. Therefore, we develop a novel framework
named YieldPredict that could be incorporated in a real-world
agricultural environment for predicting the crop yield. Our
YieldPredict framework contains three major parts shown in
Figure 1. The first part integrates agricultural data with the
existing smart farm ontology [11], [20]. In the second part,
we populate a knowledge graph once the data is added to
the ontology in the form of RDF triples. Further, we query
the populated knowledge graph with the help of SPARQL
[21] query language. The third part predicts the crop yield by
utilizing machine learning algorithms where input is the data
obtained after querying the knowledge graph. We will further
describe various details and functionalities of our framework
in the next few subsections.

A. Dataset Description

Our YieldPredict framework collects the data from multiple
sources such as Open Government Data (OGD) Platform India
and also the agricultural site of Rajasthan [9], [10]. The data
acquired has entries for 33 districts of Rajasthan and is from
the year 2007 to 2010. This data is divided into two data
sets that represents Kharif crops and Rabi crops based on the
rainfall pattern in the country. These patterns are adopted in
many Asian countries where July to October is the Kharif
cropping season and Rabi cropping season is during the winter
season which is from October to March. The Kharif crops are
Bajra, Jowar and Maize, and the Rabi crops are Barley and
Wheat. Number of entries in Kharif crops data set are 335



State_Nan District_N:Crop_Year Season  Crop Area Productior Seasonal_| Nitrogen Phosphoru Potassium SalineSoil SodicSoil
Rajasthan AJMER 2007 Rabi Barley 7225 14843 0.1 L M H 16712 19830
Rajasthan ALWAR 2007 Rabi Barley 14246 41485 1.1 L M M 15976 97625
Rajasthan BANSWAR 2007 Rabi Barley 1257 2067 0.1L M H 2131 2130
Rajasthan BARAN 2007 Rabi Barley 396 857 oM M H 1008 1584

Fig. 2. Snapshot of Rabi crops data set.

and Rabi crops data set are 226 where the collected data set
has a set of attributes monitored during the cropping season
such as State Name, District Name, Crop Year, Season, Crop,
Area, Production, Seasonal Rainfall, Nitrogen, Phosphorus,
Potassium, Saline Soil (ha), Sodic Soil (ha). A snapshot of
Rabi crop data set is shown in Figure 2.

We have chosen the above attributes since they play an
important role in crop yield prediction. For example, area
used in plantation of a specific crop is described by the Area
attribute and production attribute gives the total produce of
crop measured in tonnes. Seasonal Rainfall attribute provides
the average amount of rainfall registered for Rabi and Kharif
season measured in millimeters (mm). Attributes such as
nitrogen, phosphorus and potassium are considered since they
represent the three major soil nutrients. Saline soil is another
important attribute which describes excessive levels of soluble
salts in the soil water (soil solution). As high levels of saline
soil can negatively affect plant growth, resulting in reduced
crop yields and even plant death under severe conditions. Sodic
soil attribute indicates the levels of exchangeable salts which
impact the soil structure affecting the crop yield negatively.

B. Dataset Pre-processing

In our YieldPredict framework, we select attributes for both
our data sets that potentially contribute towards crop yield
prediction. Therefore, number of columns has been reduced to
8 from the existing 13 columns present in the initial data set.
For example, ‘State_Name’ column is dropped since we have
considered only one state, Rajasthan for our work. Similarly,
column named ‘Season’ is also dropped as Rabi crops data
set has data only for crops grown in Rabi season and Kharif
crops data set has data of crops grown in Kharif season. Other
columns that have been dropped include ‘District_Name’ and
‘Crop_Year’ which doesn’t play any significant role in yield
prediction. Simultaneously, we calculate the crop yield by
dividing the production data per unit of harvested area obtained
from the data present in columns such as ‘Production’ and
‘Area’. The calculated crop yield data is added as a new
column named ‘Yield” and existing columns like ‘Area’ and
‘Production’ are dropped from the data sets. The ‘Yield’
column determines the amount of crop harvested per area of
land measured in tonnes per hectare. Therefore, it plays a vital
role in estimating the yield for a sector of agricultural land.

Data pre-processing techniques like removing the rows with
null values and integer-encoding the categorical values in order
to transform the input data to a suitable format for machine
learning models have been applied. For example in the Rabi
crops data set, the crop values for Barley and Wheat are integer

encoded as 0 and 1, respectively. Similarly in the Kharif crops
data set, the crop values for Bajra, Jowar and Maize are integer
encoded as 0, 1 and 2, respectively. The other columns having
categorical values present in both the data sets are ‘Nitrogen’,
‘Phosphorus’, and ‘Sulphur’. The recorded values indicate
their levels in the soil as very low (VL), low (L), medium (M)
or high (H). For example, if a data point has value recorded as
‘L’ for phosphorus then it means the phosphorus level in soil
is low. The input shape for Rabi crops data set is (226,7) and
for Kharif crops data set is (335,7) where the target attribute
is the ‘Yield’ column.
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Fig. 3. Visual Notation for OWL Ontologies (VOWL) showing different
classes from our ontology.

C. Integration of Smart Farm Ontology and Crop Data

In this work, we add the pre-processed data described in the
above section by extending our existing smart farm ontology
[11] since it supports information integration. In our smart
farm ontology shown in Figure 3, we have class named Sensor
where we add the attributes such as Crop, Nitrogen, Yield,
Potassium, Saline Soil, Phosphorous, Seasonal_Rainfall, Sod-
icSoil present in the Rabi and Kharif crop data set as instances
of this class. Each attribute represents a physical sensor where
the SensorData class represents the recorded values and Time
class represents the time at which the data was recorded.

Data to the ontology is added in the form of Resource
Description Framework (RDF) triples using RDF triple store
which is a type of graph database. The linked data set
determines the entities and their relationships. Simultaneously,
Uniform Resource Identifier (URI) references for every re-
lation and entities are created. The URI references are then
added to the graph in the form of RDF triples along with their
types. The RDF triples represent the relationship between two



entities, i.e subject, predicate, object where predicate gives the
relation between subject and predicate.

We have also added an ID column to both Rabi and Kharif
crop data sets, which represents the subject. Therefore, we
created class named ID in our smart farm ontology. Each row
has a unique identifier. The column values for a particular row
are the data properties of the ID which are the objects in the
triple store. The column fields Season, Crop_year, Crop,etc
are stored as predicates which shows the relationship between
the ID and the column values. For example, a single row from
the data set as shown below can be represented in terms of
rdf triples as follows: ID for the first row is 1, so 1 is added
as an entity in the graph which is the subject in the RDF
triple store. The values for all the column fields for the row
with ID 1 are the objects. And, the column fields namely
State_Name, District_Name, Crop_Year, Season, Crop, etc are
the predicates which show the relationship between the ID and
the column values. Below is the representation of one row in
terms of subject, predicate, and object in triple store:

(1, has_State_Name, Rajasthan)

(1, has_District_Name, AIMER)

(1, has_Crop_Year, 2007)

(1, has_Season, Rabi)

(1, has_Crop, Barley)

(1, has_Area, 7225)

(1, has_Production, 14843)

(1, has_Seasonal_Rainfall, 0.1)

(1, has_Nitrogen, L)

(1, has_Phosphorus, M)

(1, has_Potassium, H)

(1, has_SalineSoil, 16712)

(1, has_SodicSoil, 19830).

D. Knowledge Graph Population

We populate a knowledge graph, once the crop data set is
linked with the ontology described in the above section. A
graphical representation of the generated knowledge graph is
shown in Figure 4 where a single row of data present in the
form of RDF triple is populated. In which ‘574’ is represented
as an instance of class named ID. The edge labels indicate the
relation between the nodes. For example, ID ‘574’ present
in the data set provides us with information regarding the
Maize crop grown during Kharif season, in the year 2010
had low concentration of nitrogen, phosphorous and medium
concentration of potassium. The seasonal rainfall during that
period was 794.4 mm where the value 5636 represents the
salinity and the value 9403 represents the sodicity present in
the soil. As a result, crop yield for that particular area was
1.36 tonnes per hectare.

In our next step, we query the populated knowledge graph
utilizing a SPARQL interface. The goal for querying the
knowledge graph in our work is to provide machine learning
models with training data based on the necessary requirements
that are important for yield prediction. When we query the
knowledge graph using SPARQL, retrieved data is separated
into two data sets namely Rabi crops data set and Kharif crops
data set based on the growing season of the crops.
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Fig. 4. Graphical representation of the Knowledge Graph populated from a
single RDF triple

E. Implementation of Machine Learning Models

Several applications in different areas include machine
learning techniques for predictions based on their past obser-
vations. In the agriculture sector, yield estimation of crops is
said to be quite important as it provides insights for improving
the agriculture statistics. Therefore, we implement ten machine
learning algorithms on our Rabi and Kharif crops data sets in
order to predict the crop yield for the state of Rajasthan.

1) K-Nearest Neighbors: K-nearest neighbors (KNN) [22]
is a supervised machine learning algorithm used for both
classification and regression problems. KNN classification
algorithm is used to determine the membership of the class
whereas KNN regression algorithm is used to calculate prop-
erty value for the object. In our case, we use KNN regression
to predict the crop yield by calculating the average of the
values of k nearest neighbors. Input to the algorithm is the
data obtained after querying the knowledge graph which is
split randomly into training and test sets in 1:4 ratio. We train
the model twice with two separate data sets, namely Rabi crops
data set and Kharif crops data set. Information about wheat
and barley are present in the Rabi crops data set while Kharif
crops data set has details about Maize, Jowar and Bajra crops.
The model performance is measured by calculating the Root
Mean Square Error (RMSE) value and the R2 score.

We observe that RMSE is 0.46 and the R2 score is 0.59
when model is trained on Rabi crops data set. Figure 5
provides us with a visual representation of predicted yield
and actual yield for Rabi crop data set. The best results are
observed when value of k is 4, i.e 4 neighbors, and weights
being uniform as all points in the neighborhood are weighted
equally. In case of Kharif crops data set, RMSE is 0.56 and the
R2 score for this model is 0.04. The R2 score for the Kharif
crops data set is very low when compared to the above model
using Rabi crops data set. This could be because Rabi crops
data set has data for only two crops whereas Kharif crops data
set had data for three crops which may be one of the reasons
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Fig. 5. Predicted Yield vs Measured Yield plot for KNN model for Rabi
crops data set
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Fig. 6. Predicted Yield vs Measured Yield plot for KNN model for Kharif
crops data set

for the model not being a good fit on the data. Figure 6 shows
a scattered plot for predicted yield vs measured yield in Kharif
crop data set.

2) Support Vector Regressor: Support Vector Regres-
sion(SVR) [23] is another supervised machine learning algo-
rithm used for regression. There are multiple kernels such as
linear, polynomial and radial basis function kernel (RBF). We
utilize RBF kernel in our SVR algorithm since it is faster
and provides better accuracy. Therefore, we train the SVR
algorithm on both Rabi and Kharif crops data set. Firstly,
we utilize Rabi crop data set as input to machine learning
algorithm. The model predicts the crop yield as output. Per-
formance of the model is measured by calculating the Root
Mean Square Error (RMSE) value and the R2 score where the
RMSE is 0.547 and the R2 score for this model is 0.496. Then
we train SVR algorithm on the Kharif crops data set where
we observe an RMSE value of 0.678 and R2 score of -0.399.
This model doesn’t perform well for Kharif crops data set, as
the fit is worse than the null hypothesis. This is not the case
for Rabi crops data set. Figure 7 and Figure 8 show the plots
for predicted yield versus measured yield for Support Vector
Regression model trained using Rabi crops dataset and Kharif
crops data set.

3) XGBoost  Regressor:  Extreme Gradient Boost-
ing(XGBoost) [24], [25] is a decision-tree-based ensemble
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Fig. 7. Predicted Yield vs Measured Yield plot for Support Vector Regression
model for Rabi crops data set
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Fig. 8. Predicted Yield vs Measured Yield plot for Support Vector Regression
model for Kharif crops data set

machine learning algorithm that uses a gradient boosting
framework. Decision tree based algorithms are considered
best in case of small-to-medium structured/tabular data.
XGBoost regressor gives good results for both Rabi and
Kharif crop data sets when compared to other machine
learning algorithms used here. This model performs the best
for Kharif crops data set with an R2 value of 0.572 and
RMSE 0.37. The performance of the model for Rabi crops
data set is better than most of the other machine learning
models used in our work. The R2 value for the model trained
and tested using Rabi crops data set is 0.538 and RMSE is
0.529. Figure 9 and Figure 10 show the plots for predicted
Yield vs measured Yield for XGBoost Regressor model for
both Rabi crops and Kharif crop data set.

4) Gradient Boosting Regressor : Boosting [24], [26] is a
way of combining multiple simpler models to create one com-
posite model. We combine multiple weak learners(generally
decision trees) such that overall loss is minimized. This is why
it is also known as an additive model. Trees are constructed in
a greedy manner, choosing the best split points based on purity
scores like Gini is done to minimize the loss. We have used the
standard gradient boosting regressor which uses ‘least squares
regression’ as a loss function with 100 boosting stages.

This model is the best performing model for Rabi crops
data set. The model obtained by training Gradient boosting
Regressor algorithm on Rabi crops data set has R2 value of
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Fig. 9. Predicted Yield vs Measured Yield plot for XGBoost Regressor model
for Rabi crops data set
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Fig. 10. Predicted Yield vs Measured Yield plot for XGBoost Regressor
model for Kharif crops data set
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Fig. 11. Predicted Yield vs Measured Yield plot for Gradient Boosting
Regressor model for Rabi crops data set

0.616 and RMSE value of 0.482. R2 value indicates that 61.6%
of the observed variation in data can be explained by the
model’s inputs and is the highest among all the other models.
The model is obtained from an ensemble of weak predictive
models. The other model trained on Kharif crops data set using
the same algorithm also performs well where R2 is 0.468 and
RMSE is 0.400. The fit of the models can be seen by observing
the Figure 11 and Figure 12, where the data points are close
to the x=y line, indicating a good fit.

5) Light GBM: LightGBM [27] is a variant of tree based
boosting algorithms with one of the key differences is growing
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Fig. 12. Predicted Yield vs Measured Yield plot for Gradient Boosting
Regressor model for Kharif crops data set
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Fig. 13. Predicted Yield vs Measured Yield plot for LightGBM Regressor
model for Rabi crops data set

its tree structure leaf wise rather than level wise. It uses
Gradient-Based One-Side Sampling(GOSS) technique which
inspects the most informative samples while skipping the less
informative samples. It can train very quickly compared to
XGBoost while maintaining comparable accuracy. However,
it is very sensitive to overfitting if the data set is small.

The R2 value for the LightGBM model trained on Rabi-
Crops dataset is 0.499 and the RMSE value is 0.551. Plot
for predicted yield versus measured yield for Rabi crop data
set is shown in Figure 13. The R2 value for the LightGBM
model trained on Kharif-Crops dataset is 0.407 and RMSE
value is 0.23. Figure 14 shows the plot for predicted yield
versus measured yield for Kharif crop data set. As our data set
is small in size making the model very sensitive to overfitting.

6) Random Forest Regressor: Random forest [28] is a
supervised learning algorithm which uses ensemble learning
method for classification and regression. Random forest is a
bagging technique and not a boosting technique like XGBoost
regressor. The trees in random forests are run in parallel. There
is no interaction between these trees while building the trees.
The output prediction is a mean prediction of the individual
trees. The performance for the both models trained on Rabi
crops data set and Kharif crops data set are fairly similar
to other models like Light GBM, AdaBoost Regressor model
which uses ensemble learning method. It is observed that most
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Fig. 14. Predicted Yield vs Measured Yield plot for LightGBM Regressor
model for Kharif crops data set
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Fig. 15. Predicted Yield vs Measured Yield plot for Random Forest Regres-
sion Model trained using Rabi crops data set
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Fig. 16. Predicted Yield vs Measured Yield plot for Random Forest Regres-
sion Model trained using Kharif crops data set

ensemble learning models perform better than other individual
algorithms like Decision Tree. The R2 value when trained on
Rabi-Crops dataset is 0.501 with RMSE value of 0.550. While
the R2 value when trained on Kharif-Crops dataset is 0.409
with RMSE value of 0.422. Figure 15 and Figure 16 show the
plots for predicted yield versus measured yield for Random
Forest Regression Model trained using Rabi crops dataset and
kharif crops data set.

7) Decision Trees: Decision tree [29] algorithm is similar
to the tree data structure where each node represents a question
on the given data and based on each answer it branches further.
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Fig. 17. Predicted Yield vs Measured Yield plot for Decision Tree Model
trained using Rabi crops data set
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Fig. 18. Predicted Yield vs Measured Yield plot for Decision Tree Model
trained using Kharif crops data set

The algorithm identifies the ways to split the data based on
features and conditions. Each split section is measured for its
effectiveness by calculating information gained(a measure of
change in entropy after splitting). Another method is using the
Gini index which tells us how many times a randomly selected
data point will give incorrect prediction. Naturally we want to
select attributes with lower Gini index. Decision tree model
doesn’t perform very well for both both our data sets. As R2
and RMSE value for Rabi crop data set are 0.07 and 0.75
respectively. Similarly, R2 and RMSE value for Kharif crop
data set are 0.24 and 0.478. Plots comparing predicted yield
and measured yield for Decision Tree Models trained using
Rabi crops data set and Kharif crops data set are shown in
Figure 17 and Figure 18.

8) AdaBoostRegressor : AdaBoost(Adaptive Boost) [30]
is another algorithm that falls under the ensemble learning
category. It first fits the regressor on the complete data then
based on the error, additional copies are fit on a subset of data
based on a certain condition known as a stump. Decision Tree
Regressor is used as the base estimator since it is very fast
to train and simple to execute. AdaBoost captures non linear
relationships in data which something like a logistic regressor
will miss resulting in better accuracy.

The AdaBoost Regressor models for both data sets perform
better than the Decision Tree, Linear Regressor and Extra
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Fig. 19. Predicted Yield vs Measured Yield plot for AdaBoost Regressor
trained using Rabi crops data set
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Fig. 20. Predicted Yield vs Measured Yield plot for AdaBoost Regressor
trained using Kharif crops data set

Trees Regressor models. As R squared value for Rabi-Crops
data set indicates that 48.4% of the observed variation in data
can be explained by the model’s inputs, the RMSE value
for the same model is 0.559. The R2 value for the model
trained and tested on Kharif crops data set is 0.450 and RMSE
value is 0.407. The RMSE value for the second model is
less than the model trained on Rabi crops data set. Predicted
yield versus measured yield for AdaBoost Regressor trained
using Rabi crops data set and kharif crop data set are shown
in Figure 19 and Figure 20. Moreover, AdaBoost Regressor
models perform better for both data sets than other models.
Therefore, AdaBoost Regressor algorithm can be considered
as one of the models to provide better insights regarding crop
yield prediction.

9) Linear Regressor: Linear regression [23] is one of the
simplest statistical algorithms. It tries to find a relationship
between dependent and independent variables. A linear regres-
sion line is of the type Y = mx+c where m is the regression
coefficient and c is a constant. In real-time scenarios, there
are many more dependent variables present in the data sets
and we try to find the coefficients such that we minimize
the residual sum of squares between predicted and actual
values. The drawback of this approach is that it does not
work well with complex data sets which are bound to have
non-linear relationships among the features. In our work,
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Fig. 21. Predicted Yield vs Measured Yield plot for Linear Regression Model
trained using Rabi crops data set
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Fig. 22. Predicted Yield vs Measured Yield plot for Linear Regression Model
trained using Kharif crops data set
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Fig. 23. Predicted Yield vs Measured Yield plot for Extra Trees Regressor
Model trained using Rabi crops data set

linear regression doesn’t give us a good fit for any of the
data sets due to non-linearity of the data. The R2 value for
the model trained and tested on Rabi crops data set is 0.217
and RMSE is 0.689. The model trained and tested on Kharif
crops dat aset has R2 value of -0.002 and RMSE of 0.550.
Plots comparing the predicted yield versus the measured yield
for Rabi and Kharif crops data sets are shown in Figure 21
and Figure 22 respectively. The bad performance of model for
both the data sets was expected since the data is non-linear
and linear models cannot give a good fit for this data.



TABLE I
PERFORMANCE COMPARISON OF ALL THE MACHINE LEARNING MODELS FOR RABI CROPS AND KHARIF CROPS DATASET.

Model Rabi-Crops Dataset | Kharif-Crops Dataset
R? RMSE R? RMSE
K Nearest Neighbors Regressor 0.595 0.46 0.04 0.56
Support Vector Regressor (rbf kernel) | 0.547 0.496 -0.399 0.678
XGBoost Regressor 0.538 0.529 0.572 0.37
Gradient Boosting Regressor 0.616 0.482 0.468 0.400
Light GBM 0.499 0.551 0.407 0.23
Random Forest Regressor 0.501 0.550 0.409 0.422
Decision Trees 0.072 0.750 0.244 0.478
AdaBoost Regressor 0.484 0.559 0.450 0.407
Linear Regressor 0.217 0.689 -0.002 0.550
Extra Trees Regressor 0.185 0.703 0.341 0.446
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Fig. 24. Predicted Yield vs Measured Yield plot for Extra Trees Regressor
Model trained using Kharif crops data set

10) Extra Trees Regressor: Extra trees regressor [31] is
similar to random forest but it chooses a random value for the
selection of split points unlike random forests that compute
the locally optimal split condition. Other difference is that
Extra tree uses the entire input sample whereas random forests
uses bootstrap replicas. However, it is less computationally ex-
pensive while providing similar accuracy. This model doesn’t
perform very well for both the data sets. The model trained on
Rabi crops data set has low R squared value which indicates
that only 18% of observed variations of the data can be
explained by the model inputs and only 34% of observed
variations of the data can be explained by the model inputs for
Kharif crops data set. The RMSE value for the model trained
and tested on Rabi crops data set is 0.703 as this model is not
a very good fit for the data and size of the data set being very
small is another drawback. The RMSE value for the model
trained on Kharif-Crops dataset is 0.446, which is lower when
compared to the model trained on Rabi crops data set. Also,
predicted yield versus measured yield plotted for both Rabi
crop data set and Kharif crop data set are shown in Figure 23
and Figure 24.

IV. RESULTS

In this section, we evaluate the performance of machine
learning models on both Rabi crop and Kharif crop data set as
shown in TABLE I .We considered RMSE and R2 as metrics
for evaluating the performance [32]. The Gradient Boosting

Regressor model performed the best for Rabi crops data set
with an R2 value of 0.616 which is the highest value when
compared to other machine learning models. Also, RMSE
value for this model is 0.482 which is quite low.

The best performing model for Kharif-Crops Dataset is
XGBoost Regressor with an R squared value of 0.572 and
RMSE 0.37. This is an ensemble algorithm which provides us
with a composite model obtained using multiple weak models.
XGBoost has two advantages over other models. First, it is
faster than other implemented ensemble models and second
one is due to the performance of the model. At present, we
have a smaller data set but even if the size of the data set is
increased, it can still perform faster compared to other models.
Since it is an implementation of gradient boosting decision
trees which is designed for increasing speed and performance.
Subsequently, K-Nearest Neighbors Regressor is the second
best model for Rabi crops data set, but that’s not the case
for Kharif crops data set. For the Kharif crops data set, the
ensemble models performed better considering the inclusion
of three different types of crop data present in this data set.

Another observation, we noticed from the results is that the
models with Rabi crops data set as input performs well when
compared to models with Kharif crops data set as input. As
Kharif crops data set has data for three crops whereas Rabi
crops data set has only two crops of data. Therefore, it was
easier to get a good fit with only two crop data (Rabi crops
data set) due to less variability in data when compared to
Kharif crops data set. The same models might show better
performance with an inclusion of larger data set.

V. CONCLUSION AND FUTURE WORK

Agriculture plays an important role in the economic de-
velopment of a country. In India, rural population primarily
depend on agriculture as their primary source of livelihood.
In this paper, we describe our YieldPredict framework which
provide farmers with insights that can further help them in
decision making and agricultural planning to maximize their
crop production. We link an existing smart farm ontology with
the pre-processed crop data that consists of soil attributes,
area, production and seasonal rainfall of the crop. The reason
for choosing these attributes is that the data can be acquired
easily when compared to remote sensing data, crop genotype



data, or vegetation index which is not very easy to obtain.

We

populate a knowledge graph from the linked data set.

The knowledge graph can further be queried with the help of
SPARQL to generate an input data set for the machine learning
models. Finally, we have trained ten different machine learning
algorithms to predict the crop yield and evaluated them by
comparing their predictive accuracy. The best overall results
were obtained from Gradient Boosting Regressor model on
Rabi crops data set with R2 value of 0.616 and RMSE value
of 0.482.

In the future, we plan to collect more data and also consider
other environment variables that have an impact on crop yield
prediction. Once a larger data set is available, neural networks
based techniques can be used for predicting the crop yield.
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