

ABSTRACT

Title of thesis: INTEGER FACTORING USING
NEWTON’S METHOD IN THE DYADICS

Leslie N McAdoo III, Master of Sciences, 2019

Thesis directed by: Professor Samuel Lomonaco
Department of Computer Science

Here we expand upon the work done by Lomonaco (2013) for division of

Generic Integers (an abstraction of Dyadic Integers), by extending Newton’s Method

for the Dyadics to find the roots of functions of Generic Integers, enabling us to com-

pute the quotient of Generic Integers. We use this Division Algorithm as a basis

for an implementation of Lomonaco’s Boolean Factoring Algorithm, using a Default

Representation of Generic Integers. We then implement the Algorithm using a Ma-

trix Representation of Generic Integers, suggested by Lomonaco as a ‘Top-Down

Approach’ that could lead to more efficient storage and usage. This led to a much

improved Variant of the Boolean Factoring Algorithm, drastically decreasing the

runtime. Finally, we improved the Algorithm further by using a ‘Generic Prime,’

which uses the Matrix Representation of Generic Integers more intelligently for Fac-

toring Applications. Using Generic Primes for the Boolean Factoring Algorithm, we

were able to factor semiprimes with 54 bits, though the time that it took was still

not competitive with industry standards.

INTEGER FACTORING USING NEWTON’S METHOD
IN THE DYADICS

by

Leslie N McAdoo III

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the degree of
Master of Sciences

2019

Advisory Committee:
Professor Samuel Lomonaco, Chair/Advisor
Professor Alan Sherman
Professor Kostas Kalpakis

Acknowledgments

I would like to thank all of the people that have been alongside me for any

part of this process, whether it was your encouragement, support, help, patience,

proofreading or any number of other things, you made this possible. Especially big

thanks go to my wife Emma, my advisor Dr. Samuel Lomonaco, and my committee.

Specifically, I would like to thank Dr. Lomonaco further for his initial ideas

for this research, and his guidance throughout this process. One particular piece of

advice that proved key to developing greater understanding of the Boolean Factoring

Algorithm was the suggestion to use the ‘Top-Down Approach’ to represent Generic

Integers (here referred to as the Matrix Representation).

ii

Table of Contents

List of Figures v

1 Introduction 1
1.1 Overview . 1
1.2 Dyadic Integers . 1
1.3 Generic Integers . 3

1.3.1 Generic Arithmetic . 4
1.3.2 Top-Down Approach . 5

2 Newton’s Method 8
2.1 Newton’s Method for Dyadics . 8
2.2 Finding Inverses of Dyadic Integers . 9
2.3 Division of Dyadic Integers . 11

2.3.1 Proof of Correctness . 12
2.3.2 Observations . 13

3 Factoring Integers with Newton’s Method for Generics 17
3.1 Approach . 17
3.2 Modifications to the Factoring Algorithm 20

3.2.1 Removing Generic Multiplications 20
3.2.2 Temporary Storage of Boolean Expressions 20
3.2.3 Matrix Representation of Generic Integers 21
3.2.4 Using ‘Generic Primes’ . 21

4 Boolean Factoring Algorithm Performance 25
4.1 Testing Methodology . 25
4.2 Algorithm Runtime . 27

4.2.1 Theoretical Analysis of Runtime . 27
4.2.2 Comparison of the Four Variations of the BF Algorithm 28
4.2.3 Time to Generate the Generic Integer 31

4.3 Algorithm Space Usage . 32

5 Conclusions 35

iii

6 Open Questions 37
6.1 Comparing Lopsided Division with Newton’s Method 37
6.2 Potential Extension to Quantum Computing 37

Bibliography 39

iv

List of Figures

4.1 Comparison of the Variations of the BF Algorithm 29

4.2 Semi-log Comparison of the Variations of the BF Algorithm 30

4.3 Comparison of Matrix BF Variants 30

4.4 Time to Generate the Generic Prime 32

4.5 Space Used by the Generic Prime . 33

5.1 Space Used by the Generic Integer vs. Bits in the Integer to Factor . 36

v

Introduction

Overview

In this paper we expand on the work of Lomonaco [1] in the following manner:

We first present Newton’s method to find Inverses of Dyadic Integers, and extend

this method into one to divide Dyadic Integers. We then apply this method to

Generic Integers, and present a Factoring Algorithm with Newton’s Method at the

core. Four different variants of this Algorithm were implemented, and we analyze

the performance of all four variants. Finally we present some open questions and

potential directions for further research.

Dyadic Integers

The foundations of the findings for this paper have their roots in the Dyadic

Integers (the p-adic Integers for p = 2 [2] [3]). The term ‘Dyadic Integer’ can have

various definitions depending on the context in which it is used, but this paper will

use the terms and definitions laid out in this section. A full analysis of the Dyadics

will not be given.

For the purposes of this paper, the Dyadic Integers, in a naive sense, are the

1

numbers whose ‘Infinite 2’s Complement’ representation in Binary does not have

anything to the right of the decimal point. In this paper, the Dyadic Integers will

be denoted by Z(2), distinct from Z, the traditional Ring of Rational Integers (or just

Integers), and from Z2 = Z/2Z, the Quotient Ring with two Integers isomorphic to

F2. Thus, we can think of the Dyadic Integers as an infinite string of Dyadic digits,

or ‘bits.’ For convenience, we will think of this string as going from right to left (so

the rightmost bit is the ‘first’ bit).

It should be noted that Z is a subring of Z(2), since elements in Z correspond

to the elements of Z(2) whose bits are constant after finitely many bits. Dyadic

Integers whose bits are all eventually 0 correspond with non-negative Integers in Z,

and Dyadic Integers whose bits are all eventually 1 correspond to negative Integers

in Z. However, there are Dyadic Integers that have no corresponding Integer in Z

(those whose bits form an infinitely repeating sequence, or those whose sequence of

bits has no limit and also does not repeat), so we have Z ⊂ Z(2).

As Lomonaco [1] mentions, the quotient of two odd Dyadic Integers (Dyadic

Integers whose first bit is a 1) is also a Dyadic Integer, even if the quotient of the

corresponding Integers in Z is not also in Z. This fact is especially important for

the findings of this paper because it directly implies that all odd Dyadic Integers

have an inverse in Dyadic Integers.

It should be noted that since a Dyadic Integer has infinitely many bits, it is

often useful to truncate the Dyadic Integer to only a finite number of bits (at the

cost of precision). This truncated Dyadic Integer can be thought of as an Integer

(in Z) represented in Binary (more specifically, in 2’s complement). Arithmetic

2

operations can be performed on a Truncated Dyadic Integer as if it were a Binary

Integer, taking care to deal with negative numbers and overflow in 2’s complement

appropriately.

Generic Integers

Lomonaco [1] presents the idea of a ‘Generic Integer’. On a high level, Generic

Integers are an abstraction of Dyadic Integers, where each bit of the Generic Inte-

ger, instead of being a 0 or 1, is a Boolean Expression of n variables for some n.

Intuitively, this means that for each instantiation of the n Boolean variables (here

an instantiation is simply an assignment of the value 0 or 1 to each Boolean vari-

able), of which there are 2n, the bits of the Generic Integer will take on values of 0

or 1, leaving us with a (potentially infinite) sequence of bits, or a Dyadic Integer.

We will refer to these Dyadic Integers yielded by the Generic Integer under the 2n

instantiations of the n Boolean variables as the Integers represented by the Generic

Integer (this may lead to some confusion, but in general, we will only be dealing

with Generic Integers with a finite length, so the Dyadic Integers represented by

this finite sequence of bits correspond to Integers in Z).

Example 1.1 (Default Odd Generic Integer with 3 bits)

The naive way to construct an Odd Generic Integer with n bits is to simply let the

first bit be a 1, and then let the remaining n−1 bits be a different Boolean variable.

So to construct an Odd Generic Integer G with 3 bits, we have:

3

G = x1, x0, 1

Now since we are using 2 Boolean Variables, there exist 22 Dyadic Integers

that G represents. For instance, under the instantiation x0 = 1, x1 = 0, we have:

G = 0, 1, 1 = 5 ∈ Z

Intuitively, we constructed G in such a way that it represents the first 2n−1

odd Integers, where n is the number of bits of G. It is trivial to confirm that the

four Boolean Variable Instantiations yield G ∈ {1, 3, 5, 7}. This construction will be

referred to as the ‘Default’ Construction (or Representation) of Generic Integers.

Generic Arithmetic

While it makes sense under certain caveats to apply standard arithmetic opera-

tions to truncated Dyadic Integers, it does not make as much sense to apply the same

operations to Generic Integers (for example, subtraction of Boolean Expressions is

not defined, etc.). Lomonaco [1] presents Generic Integer Addition, Negation, and

Multiplication, and presents a Division Algorithm (‘Lopsided Division’) for Generic

Integers as well, in terms of fundamental Boolean operations, so they make sense

for Generic Integers. As one would hope, these arithmetic operations correspond

to the same operation between the Integers each Generic Integer represents given a

particular instantiation (i.e. to apply an instantiation of the Boolean variables to

two Generic Integers and then add the resulting Integers gives the same result as

performing Generic Addition on the Generic Integers and applying the instantiation

4

to the resulting Generic Integer).

Top-Down Approach

Lomonaco [1] details another way to think about Generic Integers. If each bit

ei in a Generic Integer is a Boolean Expression of n different Boolean Variables,

then ei can be expressed as a linear combination of the 2n Boolean minterms, where

the coefficients are drawn from F2, and addition can be thought of as Logical XOR.

So ei =
∑2n−1

j=0 cij ·mj, where cij ∈ {0, 1}, and mj are the Boolean minterms.

For convenience, we will order the minterms in the following way: Let k ∈

Z2n−1, k =
∑n−1

i=0 2i ·ki where ki ∈ {0, 1} (so ki is the i-th bit in the binary represen-

tation of k). Then mk =
∏2n−1

i=0 xkii , where x0i = xi and x1i = xi. As an example, the

minterms with 2 Boolean variables x1, x2 are {x1 · x2, x1 · x2, x1 · x2, x1 · x2}, ordered

from m0 to m3. It should be noted that each of these minterms represent a unique

instantiation of the n Boolean variables (i.e. there is a unique instantiation of the

n Boolean variables that gives mi = 1).

Given this ordering of the minterms, we can redefine the way we construct

Generic Integers as follows: Given n Boolean variables, there are 2n different In-

tegers that it can represent. Denote the 2n Integers that can be represented with

{g0, g1, . . . g2n−1}. We seek to have the Generic Integer represent gi under the instan-

tiation given by the minterm mi. To accomplish this goal, each bit in the Generic

Integer will be the sum of the minterms that correspond to whichever Integers have

a 1 in that bit in their binary representation. We can think of this as a binary

5

matrix where each element in the i-th row is a bit in the binary representation of

gi, and the bits of the Generic Integer are given by the multiplication of the matrix

on the left by the row vector of minterms.

Example 1.2 (Matrix Construction of Generic Integers)

We will now construct the same Generic Integer G from Example 1.1 using this

Matrix Construction. We note the that because there are n = 2 Boolean Variables

(here x1, x2), the 2n = 4 minterms are given by {x1 · x2, x1 · x2, x1 · x2, x1 · x2} as

above.

We seek for G to represent the Integers {1, 3, 5, 7}. Writing these Integers in

Binary (adding extra zeroes to the left to make them all the same number of bits)

gives us {001, 011, 101, 111}, so our Binary Matrix is given by:

0 0 1

0 1 1

1 0 1

1 1 1

Left multiplication of this Matrix by the Boolean minterms gives our Generic

Integer:

(
m0 m1 m2 m3

)
·

0 0 1

0 1 1

1 0 1

1 1 1

6

=

(
m2 ⊕m3 m1 ⊕m3 m0 ⊕m1 ⊕m2 ⊕m3

)
=

(
x2 x1 1

)

which is what we expect based on the Default Construction.

This way to construct a Generic Integer gives flexibility above the Default

Construction, which only allows a Generic Integer with n Boolean Variables to

represent the first 2n odd Integers. Using the Matrix Construction (or ‘Matrix

Representation’), the Generic Integer can be adjusted to represent an arbitrary set

of 2n Integers, which will be crucial in our construction of the Generic Prime in

§3.2.4.

7

Newton’s Method

Newton’s method is a common way of finding roots of polynomials using linear

approximations. The use of Newton’s method for Integers, or real numbers, is well

understood. We sought to use Newton’s method initially to find the inverses of

Dyadic Integers, with the hope that such a process could be generalized to division

of Dyadics, and extended to Generic Integers.

Newton’s Method for Dyadics

Given a Function F of a Polynomial u ∈ Z(p)[x] (a polynomial whose coeffi-

cients lie in the p-adic Integers), with p a prime, we seek an approximate root of the

function F; namely, we seek an approximation of u such that F (u) = 0.

Newton’s Method is an iterative process, one that begins with an initial ap-

proximation, and iteratively improves the approximation until it (hopefully) con-

verges. In the Dyadic Integers, our initial approximation will be the first bit (which

can be easily computed using arithmetic (mod 2)), and we will improve our ap-

proximation by obtaining another bit at every iteration. We will denote the bit we

obtain (on the k-th iteration) by uk, and we will denote our approximation of u at

the beginning of the k-th iteration by u(k). Notice that because we are working with

8

Dyadic Integers (specifically Truncated Dyadic Integers), and uk is the k-th bit, we

have u(k+1) = 2k · uk + u(k). We begin with our initial approximation of u(1) = u0.

We also define the function Φr(x) ≡ x (mod r), with 0 ≤ Φr(x) < r). With all of

the definitions out of the way, we have the formula [4]:

uk = −
Φ2(

F (u(k))
2k

)

Φ2(F ′(u(1)))
(2.1)

Finding Inverses of Dyadic Integers

We would like to use the method described in §2.1 to find a Dyadic Integer,

a constant polynomial with dyadic coefficients. It turns out that, without any

tinkering, this method works to find inverses of Dyadic Integers. Consider the

function F (u) = a · u− 1. Clearly the root of this function is u = a−1. If we treat u

as a Dyadic Polynomial (a trivial Polynomial with only a constant term, or a Dyadic

Integer), then we can follow Equation 2.1.

To clearly distinguish between Dyadic Integers and traditional Integers, when

writing out a Dyadic Integer, we will use the notation (. . . bnbn−1 . . . b1b0)2 where

bi is the i-th bit (note the subscript 2). For Truncated Dyadic Integers, we will

only give the finite number of bits that we have. This is in contrast to traditional

Integers, which will be written in base-10 representation, with no subscript.

Example 2.1 (Finding Inverse of the Dyadic Integer)

Let F (u) = 3u− 1. To begin, we compute the first bit of u. Let u0 be the first bit

of u. Then F (u0) = 3 · u0 − 1 ≡ 0 (mod 2). Thus we have u0 = u(1) = 1, and we

9

also have F ′(u) = 3.

As an aside, we note the quantity Φ2(F
′(u(1))) = Φ2(3) = 1 is the denominator for

many of these computations. For simplicity, we omit division by 1.

Per Equation 2.1, we seek u1 = Φ2(
F (u(1))

21
) = Φ2(

3·1−1
2

) = Φ2(
2
2
) = Φ2(1) = 1

Given u1, we can compute u(2) = u1u
(1) = (11)2 = 3

Similarly, we have u2 = Φ2(
F (u(2))

22
) = Φ2(

3·3−1
4

) = Φ2(
8
4
) = Φ2(2) = 0

So u(3) = u2u
(2) = (011)2 = 3

u3 = Φ2(
F (u(3))

23
) = Φ2(

3·3−1
8

) = Φ2(
8
8
) = Φ2(1) = 1

u(4) = u3u
(3) = (1011)2 = 11

u4 = Φ2(
F (u(4))

24
) = Φ2(

3·11−1
16

) = Φ2(
32
16

) = Φ2(2) = 0

u(5) = u4u
(4) = (01011)2 = 11

Here we stop computation, noting two facts: First, we appear to have a

pattern in the digits of 3−1 in the Dyadics, suggesting (but not proving) that

3−1 = (. . . 10101011)2 = (1011)2. Second, we note the pattern in the last step

of computation as the algorithm proceeds. We have u1 = Φ2(1), u2 = Φ2(2),

u3 = Φ2(1) and u4 = Φ2(2). We observe that these numbers (1, 2, 1, 2, . . .) seem to

form a cycle that is the same as multiplication by 2−1 = 2 in Z3 (as 1 · 2 ≡ 2 (mod

3) and 2 · 2 ≡ 1 (mod 3)).

We will further explore both of these notes in later sections, as well as formally

prove when to stop computation of digits in the inverse of a Dyadic Integer, instead

of just hoping that the pattern we observe will continue.

10

Division of Dyadic Integers

Once we understood how to compute Dyadic Inverses with Newton’s Method,

it was natural to wonder if such a method could be used to compute division of

two Dyadic Integers. If we can compute 1
a

= a−1 in the Dyadics using this method,

could we extend it to compute b
a

= b · a−1? Simple examination of the method in

§2.2 suggests that by taking F (u) = au− b (which has a root at u = b · a−1), we can

find b
a

without any extra changes.

Example 2.2 (Division of 15 by 7 with Newton’s Method)

As suggested, let F (u) = 7u−15. We note again that u(1) = u0 = 1, that F ′(u) = 7,

and that Φ2(F
′(u(1))) = Φ2(7) = 1. We then proceed as expected:

u1 = Φ2(
F (u(1))

21
) = Φ2(

7·1−15
2

) = Φ2(
−8
2

) = Φ2(−4) = 0

u(2) = u1u
(1) = (01)2 = 1

u2 = Φ2(
F (u(2))

22
) = Φ2(

7·1−15
4

) = Φ2(
−8
4

) = Φ2(−2) = 0

u(3) = u2u
(2) = (001)2 = 1

u3 = Φ2(
F (u(3))

23
) = Φ2(

7·1−15
8

) = Φ2(
−8
8

) = Φ2(−1) = 1

u(4) = u3u
(3) = (1001)2 = 9

u4 = Φ2(
F (u(4))

24
) = Φ2(

7·9−15
16

) = Φ2(
48
16

) = Φ2(3) = 1

u(5) = u4u
(4) = (11001)2 = 25

u5 = Φ2(
F (u(5))

25
) = Φ2(

7·25−15
32

) = Φ2(
160
32

) = Φ2(5) = 1

u(6) = u5u
(5) = (111001)2 = 57

u6 = Φ2(
F (u(6))

26
) = Φ2(

7·57−15
64

) = Φ2(
384
64

) = Φ2(6) = 0

u(7) = u6u
(6) = (0111001)2 = 57

11

u7 = Φ2(
F (u(7))

27
) = Φ2(

7·57−15
128

) = Φ2(
384
128

) = Φ2(3) = 1

u(8) = u7u
(7) = (10111001)2 = 185

At this point, we see a pattern similar to Example 2.1, where we have a cycle

in the last step on computation obtained by the repeated multiplication in Z7 by

2−1 = 4 (3 · 4 ≡ 5 (mod 7), 5 · 4 ≡ 6 (mod 7), and 6 · 4 ≡ 3 (mod 7)). This gives

us the suggestion that 15
7

= 15 · 7−1 = 0111001 in the Dyadics, which is what we

would have gotten had we computed 7−1 first and then multiplied by 15. The proof

of correctness for these results follows.

Proof of Correctness for Division in the Dyadics with Newton’s Method

Definition 2.3 (Definition of Correct Bits in Quotient)

A Quotient b · a−1 (alternatively, b
a
) in the Dyadics has n correct digits iff the first

n digits in the expression b
a
· a− b are 0.

Algorithm 2.1 Newton’s Method for Dyadic Division

Input: a, b, Odd Dyadic Integers
Input: n ∈ N the desired number of correct digits of b · a−1
u← 1
for k ← 1 to n− 1 do
uk ← Φ2(

u·a−b
2k

)
if uk = 0 then
u← 2k + u

end if
end for
return u

Output: b · a−1 such that the first n bits are correct

Lemma 2.4 (Algorithm 2.1 is Correct)

To show: The above method for computing division between Odd Dyadic Integers b

12

and a is correct for at least n bits (after n iterations), by induction on the number

of iterations (denoted k). Note that after n iterations, the above method returns

u(n), and that for simplicity, the “first” iteration refers to the initial declaration of

u (with this caveat, the first bit is returned after the first iteration).

Base Case (k = 1): This is trivially true. The algorithm returns u(1) = 1.

Assuming a and b are both odd, the first bit of a · u(1) − b = a− b is 0.

Inductive Step (Assume true for k): By assumption, we have that the first k

bits of the quotient u(k) = b · a−1 are correct. The k+ 1th iteration of the algorithm

examines the last bit of the expression u(k)·a−b
2k

(since we know that u(k) · a − b has

0 in the last k bits, the division by 2k amounts to just a shift). Now that we have

this last bit (uk), there are two cases to consider. The first case is that uk = 0. In

this case, we are done, since u(k) · a − b has 0 in at least the first k + 1 bits, and

the algorithm returns u(k+1) = u(k). If, however, uk = 1, uk+1 = uku
(k) = 2k + u(k).

Then u(k+1) ·a−b = (u(k)+2k) ·a−b = (u(k) ·a−b)+2k ·a. We know, by assumption,

that the k+1th bit of both u(k) ·a− b and 2k ·a are 1, so when they are summed, the

k+ 1th bit of their sum is 0. Thus, u(k+1) has k+ 1 correct digits, and by induction,

the algorithm is correct.

Observations

Intuition: Intuitively, Algorithm 2.1 works as follows: It maintains an n-bit ap-

proximation of the quotient (u(n)), and checks the accuracy of the n + 1th bit of

13

b
a
· a− b. If this bit is zero, our approximation is good enough, and we can move to

the next bit, should we desire. However, if it is not zero, we adjust our quotient to

account for this error. Note that this is done in a manner cannot change the first n

bits of b
a
· a− b, so our approximation only gets better over time.

Simplifying Computation: Another observation, hinted at in Example 2.1, deals

with the notion of what we are calling the “remainder” in these computations.

Given an approximation u of the true quotient of b and a, the remainder is the error

associated with that approximation (a · u − b). It turns out that we can simplify

Algorithm 2.1 to only perform computations on this remainder. Intuitively, we can

see from Lemma 2.4 that Algorithm 2.1 re-computes (a·u−b) at every step, dividing

by a higher power of 2 each time to obtain the next bit in the sequence. However,

we note that the remainder after the i+ 1-th step is given by

(a·u(i+1)−b)
2i+1 = (a·(ui·2i+u(i))−b)

2i+1 = (a·u(i)−b)+a·ui·2i
2i+1 =

(a·u(i)−b)

2i
+a·ui

2

where (a·u(i)−b)
2i

is the remainder after the i-th step.

This observation leads to a simplified, but equivalent (further proof left to

the reader), Algorithm, shown in Algorithm 2.2. Especially noteworthy is the fact

that Algorithm 2.2 only performs a Generic Addition in each iteration, instead of a

Generic Multiplication.

Termination of Newton’s Method in the Dyadics: While Algorithms 2.1 and 2.2

give n correct bits for a given value of n, this by itself is not enough to prove

that we can stop after a given iteration and make claims about repeating patterns

14

Algorithm 2.2 Modified Newton’s Method for Dyadic Division

Input: a, b, Odd Dyadic Integers
Input: n ∈ N the desired number of correct bits of b · a−1
u← 1
remainder ← a·u−b

2

for k ← 1 to n− 1 do
uk ← remainder (mod 2)

remainder ← (remainder+a·uk·2k)
2

u← uk · 2k + u
end for
return u

Output: b · a−1 such that the first n bits are correct

of the solution, as we did in Examples 2.1 and 2.2. The intuition of when to stop

comes in large part from §2.3.2, and the notion of computation with remainder.

In both of the examples, we see that the remainder forms a cycle, and we can see

from Algorithm 2.2 that since the remainder for a particular step can be computed

only with the remainder from the previous step, once the remainder forms a cycle,

it cannot break that cycle. This leads to the following Lemma (proof left to the

reader):

Lemma 2.5 (Termination of Newton’s Method for Division in the Dyadics)

Given b and a Odd Dyadic Integers, and an approximation u of b·a−1, the remainder

is given by a · u− b. The termination conditions for Newton’s Method for Division

in the Dyadics are as follows:

1. If the remainder ever reaches 0, the approximation u is exactly correct, and

nothing more needs to be done

2. If a cycle is found in the sequence of remainders, the algorithm can be

stopped, and the bits of u given by the terms in the cycle will repeat

15

Equivalence of ‘Lop-Sided’ Division and Newton’s Method in the Dyadics: The

division Algorithm defined by Lomonaco [1] (‘Lopsided Division’) defines Division for

Dyadic Integers (or Generic Integers) in terms of fundamental Boolean operations.

Newton’s Method for Division defines Division in terms of the Arithmetic Operations

for Dyadics. Since they are both division algorithms, however, it is natural to wonder

about the connection between the two Algorithms. While we give no formal proof of

equivalence, a high-level sketch of the similarities and differences of the Algorithms

is given below.

The general concept of the Algorithms is the same: Each Algorithm obtains

another bit of the quotient with every iteration. However, each Algorithm obtains

this bit in what seems to be a very different way. Lopsided Division maintains two

different intermediate Dyadic (or Generic) Integers, which combine with the inputs

to obtain the next bit of the quotient, performing only logical operations. Newton’s

Method instead maintains only one intermediate Integer, performing an arithmetic

operation (an addition) to obtain the next bit of the quotient.

At a higher level, we note that the two Division Algorithms approach the

‘carries’ of arithmetic operations differently. Newton’s method allows the carries

to propagate fully (i.e. the arithmetic operation has been completed). Lopsided

Division, instead of propagating the carries at each step, only propagates the carries

as far as is necessary to obtain a bit of the quotient. It then keeps the carries as

an intermediate calculation, and combines this intermediate value with the carries

generated in the next iteration, never fully letting the carries propagate until the

end. It remains an open question which approach is faster (see §6.1 for details).

16

Factoring Integers with Newton’s Method for Generics

Approach

Lomonaco [1] lays out a procedure by which Lopsided Division of an odd

Dyadic Integer a by a Generic Integer can lead to a System of Boolean Variables.

Intuition would suggest that we could follow a similar procedure using Newton’s

Method for Division with Generic Integers.

Example 3.1 (Factoring 21 using Newton’s Method)

Let a = 2110 = 101012 = 7 · 3, and x = x2, x1, 1 be a Generic Integer. We observe

that since 710 = 1112, we expect a system of Boolean Equations with x2 = x1 = 1

as a solution. (We also expect x2 = 0, x1 = 1 to be a solution, but more on that

later). As an aside, we note that using Newton’s Method for Division requires a

subtraction, but rather than explicitly defining a subtraction for generics, we simply

add the negative (so we would add −21 = ...111010112 in this example).

Using Alg. 2.1, and letting u0 = u(1) = 1, we have the following:

u1 = Φ2(
u∗x+(−21)

2
) = Φ2(0, ...1, 1, 1, 1, x2, x2, x2, x1) = x1

u(2) = x1, 1

u2 = Φ2(
u∗x+(−21)

4
) = Φ2(x1x2, x1x2, ...x1x2, x1x2 ⊕ x1 ⊕ x2, x2) =

17

u(3) = x2, x1, 1

At this point, we will stop the example (because we have enough to find the

solution), and focus on how to construct the solution from x and u.

As stated above, we are looking for a system of Boolean equations whose

solution yields a factorization of the number a. Intuitively, we need to find some

constraints on the system based on the computation that we have already done.

Taking a closer look at the computation for u2 above, we note that the Generic

Integer (x1x2, x1x2, ...x1x2, x1x2 ⊕ x1 ⊕ x2, x2) is our most recent approximation of

0 (since it is a−x ·u, with increasingly better approximations of u). As such, if u(3)

were a factor of a, we should have the quantity a − x · u(3) = 0, and so all of the

remaining bits in our approximation should be zero. And therein lie our constraints

on the system. If we can find an assignment for all of the Boolean variables such

that the remaining bits in our approximation are 0, we are done, and have found a

factor.

Before we use this intuition on the above example, a caveat should be made.

Because the algorithm makes use of infinite 2’s complement (which has infinitely

many bits), and we choose some limit of finite precision, the most significant bit has

a rounding error in it. We can avoid this by simply not using the most significant

bit in our satisfiability problem.

That caveat aside, if we observe the above Generic Integer, we note that a

conceptually simple way to make sure that all bits are 0 is to multiply (logical and)

all of the negated expressions together, and find solutions that make that expression

18

True. Doing that in the example gives the expression x1x2, which has the solution

x1 = 1, x2 = 1. Plugging this solution into x and u gives us x = (x2, x1, 1) =

(1, 1, 1) = 1112 = 710 and u = (x2, x1, 1) = (0, 1, 1) = 0112 = 310, which is the

correct factorization. This algorithm is formalized in Algorithm 3.1.

Algorithm 3.1 Factoring Integer’s Using Newton’s Method

Input: a ∈ Z odd composite
Input: x a Generic Integer
u← 1
k ← 1
Φ← ∅
while Φ = ∅ do
rem← a− u · x
Φ← satisfy(rem)
if Φ = ∅ then
uk ← Φ2(rem)
u← u+ uk · 2k

end if
end while
x = Φ(x)
u = Φ(u)

Output: x, u factors of a

Note: Here ‘satisfy(r)’ is a function that returns an instantiation Φ of all the Boolean
variables in r such that each bit in the Generic Integer is 0, if such an instantiation
exists, and the empty set if none exists.

Number of Variables: An obvious design parameter relates to the number of vari-

ables we use to represent the generic divisor x. In general, to factor a number N

(that isn’t prime) with dlog2(N)e = n bits, we know that at least one of its factors

can be represented by
⌈
n
2

⌉
bits. Thus, we need only use that many. Certainly the

possibility exists for this to be more bits than we need, (for example when the num-

ber has a small factor), but to guarantee that we will find a factor, we should use⌈
n
2

⌉
bits.

19

Modifications to the Factoring Algorithm

As expected, factoring large integers using Algorithm 3.1 is slow at best, and

computationally infeasible when the integers are large enough. Hoping to reduce

the computational barrier for factoring large integers at least in part, several modi-

fications to the original Algorithm were made.

Removing Generic Multiplications

Since the Basis of Algorithm 3.1 is Algorithm 2.1, it follows that we should

be able to enhance Algorithm 3.1 in the manner described in §2.3.2. Note that

in the case of the Generic Integers, this changes the Algorithm from needing to

perform a Generic Multiplication to needed only to perform a Generic Addition

(and some shifts). While we didn’t emphasize the potential speed increase of such

modifications in §2.3.2, when the algorithm is using Generic Integers, the speed

increase is significant. A Generic Multiplication is, in a naive sense, a sequence

of Generic Additions. To replace a Generic Multiplication with a single Generic

Addition greatly speeds up the Algorithm, as shown in §4.

Temporary Storage of Boolean Expressions

One of the problems with Algorithm 3.1, even with multiplications removed, is

that when the integer to factor gets large enough, the Boolean expressions used in the

middle of the computation become too large to be feasible. When they are large and

complicated enough, even conceptually simple operations like Logical XOR become

20

very costly, and these operations are the foundation of the Algorithm. To combat

this, we thought that when an expression became large enough, we could save it

into a table, and substitute it with a separate variable. Further computations could

then be performed on this simpler variable, and when it came to the satisifiability

problem, we could substitute the original expressions back in, and solve from there.

However, after many different variations of the re-substitution, it appeared to be

too computationally expensive, and the time savings were never realized.

Matrix Representation of Generic Integers

As mentioned in §1.3.2, another way to store Generic Integers is to store a

Binary Matrix as the coefficients for the Boolean minterms in each expression. An

alternative way of representing this minterm expansion of the Generic Integer is

to treat each column of the Binary Matrix as a 2n bit number. Then instead of

doing logical operations on the Boolean Expressions, we can use perform the same

logical operations (bitwise) on the number representations, making use of the speed

and simplicity of bitwise operations. It is left to the reader to show that bitwise

operations on the number representation of the minterm expansion are equivalent

to logical operations on the Boolean Expressions.

Using ‘Generic Primes’

Intuitively, this method of Factoring seems similar in a sense to Trial Division,

since Division by the Generic Integer represents Division by the all of the Integers

21

that the Generic Integer can represent. As noted in §1.3.2, however, the Integers

that a Generic Integer can represent can be arbitrarily selected. Thinking of this

method of Factoring as similar to Trial Division suggests that a easy optimization

for the algorithm would be to simply have the Generic Integer (with n Boolean

Variables) represent the first 2n primes.

To do this, we introduce the notion of a so-called ‘Generic Prime,’ alluded to

in §1.3.2.

Example 3.2 (Construction of Generic Primes)

Let the number of Boolean Variables n=2. Let G1 be a Generic Odd Integer using

the Default Representation, and G2 be a Generic Prime with with the same number

of Boolean Variables.

We note that the Integers represented by G1 are {1, 3, 5, 7}, since by the De-

fault Construction we have G1 = x2, x1, 1. We seek to have G2 represent the first

2n = 4 primes, {3, 5, 7, 11}.

To construct G2, we note that the minterms for the 2n Boolean Variables are

the same as those in §1.2, {x1 · x2, x1 · x2, x1 · x2, x1 · x2}. The binary matrix is then

given by

0 0 1 1

0 1 0 1

0 1 1 1

1 0 1 1

22

and so the bits of the Generic Integer are given by

(
m0 m1 m2 m3

)
·

0 0 1 1

0 1 0 1

0 1 1 1

1 0 1 1

=

(
m3 m1 ⊕m2 m0 ⊕m2 ⊕m3 m0 ⊕m1 ⊕m2 ⊕m3

)

=

(
x1 · x2 x1 ⊕ x2 x1 · x2 ⊕ x2 1

)

The Generic Prime allows us the ability to factor larger Integers. This is

intuitively seen by the fact that there are more bits in the Generic Prime, but more

rigorously, because the Generic Prime represents all odd Prime Integers less than or

equal to 11, allowing us to factor Integers less than or equal to 112 = 121, whereas

by the same logic we can only factor Integers up to 49 with the Generic Odd Integer.

In general, we wish to make a claim about how much additional Factoring

Capability using a Generic Prime gives us over using a Generic Odd Integer. We

seek to answer the question: ‘Given an Integer N with O(n) bits, how many Integers

does a Generic Prime have to represent, as opposed to a Generic Odd Integer, to

factor N?’ If we let π(x) = |{y : y ∈ Z; y ≤ x; y is prime}| (the number of Prime

Integers less than or equal to x), then we can approximate π(x) with x/ln(x) [5].

When trying to factor N with O(n) bits, this means that our Generic Integer needs

to represent all possible factors with O(n/2) = O(n) bits. This requires that a

23

Generic Odd Integer must represent all of the Odd Integers with O(n) bits, which is

O(2n) Integers. However, a Generic Prime need only represent all Primes with O(n)

bits, which is given by π(2n) = 2n/ln(2n) = O(2n/n), so the Generic Prime must

represent the first O(2n/n) Prime Integers, a significant saving over the Generic Odd

Integer. This savings will be further explored in §4 and §5.

24

Boolean Factoring Algorithm Performance

Lomonaco [1] presented the Boolean Factoring Algorithm, which runs in expo-

nential time and is not competitive with the current fastest Factoring Algorithms,

but is based on the Lopsided Division Algorithm. We implemented the Boolean

Factoring Algorithm using Newton’s Method for Division, with some simplifying

modifications, and sought to analyze the performance of all four implementations

relative to each other.

We implemented and tested all of these variations of the BF Algorithm using

Mathematica. The Generic Integers were implemented as lists (either of arbitrary

Boolean Expressions or of arbitrary precision Integers, as detailed in §3.2.4)

Testing Methodology

To test the BF Variations, we generated random primes of various lengths

(i.e. number of bits), and multiplied them together to form semiprimes of different

lengths. Each of these semiprimes was factored with each algorithm three times,

and the minimum time was recorded for each semiprime. If multiple semiprimes

had the same length, the times for each semiprime of a given length were averaged,

so that we could plot a single time for each length of semiprime. While this is

25

enough to give a rough estimate of the time complexity, not all Integers with the

same number of bits take the same amount of time, nor even all semiprimes of the

same length (i.e. this methodology is somewhat vulnerable to outliers, especially if

only one semiprime of a given length was tested).

For the two Variants that used the Matrix Representation of the Generic In-

teger, one of the benefits of this Representation is that this Matrix need only be

computed once, and then can be used to factor many Integers. When computing this

Matrix, the Generic Integer needs to represent all possible options for a Factor of an

Integer of a given Length (in general, to factor an Integer with n bits, it is sufficient

to find all Factors with n/2 bits or fewer). It turns out that for the Generic Prime,

the Matrix can be computed to contain the largest Primes necessary to factor an

Integer of at most a given size. However, this is not the case for the Generic Odd

Integer, because a Generic Odd Integer that is too large could represent the Integer

to be factored, which means the process would give no information. To combat this,

when factoring Integers of a certain size, we used the smallest Generic Integer that

was capable of factoring the Integer (based on the size), so as to compare the two

Variants fairly.

Because there is such a drastic difference in the runtime of each variation (as

shown by Figure 4.1), it was necessary to institute a cutoff point, after which the

algorithm would be terminated, and no time recorded. For this experiment, this

cutoff point was 4 hours (i.e. any computation that would have taken longer than

4 hours was terminated before it finished). This was done with the combination of

the Timing and the TimingConstrained Functions in Mathematica.

26

Algorithm Runtime

One of the key metrics for determining viability of any Algorithm, including

a Factoring Algorithm, is the runtime of the Algorithm. Of particular note is the

Asymptotic Time Complexity of the Algorithm. Lomonaco [1] noted that the BF

Algorithm was not competitive with the fastest known Algorithms, but instead ran

in time exponential in the bits of the Integer, while the fastest industry standard

Algorithms run in sub-exponential time. We sought to conjecture about the asymp-

totic runtime of the Variations of BF using empirical data.

Theoretical Analysis of Runtime

Before looking at empirical results, we can make some conjectures about the

runtimes of each Variant before even seeing empirical data. A quick examination of

Algorithm 3.1 shows that the high level operations are the Generic Multiplication (or

Addition in the optimized Variants), and the satisfaction problem with the resulting

equations, for each iteration of the loop.

In each Variant, the loop runs until it finds a factor, which, intuitively is until

we have enough bits of u to represent the smallest factor, which, for an integer N

with n bits, is O(n) iterations (that is, O(n) Generic Additions or Multiplications,

and O(n) satisifiability problems).

Generic Addition, using the Algorithm presented by Lomonaco [1], for two

Generic Integers with O(n) bits each, performs O(n2) Boolean XOR and AND op-

erations. A Generic Multiplication between the same two Generic Integers performs

27

O(n) Generic Additions naively, so O(n3) of each kind of Boolean operation. The

size of the operands varies depending on the representation, which is discussed in

§4.3, but for now we will state that the size of the operands for the Default Rep-

resentation is O(2n), the size for the Matrix Representation of the Generic Odd

Integer is also O(2n), while the size for the Matrix Representation of the Generic

Prime is O(2
n

n
). The satisfiability problem has the Time Complexity of the Size of

the Operands, leaving us with theoretical runtimes of O(n3 · 2n) (for the Default

Representation), O(n2 · 2n) (for the Default Represenation with Modified Newton’s

Method and for the Matrix Representation with the Generic Odd Integer), and

O(n · 2n) (for the Matrix Representation of the Generic Prime).

Comparison of the Four Variations of the BF Algorithm

Figure 4.1 shows the plots of runtime for the BF Variants vs. the number

of bits in the Integer factored. Immediately two facts become evident: Using the

Modified Newton’s Method is much faster than the Default Newton’s Method, and

the Variants using the Matrix Representation of the Generic Integer are much faster

than either Variant using the Default Representation. It should be noted that the

Runtimes of the Variants that use the Matrix Representation of the Generic Integer

are neglible compared to the Runtimes of the other Variants, so the scale of Figure

4.1 makes the plots for the Matrix Representation Variants seem to be 0. Figures

4.2 and 4.3 are more informative for these Variants.

For both Variants using the Default Representation, we can visually confirm

28

Figure 4.1: Comparison of the Variations of the BF Algorithm

our hypothesis from §4.2.1 that the BF Algorithm runs in Exponential Time. To

further confirm our hypothesis, Figure 4.2 shows the runtime of the four Variants

on a semi-log plot. All four plots appear to be straight lines on the semi-log plot,

another indication that the BF Algorithm runs in Exponential Time.

Since both Variants of the BF Algorithm using the Matrix Representation

of the Generic Integer are much faster than the Variants without, we were able to

factor much larger Integers using these two Variants than we could using the Default

Representation, as shown by Figure 4.3.

We see a similar trend as in Figure 4.1, where both Variants seem to run in

exponential time. As can be reasonably expected, we see that using the Matrix

Representation of a Generic Prime is much faster than merely using the Matrix

Representation of a Generic Odd Integer. Intuitively, this makes sense due to the

29

Figure 4.2: Semi-log Comparison of the Variations of the BF Algorithm

Figure 4.3: Comparison of the BF Algorithm Variations using the Matrix Repre-
sentation

30

inefficiency introduced when trying to factor an Integer using non-primes, since all

of the calculations involving non-primes give no additional information. §5 compares

the runtimes of these two Variants more rigorously.

Time to Generate the Generic Integer

When considering the runtime of the Variants of the BF Algorithm that use

the Matrix Representation of the Generic Integer, we need also mention the precom-

putation cost of Generating the Binary Matrix. The size of the Matrix depends on

whether or not the Generic Integer is a Generic Prime (instead of simply a Generic

Odd Integer), as well as the size of the Integer being Factored (§4.3 has more details

on the Space used by the Matrix), though the Matrix always uses an exponential

amount of space. Figure 4.4, unsurprisingly, indicates that it takes an exponential

amount of time to generate the Generic Integer (intuitively, we expect generation

of a Matrix of exponential size to take exponential time), though it takes much

less time to generate the Generic Prime. This observation seems counter intuitive,

because the generation of a Generic Prime involves computing a long sequence of

Prime numbers, which is much more difficult than generating a list of odd Integers

for the Generic Odd Integer. As §4.3 suggests, the Binary Matrix for a Generic

Prime needed to Factor a specific Integer is much smaller than the Matrix needed

to Factor the same Integer with a Generic Odd Integer.

31

Figure 4.4: Time to Generate the Generic Prime

Algorithm Space Usage

Similar to the way we analyzed the runtime of the Variants of the BF Algo-

rithm, we can analyze the space usage. For simplicity, we will examine the Space

Usage of the Variants that use the Default Representation of the Generic Integer

separately from the Space Usage of the Variants using the Matrix Representation.

We will assume that each Variant is trying to Factor an Integer N with n bits.

For the Variants using the Default Representation, the Algorithm maintains

two Generic Integers (u and x), each with O(n) bits. Each of these bits is an

arbitrary Boolean expression of O(n) variables, which has O(2n) terms, suggesting

that these Variants have Space Complexity ∈ O(n · 2n), or they use exponential

Space.

32

Figure 4.5: Space Used by the Generic Prime

For the Variants that use the Matrix Representation, we see that again, the

Algorithm maintains two Generic Integers. Each of these Integers is represented

by a Binary Matrix with O(n) columns, since the Generic Integer must have O(n)

bits. If the Generic Integer is a Generic Odd Integer, the Binary Matrix must have

O(2n) rows, because it must represent the first O(2n) odd Integers to have O(n)

columns. This means that the Generic Odd Integer Variant of the Algorithm has

Space Complexity ∈ O(n · 2n). However, if the Generic Integer is a Generic Prime,

the Matrix need only have O(2
n

n
) rows (see §3.2.4 for details), meaning that the

Generic Prime Variant of the Algorithm has Space Complexity ∈ O(2n).

While we did not measure the maximum memory footprint of any of the Al-

gorithms while they were running, the Variants that use the Matrix Representation

of the Generic Integer need the Matrix to be precomputed, and we were able to

33

measure the Space Usage of this precomputed Matrix. Figure 4.5 shows that both

Variants using the Matrix Representation do, in fact, use an exponential amount of

space. We also can observe that, as expected, the Generic Prime uses substantially

less space than the Generic Odd Integer.

34

Conclusions

As noted in §4.2, we see that using the Matrix Representation of the Generic

Integer for the BF Algorithm is much faster than using the Default Representation,

and that using the Generic Prime is faster than using a Generic Odd Integer. This

first observation was to be expected, since the operations on the Binary Matrix are

simple, incur low overhead, and the operands are of a fixed size, whereas logical

operations on an arbitrary Boolean expression can incur high amounts of overhead,

and the operands can exponentially increase in size. Similarly, it was to be expected

that using a Generic Prime would be faster than using a Generic Odd Integer, since

the wasted computations using non-prime Integers are eliminated.

More specifically, we see a similarity in the shapes of Figure 4.3 and Figure

4.5. This suggests that the speedup realized when moving from the Generic Odd

Integer to the Generic Prime is simply of function of the size of the Binary Matrix

required to factor an Integer of a given size. Figure 5.1 (trendlines are included for

clarity) shows just that, that the time to factor a given Integer with the Matrix

Representation of a Generic Integer is only a function of the size of the Integer in

that larger Integers require larger Matrices. In fact, Figure 5.1 seems to show that

there is a linear relationship between the size of the Binary Matrix and the average

35

time to factor the Integer, which is what we would expect to see based on §4.2.1.

Figure 5.1: Space Used by the Generic Integer vs. Bits in the Integer to Factor

Based on our results, we can state that the BF Algorithm is an Algorithm

with exponential Time and Space Complexity. Obviously this means that the BF

Algorithm is asymptotically worse than the industry standards (the fastest of which

are sub-exponential). For reference, we wanted to see how the fastest BF Variant

that we had compared to Mathematica’s built-in Factoring (which can reasonably

be assumed to be close to the industry standard). For the largest number that we

factored (which had 54 bits), we factored it in 48 seconds, while Mathematica’s

FactorInteger built-in function factored it in less than a millisecond. While there

are certainly optimization techniques that could be applied to our implementation,

this comparison demonstrates just how far away from the industry standard our

implementation is.

36

Open Questions

Here we lay out some open questions and potential future research directions.

Comparing Lopsided Division with Newton’s Method

We see in §2.3.2 a high-level comparison of the Lopsided Division Algorithm

with Newton’s Method for Division, but it lacks formal rigor to understand all of

how the two Algorithms are related, and is missing a comparison from a runtime

perspective. Also missing is a theoretical analysis of the complexity of the Lopsided

Division Algorithm. It would be interesting to see which Algorithm is faster, if

either is significantly so.

Potential Extension to Quantum Computing

While the fastest implementations of the BF Algorithm (the Variants that use

the Matrix Representation of the Generic Integer) use an exponential amount of

space, it may lead to a Quantum Factoring Algorithm. At a high level, the Binary

Matrix that represents the Generic Integer could be represented as a superposition of

Quantum states, reducing the space complexity. Since it appears that the runtime of

the Algorithm is driven by the amount of space used, reduing the space complexity

37

could drastically reduce the time complexity. If the application of Newton’s method

could then be represented as unitary transformations, and a way to observe the result

so that it yields a factor, it could lead to an efficient Quantum Factoring Algorithm,

one that would amount to a Quantum Parallel Trial Division Algorithm.

38

Bibliography

[1] Samuel J. Lomonaco. Symbolic Arithmetic and Integer Factorization. ArXiv
e-prints, page arXiv:1304.1944, April 2013.

[2] David Terr, Helena Verrill, and Eric W. Weisstein. “p-adic integer.” From
MathWorld–A Wolfram Web Resource. Last visited on 12/6/2018.

[3] Eric W. Weisstein. “p-adic number.” From MathWorld—A Wolfram Web Re-
source. Last visited on 12/6/2018.

[4] Keith O. Geddes, Stephen R. Czapor, and George Labahn. Algorithms for Com-
puter Algebra. Kluwer Academic Publishers, Norwell, MA, USA, 1992.

[5] Eric W. Weisstein. “prime number theorem.” From MathWorld—A Wolfram
Web Resource. Last visited on 3/15/2019.

39

