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Abstract—In this paper we consider a source, in-need of coop-
eration of a relay due to limited battery power to communicate
with the destination, with an eavesdropper tapping the second
hop, when all the links undergo Rayleigh fading. Relay nodes
are the market players, who compete to trade their power to
source in order to maximize their incentives. Asymptotic analysis
of the intercept probability is presented when source-relay and
relay-destination average SNRs are the same or different. We
evaluate the utility of relays in various novel duopoly economic
communication models and show that increase in channel gain
from relay to eavesdropper, decreases the profit of relays. We
also demonstrate that the choice of strategic variable as output
or price, can have a dramatic effect on the Nash outcome in an
oligopoly interactive market.

I. INTRODUCTION

In the communication network, cooperative relays play a
significant role to save the uplink transmit power of mobile
terminals [1] and improve involved network performances,
especially in the areas where signal strength is poor due
to geographic referenced constraints [2]. These cooperative
networks are susceptible to eavesdropping due to the broad-
cast nature of wireless medium and therefore information
theoretic security is emerging as a paradigm approach to
assure the secure communication by exploiting the physical
characteristics of wireless channels [3]–[6]. Here, we consider
such a cooperative and secure communication network in a
competitive oligopoly market scenario as a means to trade
power in mobile communication for local power efficiency
and reliability.
Oligopoly market strategic theory deals with the competition
between two or more firms as investigated in [7]–[9]. In [10]
for dual-hop transmission, the fixed relay network is modeled
as a virtual oligopoly market, and the Cournot game model
is exploited to solve the resource allocation problem. Various
price competition models for emerging mobile networks have
been studied in [11]. Authors in [12] have presented a business
model using sealed bid procurement auction based game
theory for power-trading in cooperative networks. [13] investi-
gated the profit of price for spectrum sharing in cognitive radio
using genetic algorithm with supermodular game. In contrast
to the above study, our work is motivated to exploit various

pricing models of oligopoly market in a cooperative relay
network for power trading, in presence of an eavesdropper.
Cournot and Bertrand constitutes the two most classical mod-
els of the oligopoly market [7] , [8]. Under static Cournot
model, the firms produce perfectly homogeneous goods and
simultaneously choose output quantity knowing market de-
mand and cost conditions whereas, in Bertrand model the
firms compete by strategically managing their price. Firms
enjoy positive profits in Cournot as the resulting market
prices exceed that of the marginal costs while price equals
marginal cost in Bertrand. The perfectly competitive solution
is reached in the Bertrand model as long as there are two
or more competitors [9]. In contrast, the Cournot solution
approaches the perfectly competitive equilibrium only when
number of firms approaches infinity . In a dynamic Cournot
scenario, one firm produces output in the first period while the
other firm produces output in the second period. Stackelberg
identified the sub-game perfect Nash equilibrium (SPNE) for
this model and examined how dynamic considerations can give
first mover a strategic advantage over the other [7]. This can be
extended to a dynamic Bertrand game, where one firm chooses
price in the first period while the other chooses price in the
second period, but on the contrary, here second mover earns
higher profits.
In [14] the authors show that for Cournot-Bertrand model,
where two firms have the choice to compete in output or in
price, under certain demand and cost conditions the dominant
strategy for each firm is to compete in output rather than price.
In [15] the authors investigated the Cournot-Bertrand model
when the degree of product differentiation is allowed to vary
and examined that when the products are homogeneous, the
perfectly competitive outcome results in which the Cournot-
type firm produces the competitive level of market output,
while the Bertrand-type firm exits the market.
In this paper, we first evaluate the intercept probability for
a dual hop cooperative threshold based decode-and-forward
(DF) relaying network model in Section II. As is known,
an intercept event occurs when the secrecy capacity becomes
negative. Using the expression, we examine the market strate-
gic game framework, where relay nodes use different duopoly
models to trade their power to source in Section III. We also978-1-5090-2361-5/16/$31.00 c© 2016 IEEE



investigate how gains of the eavesdropper’s link, affect the
utility of relays in this market game, which in turn motivates
relay to keep low intercept probability to earn high incentives.
In Section IV comparative numerical analysis of different
duopoly models is done and finally, we conclude this study
in Section V.

II. SYSTEM MODEL

We consider a source S , two DF relays Ri , i ∈ [1, 2], a des-
tination D and an eavesdropper E in the system. We assume
there is no direct S −D,S − E link and the communication
takes place with the help of a single cooperative relay. Also,
each node in the system model works in half-duplex mode with
all the channels identically and independently distributed and
the instantaneous channel state information (ICSI) of the main
channel as well as of the eavesdropper channel is available.
The S−Ri channels hsri , Ri−D channels hrid, and Ri−E
channels hrie , ∀i ∈ [1, 2] , are slowly varying Rayleigh flat
faded channels [16]. Let Ps and Pri denote the average powers
used at source and relay Ri respectively. Also, let Nsri , Nrid
and Nrie denote the variances of additive white Gaussian noise
of S −Ri, Ri−D, and Ri−E links respectively. The SNRs
Γsri , Γrid and Γrie are exponentially distributed given as
Γsri =

Ps|hsri
|2

Nsri
, Γrid =

Pri
|hrid

|2

Nrid
, Γrie =

Pri
|hrie

|2

Nrie
with

average values 1/βsri , 1/βrid and 1/αrie respectively, where
βsri , βrid and αrie are the parameters of the exponential
distribution.
Deviating from the fact of perfect decoding at all the relays,
[17] considers only a set of relays can successfully decode
the message among all the relays. Let us consider γth as the
predetermined threshold value for S−Ri link, and relays can
decode the message only if the SNR of S − Ri link, Γsri is
greater than γth else, no communication takes place as there is
no direct link between S−D or S−E. The secrecy capacity
is shown to be the difference between the capacity of main
link and that of wiretap link in [3] , [18]

Cs ,
1

2

[
log2

(
1 + ΓM
1 + ΓE

)]+
(1)

where ΓM =
Pri
|hrid

|2

Nrid
is the SNR of the main link and

ΓE =
Pri
|hrie

|2

Nrie
is the SNR of the eavesdropper link.The term

1/2 here denotes that two time slots are required to complete
this dual hop transmission process. An intercept event occurs
when the secrecy capacity is negative and probability that
the eavesdropper successfully intercepts the source signal is
called intercept probability Pint, [16] which is a key metric in
evaluating the performance of physical-layer security. Using
(1), we evaluate intercept probability for single ith relay as

P iint = P[Γsri ≥ γth]P [Cs ≤ 0] + P[Γsri ≤ γth]

= P
[
Ps|hsri |2

Nsri
≥ γth

]
P
[

1

2

[
log2

(
1 + Γrid
1 + Γrie

)]
≤ 0

]
+ P

[
Ps|hsri |2

Nsri
≤ γth

]

=

[
1− P

[
Ps|hsri |2

Nsri
≤ γth

]]
P
[

1 + Γrid
1 + Γrie

≤ 1

]
+
(
1− e−γthβsri

)
=
(
1−

(
1− e−γthβsri

))
P [Γrid ≤ Γrie] +

(
1− e−γthβsri

)
=
e−γthβsriβrid
βrid + αrie

+ 1− e−γthβsri (2)

It is evident from (2) that probability of positive secrecy capac-
ity depends upon the statistics of the Ri−D and Ri−E links
only. Secondly, since S−Ri link is common, the instantaneous
secrecy capacity is negative only when Γrid ≤ Γrie, and hence
it is same as that of wiretap channel with relay as a source.
This P iint plays an important role for relay nodes to improve
their incentives in this oligopoly market strategic game.

III. DUOPOLY GAME FORMULATION

This section deals with various novel duopoly economic
models for dual hop cooperative relay network in presence of
an eavesdropper. The utility of the relay node will be affected
by the intercept probability and also by the choice of strategic
variable as output or price under static or dynamic conditions.
In all schemes, these relay nodes are closely related in terms
of their location and channel statistics. Therefore, as intercept
probability depends on the channel statistics of the relay nodes
which are nearly same, P 1

int = P 2
int = Pint is considered and

homogeneity is maintained in this market game.

A. Cournot-Cournot (CC) Model

In the CC model, both the competitive relay nodes choose
quantity as their strategic variable simultaneously, under the
assumption of complete information, linear demand function
and fixed cost per unit resource. The quantity Qi produced by
the two relay nodes, is taken as the quantity of their powers
resources Pr1 and Pr2 , such that Q1 = Pr1 and Q2 = Pr2
respectively. Due to homogeneity, the product differentiation
parameter d is considered as one [15]. When d = 0, each relay
is an independent monopolist. Let the price per unit power
resource for the ith relay be Pi

P1 = A(1− Pint)−Q1 − dQ2 (3)
P2 = A(1− Pint)−Q2 − dQ1 (4)

where d = 1 due to homogeneity

Pi = A(1− Pint)−Q (5)

where Q =
2∑
i=1

Qi , is the total quantity or the total market

demand. This is an inverse demand function [9], where the
price set by the relays will decrease with the increase in the
demand of power resource by the source node. Also, it varies
inversely with intercept probability, which in turn motivates
the relay nodes to maintain high secrecy capacity in order to
maximize their incentives. A is the positive constant. Let the
marginal cost C be same for both relays, and Ci = CQi,
where Ci is the total cost of power production. The utility
function of the ith relay πi is given as the difference between



the total revenue and the total cost

π1 = (A(1− Pint)− (Q1 +Q2))Q1 − CQ1 (6)
π2 = (A(1− Pint)− (Q2 +Q1))Q2 − CQ2 (7)

The second-order condition of profit maximization holds,
because the second derivative of the profit function for each
relay is −2 which is negative hence, best response Q∗i of ith

relay using (6) and (7) is

Q∗1 =
A(1− Pint)− C −Q2

2
(8)

Q∗2 =
A(1− Pint)− C −Q1

2
(9)

At Nash equilibrium both the best responses BRi intersect

Q∗1 = BR1(Q∗2) (10)
Q∗2 = BR2(Q∗1) (11)

After substituting both equations, we get the Cournot Nash
equilibrium solution as

(Q∗1, Q
∗
2) =

(
A(1− Pint)− C

3
,
A(1− Pint)− C

3

)
(12)

(π∗1 , π
∗
2) =

(
(A(1− Pint)− C)2

9
,

(A(1− Pint)− C)2

9

)
(13)

As there is no product differentiation and cost functions are
same for both the relays, homogeneity and symmetricity is
intuitively maintained in this model.

B. Bertrand-Bertrand (BB) Model

In the BB model, both the competitive relay nodes choose
price as their strategic variable simultaneously, under the same
demand and cost conditions as CC model. Solving for output,
the demand function is Q = A(1 − Pint) − Pi , where Q is
the total quantity demanded. Here, the relay’s problem is to
maximize with respect to Pi instead of Qi [7]. Once relays
set prices, consumers determine quantity demanded. As the
products are homogeneous, source will always purchase from
the cheapest seller. If prices are the same, P = P1 = P2,
source is indifferent between purchasing from relay 1 and 2.
In this case, the usual assumption is that the source demand
is equally shared [9] among both the relays.
At Bertrand Nash equilibrium, price Pi equals marginal cost C
hence, utility πi of both relays becomes zero and the perfectly
competitive solution is reached. Under these conditions, the
quantity demand faced by ith relay is

Q∗i =
A(1− Pint)− C

2
(14)

Here, duopoly results in perfect competition and is enough
to push prices down to the marginal cost C level, commonly
referred as Bertrand paradox in economics literature [9].

C. Cournot-Bertrand (CB) Model

We analyze a Cournot-Bertrand model where one relay com-
petes in output and the other competes in price. With general

linear inverse demand functions and perfectly homogeneous
products, we show that the unique Nash equilibrium is the
perfectly competitive equilibrium, where price equals marginal
cost C. Hence, the Bertrand-type relay exits the market and
the Cournot-type relay produces the perfectly competitive level
of market output [8]. We can also consider a differentiated
duopoly game where relay 1 competes in output, Q1 and relay
2 competes in price, P2 . Relay’s profit function depends on
both strategic variables, πi(Q1, P2) , with a natural asymmetry
in the model [15]. In a non-cooperative setting, the structure of
the model guarantees a unique Nash equilibrium, where both
the best-response functions intersect. We illustrate these results
with linear demand and cost functions that are similar to those
found in Singh and Vives [14]. Linear demand functions with
different strategic choice variables is given in [15] as

P1 = A(1− Pint)(1− d)− (1− d2)Q1 + dP2 (15)
Q2 = A(1− Pint)− P2 − dQ1 (16)

where A ∈ (0,∞) , d = 1 due to homogeneity and quantity
Qi of the two relay nodes are their power resources Q1 and Q2

respectively. Costs of production is same for both relays, and C
equals marginal cost. Thus, the profit function for ith relay is
πi = (Pi−C)Qi , ∀i = 1, 2. Here, relays face symmetric cost
functions and differ only in their choice of strategic variable.
The Nash equilibrium values in the static Cournot-Bertrand
model, when the best response functions intersect are given
as

P ∗1 =
A(1− Pint)(2− d− 2d2 + d3) + C(2 + d− d2 − d3)

4− 3d2

(17)

P ∗2 =
A(1− Pint)(2− d− d2) + C(2 + d− 2d2)

4− 3d2
(18)

Q∗1 =
(A(1− Pint)− C)(2− d)

4− 3d2
(19)

Q∗2 =
(A(1− Pint)− C)(2− d− d2)

4− 3d2
(20)

π∗1 =
(A(1− Pint)− C)2(2− d)2(1− d2)

(4− 3d2)2
(21)

π∗2 =
(A(1− Pint)− C)2(2− d− d2)2

(4− 3d2)2
(22)

With perfectly homogeneous products and symmetric cost,
stable equilibrium can be obtained. The equilibrium price
equals marginal cost and relay 2 produces zero output, while
relay 1 produces the perfectly competitive level of output.
The presence of a potential Bertrand-type entrant guarantees
a competitive outcome and significantly affects the market.
When products are differentiated, in order to assure a stable
equilibrium , the degree of differentiation must be sufficiently
high [15] and relay 1 gets a strategic advantage over relay 2.

D. Stakelberg Model

In the Stakelberg 2-period model, we investigate the dy-
namic Cournot leader-follower scenario when the choice of
strategic variable is quantity [7] and relays move sequentially



with rest all assumptions same as CC model. This decision is
irreversible and cannot be changed in the second period. The
utility function of the ith relay is

π1 = (A(1− Pint)− (Q1 +Q2))Q1 − CQ1 (23)
π2 = (A(1− Pint)− (Q2 +Q1))Q2 − CQ2 (24)

The best response Q∗2 of follower relay is given as

Q∗2 =
A(1− Pint)− C −Q1

2
(25)

The best response Q∗1 of leader relay, after knowing the best
response of the follower relay Q∗2, is given as

π1 = (A(1− Pint)− (Q∗2 +Q1))Q1 − CQ1 (26)

Q∗1 =
A(1− Pint)− C

2
(27)

After substituting both equations, we get the dynamic Cournot
Nash equilibrium solution as

(Q∗1, Q
∗
2) =

(
A(1− Pint)− C

2
,
A(1− Pint)− C

4

)
(28)

(π∗1 , π
∗
2) =

(
(A(1− Pint)− C)2

8
,

(A(1− Pint)− C)2

16

)
(29)

Under this dynamic sequential symmetric Cournot game,
leader will always have a strategic advantage over others [7].

E. Monopoly Model
In this Monopoly model, there is only single relay (mo-

nopolist), who decides on quantity Q and trades each unit of
power at marginal cost C. The market price, P is determined
by inverse market demand Q.

P1 = A(1− Pint)−Q (30)

The relays profit function, if it produces Q units is

π1 = (A(1− Pint)−Q)Q− CQ (31)

The relay seeks to maximize its profit by choosing Q such
that

Q∗1 =
(A(1− Pint)− C)

2
(32)

The equilibrium price P ∗1 and utility π∗1 is given as

P ∗1 =
(A(1− Pint) + C)

2
(33)

π∗1 =
(A(1− Pint)− C)2

4
(34)

The relay earns high incentives when it has no other compe-
tition in the market.

IV. ASYMPTOTIC ANALYSIS

When source-relay and or relay-destination link SNRs are
increased asymptotically as compared to eavesdropper’s link,
the behavior of intercept probability becomes important for
system design.This can happen if, as compared to the eaves-
dropper, source-relay and or relay-destination are very closely

placed . Asymptotic analysis provides simpler expression to
understand the behavior at a limiting case of high SNR as a
function of constituent parameters, with the variation of those
parameters. In this section, asymptotic analysis is provided
for intercept probability of single DF threshold based relay
system. Two cases are of main importance, 1) balanced case,
where S − Ri and Ri −D link average SNRs are same, for
all i, and together tends to infinity, i.e. 1/βsri = 1/βrid =
1/β → ∞ , 2) unbalanced case , where when either of the
S−Ri or Ri−D for all i, link average SNR tends to infinity,
i.e. 1/βsri is fixed and 1/βrid = 1/β →∞, or 1/βrid is fixed
and 1/βsri = 1/β →∞.

A. Single Relay: Balanced Case

For the balanced case, when 1/βsri = 1/βrid = 1/β →∞,
the intercept probability of dual-hop single relay system in (2)
can be expressed as

P
i(AS)
int =

βrid
αrie

+ γthβsri (35)

= β

[
1

αrie
+ γth

]
(36)

=
1
1
β

[
1

αrie
+ γth

]
(37)

This shows that at a very high main channel SNR (1/β),
intercept probability is inversely proportional to 1/β and it
tends to zero. It is directly proportional to the eavesdropper
channel SNR (1/αrie) and required threshold γth.
Diversity order is an important measure of how fast the
intercept probability is decreasing as SNR tends to infinity.
It also provides an intuitive understanding into the effect of
the number of relays on the intercept probability.The diversity
order [19] is defined as

D = − lim
SNR→∞

logPint(SNR)

log(SNR)
, (38)

where Pint(SNR) is the intercept probability as a function of
SNR = 1/β. Diversity order of (37) can be obtained as one,
using this definition. Diversity order is same as the power of
the SNR at the denominator of (37). It is also given by the
slope of the curve in log graph. As there is no relay selection,
it is intuitive that this single relay system achieves diversity
order of one.

B. Single Relay: Unbalanced Case

For the unbalanced case, the behavior of intercept prob-
ability is studied keeping the average SNR of the source-
relay link fixed and asymptotically increasing the average SNR
of the relay-destination link, i.e. when 1/βsri is fixed and
1/βrid = 1/β →∞.

P
i(AS)
int = [1− exp (−γthβsri)] +

1
1
β

[
exp (−γthβsri)

αrie

]
(39)

Also, the behavior of intercept probability is studied keeping
the average SNR of the relay-destination link fixed and asymp-



totically increasing the average SNR of the source-relay link,
i.e. when 1/βrid is fixed and 1/βsri = 1/β →∞.

P
i(AS)
int =

[
βrid

βrid + αrie

]
+

1
1
β

[
γthαrie

βrid + αrie

]
(40)

The asymptotic intercept probability is expressed as a sum-
mation of a constant quantity and an asymptotically varying
term with 1/β . At low SNR asymptotically varying term
dominates but at high SNR it vanishes. It can be understood
that unbalance is caused due to fixing average SNR of any
hop in dual-hop system. Even if average SNR of the other
hop is infinitely increased, the intercept probability is limited
to a constant.

V. NUMERICAL ANALYSIS

This section describe the analytical results with MATLAB
simulations of a threshold based dual hop DF cooperative relay
network, which exactly match the simulated ones. Fig. 1 shows
the intercept probability Pint of single ith relay , as expressed
in (2) for the balanced case with total SNR 1/β with main link
SNR 1/βsri = 1/βrid = 1/2β, as total power is divided equally
among the source and relay, also considering equal noise
power at each terminal. The figure is plotted with different
relay to eavesdropper average SNR 1/αrie = 1/α = 3, 6, 9, 12
dB and γth = 3, 6 dB. Corresponding asymptotic analysis
as expressed in (37) is also shown by solid straight lines
passing through the curves. It is observed from the figure
that improvement in eavesdropper channel quality increases
the intercept probability. Also, intercept probability increases
with increase in γth.
In Fig. 2, the intercept probability Pint of single ith relay , as
expressed in (2) is plotted for the unbalanced case with average
SNR of 1/βsri = 1/β at a given 1/βrid = 1/βrd = 25, 30, 35
dB with 1/αrie = 1/α = 6 dB and γth = 3 dB, and it
is also plotted for the unbalanced case with average SNR of
1/βrid = 1/β at a given 1/βsri = 1/βsr = 25, 30, 35 dB
with 1/αrie = 1/α = 6 dB and γth = 3 dB . It is observed
that Pint tends to a fixed constant for a given 1/βrd or 1/βsr,
even if 1/β increases . We can interpret from this flooring of
curves that the intercept probability is constrained by either of
the S −Ri or Ri−D link quality. It is interesting to observe
that the asymptotically varying term shown as straight solid
line, crosses dashed lines at the point after which average SNR
of the hop exceeds the average SNR of the other hop.
In Fig. 3, utility π1 of single relay 1 is plotted for the
Cournot duopoly model as expressed in (13) for balanced case
with main link SNR 1/βsr1 = 1/βr1d = 1/2β. The figure
is plotted with different relay to eavesdropper average SNR
1/αr1e = 1/α = 3, 6, 9, 12 dB and γth = 3, 6 dB with
product differentiation parameter d = 1 as homogeneity is
considered , while other constants are taken as A = 19 ,
assuming cost of production, C = 1 . It is observed from
the figure that improvement in eavesdropper channel quality
degrades the utility π1 of relay . Also, increase in γth lowers
the utility of relay, especially at low SNR values. It is also
interesting to observe that the utility of relay node increases

Fig. 1. Intercept probability of single balanced dual hop DF relay system
for 1/α = 3, 6, 9, 12 dB and γth = 3, 6 dB.

with increase in SNR of the main link, especially for lower
values of SNR. This observation holds true for other duopoly
economic models also.
In Fig. 4, comparison of utility π1 of single relay 1 for
various duopoly economic strategic power trading models is
presented for balanced case with main link SNR 1/βsr1 =
1/βr1d = 1/2β . The figure is plotted with different relay
to eavesdropper average SNR 1/αr1e = 1/α = 3, 6 dB and
γth = 3 dB with product differentiation parameter d = 1 as
homogeneity is considered, while other constants are taken as
A = 19 and assuming cost of production, C = 1 . The relay
will earn maximum incentives under no competition, which
is 2.25 times of the CC model. Under static conditions, with
homogeneous goods, relay’s dominant strategy is to compete
in output rather than price. The profits and price will be more
for the relay under CC scheme, where it chooses output as its
strategic variable, as compared to BB scheme, where relays
compete in price. CB and BB model guarantees a perfectly
competitive equilibrium, where price equals marginal cost C.
Also, comparing Cournot and Stakelberg model, relay will be
better off if the strategy of its opponent is known to him, such
that it takes the first mover advantage. Utility of relay under
Stakelberg model is 12.5% greater than Cournot model.

VI. CONCLUSION

In this paper, intercept probability of a dual hop threshold
based cooperative DF relay network for both balanced and
unbalanced case with asymptotic analysis is discussed. We
observe that improvement in eavesdropper channel quality has
a significant impact on the utility of relay especially at low
SNR. The relay’s profit also increases with increase in SNR
of the main link. This motivates relay nodes to maintain low
intercept probability to earn high incentives in this market
game. We also observe that under comparative analysis of
various novel economic duopoly power trading models, the
relay has a strategic advantage if it chooses to compete in



Fig. 2. Intercept probability of single unbalanced dual hop DF relay system
for 1/α = 6 dB , γth = 3 dB with 1/βrd = 25, 30, 35 db and 1/βsr =
25, 30, 35 db .

Fig. 3. Utility π1 of single balanced dual hop DF relay system for 1/α =
3, 6, 9, 12 dB and γth = 3, 6 dB.

output rather than price in a static and homogeneous scenario.
Under dynamic settings, competing in output after observing
the opponent’s strategy is 12.5% more profitable for the relay.
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