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Abstract: Assuming exponential lifetime and repair time distributions, we study the limiting avail-
ability A∞ as well as the per unit time-limiting profit ω of a one-unit system having two identical, cold
standby spare units using semi-Markov processes. The failed unit is repaired either by an in-house
repairer within an exponential patience time T or by an external expert who works faster but charges
more. When there are two repair facilities, we allow the regular repairer to begin repair or to continue
repair beyond T if the expert is busy. Two models arise accordingly as the expert repairs one or all
failed units during each visit. We show that (1) adding a second spare to a one-unit system already
backed by a spare raises A∞ as well as ω; (2) thereafter, adding a second repair facility improves
both criteria further. Finally, we determine whether the expert must repair one or all failed units to
maximize these criteria and fulfill the maintenance management objectives better than previously
studied models.

Keywords: cold standby; patience time; sojourn time; busy time; semi-Markov process

1. Introduction

First, to motivate this research, let us mention an application. In the chemical industry,
where pumps are essential components to transfer highly corrosive chemicals, some insur-
mountable costly risks are abrupt halt in the manufacturing process, catastrophic failure,
and hazardous environmental interference. Consequently, it is highly critical to minimize
these potential risks by building a redundant system by including several repairable pumps
that will raise availability while simultaneously retaining profitability.

To calculate the availability and profitability of the aforementioned system, we con-
sider a single-unit repairable system backed up by one or two similar units that are contin-
ually monitored and repaired by two different types of repairers, who can work simultane-
ously when there are two repair facilities. Although an in-house repairer lacks complete
repair skills, his pay per hour is lower, while his presence at all times removes the excessive
cost that the expert must be paid. In general, the regular repairer does small repairs during
a permissible patience time, and either he cannot perform sophisticated repairs, or he
cannot complete it within the allotted patience time. In contrast, the visiting expert repairer
can fix any problem, and she finishes it faster. Nonetheless, her hourly rate is relatively
higher; moreover, she must be paid an overhead for each visit.

The system described above operates as follows: At time t = 0, a unit is placed to
function while the spare units wait on cold standby. (Thus, our system is different than
a one-out-of-three system.) When the functioning unit fails, a spare unit starts to operate
instantly, while the dead unit is sent to the in-house repairer. If he is not able to finish the
repair within the given random patience time (RPT) T, or when the system goes down
because all three units have failed, the visiting expert repairer is called in. The system fails
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in two cases: (1) the regular repairer is busy fixing a previously failed unit, and even though
the patience time has not exhausted, the remaining units have died; (2) both repairers are
busy fixing two failed units and the only operating unit fails.

When there are two repair facilities, the regular repairer works on the failed unit either
until his patience time is over or until the expert is freed up to take over, whichever comes
later. For simplicity, we assume that when the expert takes over the repair, any benefit
accruing from an incomplete repair performed by the regular repairer is totally lost. Lastly,
after either repairer completes the repair, the repaired unit is rendered as good as new.

How many repairs will the expert do once she is on site? We consider two scenarios:
(1) When the expert departs, either she has fixed all failed units so that one is operating
and two are on standby, or one is operating, one is on cold standby, and the third is under
repair by the regular repairer. This policy we call the multiple repair by expert (MRE).
(2) The expert repairs just one failed unit during every visit and leaves the other failed
unit(s), if any, to the care of the regular repairer. We call this alternative policy the single
repair by expert (SRE).

Based on how many repairs the expert performs—single or multiple—two possible
models emerge: (1) MRE-RPT and (2) SRE-RPT. We compare these two models’ perfor-
mance based on the limiting availability A∞ as well as the limiting profit per unit time ω.
Assuming continuous lifetime and repair time and continual monitoring, one can prove
the existence of A∞ and can calculate it as the fraction of time the system functions in the
long-run (see [1]). Similarly, by expressing all terms per unit time, ω is calculated as net
revenue (revenue minus cost of operation) minus repair costs payable to each repairer in
the long-run, minus the expert’s per visit charge spread over the entire time horizon.

Bieth et al. [2] investigate Models (1) and (2), and also those under a deterministic
patience time policy (DPT)—(3) MRE-DPT and (4) SRE-DPT—when there is only one spare
unit and one repair facility. They assume that the life and repair times are exponentially
distributed and find A∞ and ω by invoking the method called semi-Markov processes
(SMP). Andalib and Sarkar [3] extend their findings to include a second spare unit. Such an
extension is necessary to demonstrate that if A∞ corresponding to only one spare unit falls
below an acceptable level even after the engineering team has made all possible efforts to
manufacture a state-of-the-art critical unit, the maintenance team can increase A∞ to reach
the acceptable level by employing one additional spare unit. In this paper, we extend their
results to a system with two repair facilities under RPT policy. However. the DPT policy
encounters an extra challenge—the Markovian property is violated, as the movements
from some states likely depend on both the present state and the process’s track record.
Under RPT policy, the system with two spare units and two repair facilities is shown to
have larger A∞ and ω relative to a system having one spare or two spare units but only
one repair facility.

This is how the rest of this paper is arranged: A literature review is given in Section 2.
Section 3 formulates the repairable system’s stochastic behavior as an SMP, which is
followed by the algebraic methodologies for deducing A∞ and ω. Detailed algebraic
derivations under our two repair models are given in Section 4. Section 5 contrasts the two
models with those having either one spare unit or two spare units but a single repair facility.
Lastly, in Section 6, we summarize the results and propose several new research problems.

2. Literature Review

This section discusses recent advances in modeling repairable systems accounting for
a variety of reliability properties.

Sarkar and Li [4] study a single-unit system backed by r similar repair sites and s
spare units on cold standby with r ≤ s + 1. The system dies whenever all units have failed
and are either being repaired or waiting for repair. The authors assume a perfect repair
policy and derive A∞ under arbitrary lifetime distribution but restrict the repair time to be
exponentially distributed. Sarkar and Biswas [5] consider the same model and calculate the
instantaneous availability function (of time) with exponential lifetime and repair time.
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Wang et al. [6] examine the reliability as well as sensitivity analysis for a system having
multiple functioning units and spare units on warm standby as well as multiple repair
facilities that are unreliable. They assume that lifetimes as well as service duration are
exponential, and the repair facility itself can fail following a Poisson process. They not only
calculate the system mean time to failure (MTTF) as well as reliability but also discuss the
effect of each model parameter on these characteristics.

Zhang and Wang [7] examine a cold standby system comprised of two distinct
components—Component 1 receives preference in operation—serviced by a single re-
pair person. Component 2 is perfectly repaired, whereas Component 1 exhibits a geometric
process. They obtain several critical reliability indices under exponential lifetime and repair
time, including system availability, reliability, mean time to first failure (MTTFF), failure
rate, and the probability that the repairer is idle. By minimizing the average cost per unit
time in the long run, they determine an optimal replacement strategy for Component 1.

Yu et al. [8] develop a system that reaches a desired availability while it minimizes
the cost per unit time. They allow the spare units to remain on cold standby. El-Said
and El-Sherbeny [9] also allow the spare units to stay on cold standby. They conduct a
cost–benefit analysis of a system consisting of two units and a two-stage repair that allows
an intermediate random pause. They apply regenerative point processes to derive the
availability function, limiting availability, mean time to failure, and profit.

Cui et al. [10] present two interval availability indices for systems that quantify the
chance of operation within a specific time frame encompassing either an epoch or a time
interval. Likewise, using Z transform, reliability, point availability, and interval availability
are obtained by Yi et al. [11], who investigate a semi-Markov system whose states are
subdivided into three parts: operating, modifiable, and dead.

Cha and Finkelstein [12] study systems where defects are noted prior to failure and
either perfectly so that the process starts anew or repair is not complete within a specified
patience time period, resulting in a destructive failure. They obtain survival functions
assuming exponentially distributed detection time, fixed patience time, and arbitrarily
distributed repair time; however, the authors demonstrate computations when repair time
is exponential.

Tohidi et al. [13] apply the cost analysis method to determine the optimum number of
cold standby units necessary to support a single-unit system. They propose a model for
system reliability analysis using continuous-time Markov chains assuming that failure and
repair times are both exponentially distributed.

Kadyan et al. [14] study a one-unit redundant system having a single operating (called
main) unit supported by two identical units (called duplicate) on cold standby which are
nonidentical to the main unit. Upon failure of the main unit, both duplicate units are
put on operation, while a single repairer perfectly repairs the failed main unit. Using the
Laplace transform technique, they claim to derive some reliability measures, including
availability and profit, for arbitrary failure- and repair time distributions; however, they do
not derive analytic expressions for the reliability measures but only calculate the results
under exponential distributions. Kadyan et al. [15] extend the work by giving priority of
operation to the main unit and showing that when the repair rate of the main unit increases,
so does the system reliability.

Repairable systems with two different types of repairers have received little attention
from researchers. Kumar et al. [16] investigate Model (2), where there is a single spare
unit. The authors enable an expert repairer to begin repair provided the regular repairer’s
patience time is over, notwithstanding that the system may die in the interim. Sridharan
and Mohanavadivu [17] invoke the expert repairer immediately when either the patience
time is exhausted or the system failure occurs. While the authors announce permitting
arbitrarily distributed life, repair, and patience times, it turns out that their deductions hold
only when these times are exponentially distributed, as already mentioned in [2]. Later,
Sridharan [18] provides the regular repairer a random pre-inspection time to check if he is
capable of repairing a failed unit during that time. If capable, he begins to repair; if not,
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the expert repairer immediately comes and takes over. Bieth et al. [2] describe Models
(1)–(4) under one spare unit. They derive A∞ and ω using an SMP where the lifetime and
repair time are exponential. They generalize the method by allowing lifetimes as well as
repair times to be any distribution.

Mahmoud and Moshref [19] allow failures of two kinds and hence repairs of two
kinds. Assuming only one repairer, they apply the Laplace transform method to obtain
MTTF, limiting availability and limiting profit.

Parashar and Taneja [20] investigate a single-unit system supported by a spare unit ex-
hibiting a master–slave-type interdependence. At the beginning, the master is placed on op-
eration while the slave remains on hot standby. Three kinds of defects are possible: simple,
serious-repairable, and serious-irreparable (when the unit must be replaced). The in-house
repairer can repair only simple defects. The authors announce that repair- and replacement
times can have any distribution, only lifetime is exponentially distributed, under which
assumptions they deduce the MTTF, A∞ and ω. However, they do not give any analytic
results; their findings hold only when all three time variables are exponentially distributed.

Gupta [21] considers a one-unit repairable system with two types of repairers, where
the regular repairer ends up in three possible situations—he cannot finish the job despite
correctly following the repair process, or he follows the procedure incorrectly without
damaging the unit, or he damages the unit. The expert resumes the repair job under the
first scenario. Using the Laplace transform technique, the author claims to derive system
availability and profit under arbitrarily repair time distributions for the two repairers;
however, no analytical expressions are given. The author obtains the results only under
the exponential distributions, for which, in view of the memoryless property, partial repair
done by the regular repairman is forfeited.

The papers addressed above use the Laplace transform technique to derive several
system reliability characteristics including availability, duration when each repairer is
busy, and profit earned. These works do not obtain explicit expressions by inverting the
Laplace transform in the general case; they do so only under exponential distributions.
Hence, we prefer to employ the method of semi-Markov processes, as it is relatively more
straightforward and simpler.

Andalib and Sarkar [3] extended the results of [2] to the system with two spare units
and one repair facility using the SMP technique. For a given set of parameters, they obtain
an interval for T so that Model (3) exhibits the greatest performance with respect to both
criteria—A∞ and ω. Moreover, they determine a cut-off value for the amount the expert
must be paid per hour so that the MRE policy will produce more profit than the SRE policy
whenever the expert’s charge is below the cut-off and conversely.

3. System Description and Mathematical Framework

For the two models (1) and (2) described in Section 1, we compute A∞ as well as ω
assuming the following:

1. Three identical units comprise a single-unit system. At the beginning, only one unit is
operational, while the remaining two units stay on cold standby.

2. Two repair facilities are respectively serviced by a regular and an expert repairer.
3. The operational unit’s failure is noted instantaneously; the dead unit is dispatched to

a repairer, while a spare is promptly activated.
4. The regular repairer must finish repair within a random patience time (RPT) T.
5. The system goes down when all three units fail.
6. When either the regular repairer’s patience time runs out or when the system dies,

whichever occurs earlier, the expert is alerted to come at once.
7. The regular repairer works on the failed unit until his patience time is over or until

the expert is freed up to take over, whichever comes later.
8. Lifetime, repair time, and patience time are independently and exponentially dis-

tributed with arbitrary parameters. This assumption being restrictive ought to be
eliminated in a future work.
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9. When the expert comes in, the progress made by the regular repairer is lost. Specifically,
it is a consequence of the previous assumption due to the memoryless property of the
exponential distribution.

10. We consider two options for the expert repairer, resulting in a multiple repair by expert
(MRE) model and single repair by expert (SRE) model.

11. Repair by either repairer is perfect, rendering a unit brand new after repair is complete.

Whenever one looks at it, a unit shows one of five attributes: p (operating), s (on
standby), r (being repaired by in-house repairer), r̄ (being repaired by in-house repairer
past patience time T because the expert is busy repairing another failed unit), e (being
repaired by expert), or w (waiting for repair). The units are interchangeable enough to
document the number of units showing such attributes. Consequently, there are nine states
as follows: 1 = (p, s, s), 2 = (r, p, s), 3 = (e, p, s), 4 = (r, w, p), 5 = (e, r, p), 6 = (e, r̄, p),
7 = (e, r, w), 8 = (e, r, w), and 9 = (e, r̄, w). The system is down in States 7, 8, and 9 (shown
with elliptical boundary), and it is up in all other states (shown with rectangular boundary).
States 7 and 8 represent the same features of the three units; nonetheless, we still separate
them because the system enters (e, r, w) following two different paths.

Figure 1 exhibits the movements for the SRE and MRE models, together with random
variables governing the time spent in each state and transition probabilities between states.

Figure 1. Transition diagrams for SRE (left) and MRE (right) models. The symbol ∧ denotes
minimum; a red arrow denotes a failed system is revived.

First, let us describe the random variables. Suppose that X, Y and Z are the unit’s life-
time, the regular repairer’s repair time, and the expert’s repair time, respectively. The other
random variables noted in Figure 1 are defined as follows: let X′ denote a lifetime inde-
pendent and identically distributed as X. Under the RPT policy, based on the memoryless
property of the exponential distribution, the leftover patience times T′ and T′′ are identically
distributed as T, and all three patience time random variables are jointly independent.

Next, let us describe the sojourn times in each state.

1. Beginning at State 1, the system stays in State 1 for a period X, before going to State 2.
2. In State 2, the system remains for min(X, Y, T); if Y is the smallest, then the system

goes back to State 1, if T is the minimum, then it moves to State 3, and if X is the
smallest, then it moves to State 4.

3. In State 3, the system stays for min(X, Z); if Z < X, then the system goes to State 1;
otherwise, it moves to State 5.

4. In State 4, the time spent equals min(X′, Y, T′); if Y is the smallest, then the system
goes to State 2, if T′ is the minimum, then it goes to State 5, and if X′ happens to be
the minimum, then it moves to State 7.

5. The time spent in State 5 equals min(X, Y, Z, T); if Z is the smallest, then the system
goes to State 2, if Y turns out to be the minimum, then it moves to State 3, if T happens
to be the minimum, then it goes to State 6, and if X is the smallest, then it goes
to State 8.



Mathematics 2022, 10, 852 6 of 13

6. The time spent in State 6 equals min(X, Y, Z); if either Y or Z is the smallest, then the
system goes to State 3, but if X is the minimum, the system goes to State 9.

7. The time spent in State 7 equals min(Z, Y, T′′); if T′′ is the minimum, then the system
moves to State 9, if either Y or Z is the minimum, then it goes to State 5 (under the
MRE policy), but under the SRE policy, if Z is the smallest, then the system goes to
State 4, and if Y is the smallest, then it goes to State 5.

8. The time spent in State 8 equals min(Z, Y, T′); if T′ is the smallest, the system goes to
State 9. Under both SRE and MRE policies, transitions from State 8 to States 4 and 5
are identical to those from State 7.

9. The sojourn time in State 9 is min(Z, Y); and as soon as either the expert or the regular
repairer repairs one of the failed units in State 9, the system moves to State 5 under
both SRE and MRE policies.

Finally, the transition probabilities out of each state are calculated based on which of
the corresponding random variables achieves the smallest value.

Let θk denote the fraction of time the system stays in State k (k = 1, . . . , 9). In Section 4,
we derive expressions for θk. Since the system is down in States 7, 8 and 9, the limiting
availability of the system is,

A∞ = 1− θ7 − θ8 − θ9. (1)

After obtaining A∞, one calculates ω, for which one defines these parameters: Let
Θr = θ2 + θ4 + θ5 + θ6 + θ7 + θ8 + θ9 denote the fraction of time the regular repairer works,
and let Θe = θ3 + θ5 + θ6 + θ7 + θ8 + θ9 denote the same for the expert. Let parameters
Rp, Cp, Cr, Ce represent the net revenue, the cost of operation, and the money paid to
the regular repairer and the expert, respectively — each quantity defined per unit time.
In addition, let Cl denote the amount of money payable to the expert per visit. Then,
we have

ω = A∞(Rp − Cp)− [ΘrCr + ΘeCe + Cl/τ], (2)

where the parameter τ denotes the mean cycle time (that is, the length starting from the
moment the system moves to State 2 and ending when it comes back to State 2 after visiting
at least once any state in {3, 5, 6, 7, 8, 9}. As a result, the expert comes and returns precisely
once throughout each cycle, and she gets compensated for the trip charge Cl exactly once.
In view of Wald’s First Identity (see [1]), the inverse of τ represents the average number of
trips the expert makes per unit time. Hence, Cl/τ represents how much money should be
set aside per unit time to cover the expert repairer’s trip charges.

4. Computing Limiting Availability and Limiting Profit

Here, we obtain analytic solutions to A∞ and ω for models: (1) MRE-RPT and (2) SRE-RPT.
Under Assumption 9, we denote the lifetime, the patience time, and the repair times by the
two repairers, respectively, by

X ∼ exp(λ), T ∼ exp(α), Y ∼ exp(β), Z ∼ exp(γ).

The parameters of the exponential distributions denote the rates, whence the means
are their reciprocals. By the lack of memory property of the exponential distribution,
the behavior of the process is determined solely by the current state, whereby the old
trajectory is ignored. Therefore, the stochastic process is a semi-Markov process (SMP): the
system moves from state to state according to a Markov chain, and it remains in a state for
a random duration. See [22] to learn about an SMP. Indeed, the underlying discrete time
stochastic process (DTSP) behaves as a Markov chain on the state space {1, 2, 3, 4, 5, 6, 7, 8, 9}
and an associated matrix of transition probabilities P = ((Pij)); i, j = 1, . . . , 9. The Pij’s vary
between the two models, and they are given separately in the following two subsections.

The limiting probability πj of the transitions entering into (and also departing from)
State j are given by the stationary distribution of a Markov chain. This stationary distribu-
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tion is uniquely determined, and it can be derived from an appropriate system of equations
(refer to [22], pp. 215–216).

πj = ∑
i

πiPij, ∑
j

πj = 1. (3)

Furthermore, the expected sojourn times in various states are as follows:

µ1 = E[X] =
1
λ

µ2 = E[min(X, Y, T)] =
1

α + λ + β

µ3 = E[min(X, Z)] =
1

λ + γ

µ4 = E[min(X′, Y, T′)] =
1

α + λ + β

µ5 = E[min(X, Y, Z, T)] =
1

α + λ + β + γ

µ6 = E[min(X, Y, Z)] =
1

λ + β + γ

µ7 = E[min(Y, Z, T′′)] =
1

α + β + γ

µ8 = E[min(Y, Z, T′)] =
1

α + β + γ

µ9 = E[min(Y, Z)] =
1

β + γ
.

(4)

The fraction of time the SMP remains in each state is obtained from a well-known
result (refer to [22], pp. 215–216).

Theorem 1. For an SMP, let the underlying DTSP be irreducible and have stationary probabilities
π. Suppose that the return times to any State k has a non-lattice distribution having a finite mean.
Let µk be the expected time spent in State k. Then, the limiting probability of finding the process in
State k exists; it is free of the initial state, and it equals

θk =
πkµk

∑9
j=1 πjµj

. (5)

In the next subsections, we obtain θk (k = 1, . . . 9) using (3)–(5) for each of the two
models, based on the transition matrix P. Next, from (1), we derive A∞. Then, for each
model, to find analytic expression of τ, we solve an appropriate system of recursive
equations. Thereafter, from (2), we derive ω.

4.1. The MRE-RPT Model

The underlying DTMC, for the MRE-RPT model, involves the transition matrix

P =



0 1 0 0 0 0 0 0 0
β

α+λ+β 0 α
α+λ+β

λ
α+λ+β 0 0 0 0 0

γ
λ+γ 0 0 0 λ

λ+γ 0 0 0 0

0 β
α+λ+β 0 0 α

α+λ+β 0 λ
α+λ+β 0 0

0 γ
α+λ+β+γ

β
α+λ+β+γ 0 0 α

α+λ+β+γ 0 λ
α+λ+β+γ 0

0 0 β+γ
λ+β+γ 0 0 0 0 0 λ

λ+β+γ

0 0 0 0 β+γ
α+β+γ 0 0 0 α

α+β+γ

0 0 0 0 β+γ
α+β+γ 0 0 0 α

α+β+γ

0 0 0 0 1 0 0 0 0



. (6)
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One solves the system (3) to get the stationary distribution as

π ∝
( βξ1

α + λ + β
+

γξ2

λ + γ
, ξ3, ξ2,

λξ3

α + λ + β
, 1,

α

α + λ + β + γ
,

(
λ

α + λ + β
)2ξ3,

λ

α + λ + β + γ
, ξ4

)
(7)

where,

ξ1 = 1− β

α + λ + β
− λβ

(α + λ + β)2

ξ2 =
αγ(λ + β + γ) + βξ1(λ + β + α)(λ + β + γ) + αξ1(β + γ)(λ + β + α)

(λ + β + γ)
(
ξ1(λ + β + α)(λ + β + γ + α)− αγ

)
ξ3 =

α + λ + β

α

(
ξ2 −

β

α + λ + β + γ
− α(β + γ)

(λ + β + γ)(α + λ + β + γ)

)
ξ4 =

αλ

(λ + β + γ)(α + λ + β + γ)
+

ξ3αλ2

(λ + β + γ)(α + β + γ)2 +
αλ

(α + β + γ)(α + λ + β + γ)
.

By putting (4) and (7) into (5), one derives the expressions for θk’s. Thereafter, from (1),
one gets

A∞ = 1− θ7 − θ8 − θ9

where,

θ7 ∝ µ7π7 =
ξ3λ2

(α + λ + β)2(α + β + γ)

θ8 ∝ µ8π8 =
λ

(α + β + γ)(α + λ + β + γ)

θ9 ∝ µ9π9 =
ξ4

β + γ
.

(8)

Next, to compute the expected length of a cycle, τ, we proceed step-by-step to solve
various systems of linear equations. To begin, τ satisfies the recursive relation

τ = µ2 + P21(µ1 + τ) + P23σM
32 + P24σM

42 (9)

where the parameter σM
32 denotes the expected time needed to move from State 3 to State

2 (through State 1 or State 5), when the MRE policy is in effect. All remaining parame-
ters σM

42 , σM
52 , . . . , σM

92 have similar meanings, and because σS
92 = µ9 + σS

52, they satisfy the
recursive relations

σM
32 = µ3 + P31µ1 + P35σM

52

σM
52 = µ5 + P53σM

32 + P56σM
62 + P58σM

82

σM
62 = µ6 + P63σM

32 + P69(µ9 + σM
52 )

σM
82 = µ8 + P85σM

52 + P89(µ9 + σM
52 ).

(10)

If one solves the system of Equations (10), one gets

σM
52 =

µ5 + P53(µ3 + P31µ1) + P56(µ6 + P63(µ3 + P31µ1) + P69µ9) + P58(µ8 + P89µ9)

1− P53P35 − P56P63P35 − P56P69 − P58P85 − P58P89
. (11)

Substituting (10) in the first Equation in (11), one obtains σM
32 . Furthermore, we have

σM
72 = µ7 + P75σM

52 + P79σM
92 = µ7 + P75σM

52 + P79(µ9 + σM
52 ) (12)

and
σM

42 = µ4 + P45σM
52 + P47σM

72 + P42τ. (13)
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Substituting the expressions for σM
32 and σM

42 into (9) and solving, we obtain

τ =
µ2 + P21µ1 + P23σM

32 + P24(µ4 + P45σM
52 + P47σM

72 )

1− P21 − P24P42
. (14)

Using Expression (14) for τ, we obtain ω from (2) as

ω = A∞(Rp − Cp)− [ΘrCr + ΘeCe + Cl/τ].

4.2. The SRE-RPT Model

The underlying DTMC, for the SRE-RPT model, involves the transition matrix

P =



0 1 0 0 0 0 0 0 0
β

α+λ+β 0 α
α+λ+β

λ
α+λ+β 0 0 0 0 0

γ
λ+γ 0 0 0 λ

λ+γ 0 0 0 0

0 β
α+λ+β 0 0 α

α+λ+β 0 λ
α+λ+β 0 0

0 γ
α+λ+β+γ

β
α+λ+β+γ 0 0 α

α+λ+β+γ 0 λ
α+λ+β+γ 0

0 0 β+γ
λ+β+γ 0 0 0 0 0 λ

λ+β+γ

0 0 0 γ
α+β+γ

β
α+β+γ 0 0 0 α

α+β+γ

0 0 0 γ
α+β+γ

β
α+β+γ 0 0 0 α

α+β+γ

0 0 0 0 1 0 0 0 0



. (15)

As demonstrated in the previous subsection for the MRE-RPT model, so also here
for the SRE-RPT model, using linear algebra, we solve the system of Equations (3) and
obtain the stationary distribution π. In fact, the system of Equations (3) can be written
in matrix notation as π> = π>P, 1>π = 1; or equivalently, as Qπ =

(
0
1

)
, where the

full-rank matrix Q is obtained by replacing the last row of
(
I− P>

)
by a row vector of all

entries unity. Then, using Gauss–Jordan elimination on the augmented matrix (Q|
(

0
1

)
), we

transform Q into an upper triangular matrix and thereby obtain the stationary distribution
π. However, the derivation of the analytic solution is long and tedious; hence, it is omitted.
Instead, a numerical solution to the stationary distribution is obtained for given values
of the parameters, as done in Section 5. Having obtained the values of πj’s and the mean
sojourn times (4), and substituting them into (5), we obtain the values of θk’s. Thereafter,
from (1), we get

A∞ = 1− θ7 − θ8 − θ9.

To obtain ω, we need to calculate the expected length of cycle τ. Let σS
32 be the expected

time it takes to move from State 3 to State 2 (through State 1 or State 5) when the SRE policy
is in effect. All remaining parameters σS

42, σS
52, . . . , σS

92 have similar meanings, and because
σS

92 = µ9 + σS
52, they satisfy the recursive relations

τ = µ2 + P21(µ1 + τ) + P23σS
32 + P24σS

42

σS
32 = µ3 + P31µ1 + P35σS

52

σS
42 = µ4 + P45σS

52 + P47σS
72 + P42τ

σS
52 = µ5 + P53σS

32 + P56σS
62 + P58σS

82

σS
62 = µ6 + P63σS

32 + P69(µ9 + σS
52)

σS
72 = µ7 + P74σS

42 + P75σS
52 + P79(µ9 + σS

52)

σS
82 = µ8 + P84σS

42 + P85σS
52 + P89(µ9 + σS

52).

(16)

The third Equation in (16) can be rewritten, using the sixth equation, to express σS
42

as a function of σS
52 and τ. Next, in the fourth Equation in (16), we substitute the second,

the fifth, and the seventh equations to solve for σS
52. Then, from the second Equation in (16),
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one obtains σS
32; from the third, one obtains σS

42, etc. After obtaining all σS’s, the leading
Equation in (16) gives

τ =
µ2 + P21µ1 + P23(µ3 + P31µ1) + P24

[ µ4+P47(µ7+P79µ9)
1−P47P74

]
+ ξ6ξ7

ξ5

1− P21 − P24P42
1−P47P74

− ξ7P58P84P42
ξ5(1−P47P74)

(17)

where,

ξ5 = 1− P53P35 − P56P63P35 − P56P69 − P58(P85 + P89)− P58P84
P45 + P47(P75 + P79)

1− P47P74

ξ6 = µ5 + P53(µ3 + P31µ1) + P56(µ6 + P63[µ3 + P31µ1] + P69µ9) + P58(µ8 + P89µ9)

+ P58P84
µ4 + P47(µ7 + P79µ9)

1− P47P74

ξ7 = P23P35 +
P24
(

P45 + P47(P75 + P79)
)

1− P47P74
.

Using Expression (17) for τ, we obtain ω from (2).

5. Comparison of Models

Under the RPT policy for a given set of parameter values, we compute A∞ as well
as ω for the two repair models discussed in the previous section. When there is only one
repair facility, we show that a system having two spare units attains greater A∞ as well as
greater ω compared to a system having one spare. Thereafter, if a second repair facility is
added, both optimality criteria increase further.

In Table 1, we compute A∞, ω, Θr, and Θe for the two models MRE-RPT and SRE-RPT,
for systems with a single spare unit (S = 1) or systems with two spare units (S = 2), when
either one repair facility (RF = 1) or two repair facilities (RF = 2) are available. The expert
finishes repair quicker than the regular in-house repairer; however, the expert must be
paid more per unit of time (β < γ and Cr < Ce). The parameters are chosen to be α = 0.3,
β = 0.35, γ = 0.75, and λ = 0.5; and Rp − Cp = 20, Cr = 1, Ce = 5 and Cl = 3.

Table 1. Calculated results under RPT policy.

Criteria
SRE MRE

S = 1 S = 2 S = 2 S = 1 S = 2 S = 2
RF = 1 RF = 1 RF = 2 RF = 1 RF = 1 RF = 2

A∞ 0.736 0.801 0.884 0.788 0.844 0.896

ω 11.919 13.640 15.143 12.484 14.068 15.236

Θr 0.320 0.442 0.605 0.174 0.227 0.572

Θe 0.342 0.327 0.307 0.426 0.457 0.331

The following four features in Table 1 are noteworthy:

1. Both A∞ and ω are greater for the MRE model than for the SRE model regardless of
the number of spare units and the number of repair facilities.

2. Adding a second spare when a system currently has one spare improves both A∞ and
ω. As an example, A∞ is below 80% when S = 1, but it is more than 80% when S = 2.
See [3] for further details.

3. Including one more spare unit causes Θr > Θe, implying that we utilize the regular
repairer more than the expert. Likewise, adding a second repair facility makes the
regular repairer busier than the expert, resulting in even less cost and higher limiting
profit per unit time ω.
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4. Adding a second repair facility to the system with two spare units raises both A∞ and
ω further. For example, A∞ is increased to almost 90% under the MRE policy.

The MRE model always outperforms the SRE model with respect to A∞. How about
with respect to ω? Figure 2 depicts ω for the two models as a function of Ce, where
Rp − Cp = 20, Cr = 1, Cl = 3. When Ce does not exceed a certain cut-off, the MRE
model results in a higher limiting profit than the SRE model under RPT policy; and the
converse is true if the expert’s charge rate exceeds the cut-off. In our example, the cut-off
for Ce is 11.231.

Figure 2. Limiting profit per unit time as a function of Ce for system with S = 2 and RF = 2.

6. Concluding Remarks

In this paper, we extend the results obtained in [3] under random patience time by
introducing another repair facility to a single-unit system supported by one repair facility
and comprised of two identical units that remain on cold standby. The two repair facilities
are serviced by two types of repairers. Multiple spare units are required to increase the
system’s reliability characteristics when the component lifetime is short and the repair
time is lengthy. In addition, utilizing multiple repair facilities enables both repairers to
work on the failed units simultaneously, resulting in highly available and more profitable
system. We investigate the limiting availability A∞ and the limiting profit per unit time ω
in this extended setup where lifetime, repair time, and patience time for the regular repairer
are exponential. Two models are considered based on how many failed units the expert
may repair per visit. For the two models, we obtain analytic expressions for A∞ and ω
using SMP. The method is easier to apply than the Laplace transform method commonly
appearing in the literature. We demonstrate that the system with two repair facilities yields
higher A∞ and higher ω than a system backed by only one repair facility.

Adding a second spare unit or a second repair facility, in the hope of increasing A∞ and
ω, should be counterbalanced against the cost of such innovation. Table 2 gives A∞, cost,
and profit per unit time w calculated from Equation (2), under different cost parameters.
For example, for the MRE model, when Cr = 2 and Ce = 5, starting from (S = 1, RF = 1),
as we add another spare unit to reach (S = 2, RF = 1), the cost per unit time increases from
2.770 to 2.892 (4.4%), but because A∞ increases by 7.75%, ω increases from 12.805 to 14.349
(12.058%). Next, when we add another repair facility to reach (S = 2, RF = 2), the cost rises
from 2.892 to 3.042 (5.2%), but because A∞ increases by 5.8%, ω rises from 14.349 to 15.196
(5.903%). Similar results hold for any other pair of cost parameters and also for the SRE
model. We assume the total excess profit per unit time streaming out of the maintained



Mathematics 2022, 10, 852 12 of 13

system over its entire lifetime will suffice to offset the extra cost of adding another spare
unit or a second repair facility.

Since the expert repairer works quicker compared to the in-house repairer, the MRE
model achieves a bigger A∞ compared to the SRE model. On the other hand, the expert
charges higher than the in-house repairer. Therefore, holding the cost parameters the same,
the administrator must find out if the MRE or the SRE achieves higher ω.

Several directions for further research are suggested as follows:

• Keeping our focus on building repairable models, we have assumed exponentially
distributed lifetime and repair time random variables. While it may pose additional
challenges since the stochastic process will no longer be an SMP, extension beyond
exponential distribution is highly desired.

• While we assumed the units are identical, a more realistic model would admit non-
identical units with different lifetime and repair rates. Specifically, when there are
multiple such units, we must determine at each decision epoch which unit should be
prioritized for operation and which should be prioritized for repair.

• While we studied patience time as a random variable, a logistically more desirable
option is to permit a predetermined constant patience time. Again, we cannot use
SMP under a deterministic patience time policy, as the Markovian property is violated
in some states. This is a fertile ground for developing a new mathematical theory.

Table 2. Cost–profit analysis under different cost parameters Cr and Ce, when Rp − Cp = 20, Cl = 3,
α = 0.3, λ = 0.5, β = 0.4, γ = 0.8.

System
C SRE MRE

Cr Ce A∞ Cost ω A∞ Cost ω

S = 1, RF = 1

2 5 0.758 2.770 12.180 0.800 2.770 12.805
2 6 0.758 3.168 11.864 0.800 3.168 12.407
3 6 0.758 3.345 11.545 0.800 3.345 12.230
3 7 0.758 3.743 11.233 0.800 3.743 11.832
3 8 0.758 4.142 10.917 0.800 4.142 11.434
4 8 0.758 4.319 10.602 0.800 4.319 11.257

S = 2, RF = 1

2 5 0.825 2.650 13.848 0.862 2.892 14.349
2 6 0.825 2.946 13.551 0.862 3.313 13.928
3 6 0.825 3.384 13.113 0.862 3.548 13.692
3 7 0.825 3.681 12.817 0.862 3.970 13.271
3 8 0.825 3.977 12.520 0.862 4.390 12.850
4 7 0.825 4.415 12.082 0.862 4.626 12.615

S = 2, RF = 2

2 5 0.901 2.924 15.103 0.912 3.042 15.196
2 6 0.901 3.201 14.827 0.912 3.340 14.898
3 6 0.901 3.775 14.253 0.912 3.884 14.354
3 7 0.901 4.051 13.977 0.912 4.182 14.056
3 8 0.901 4.327 13.700 0.912 4.480 13.758
4 8 0.901 4.901 13.126 0.912 5.024 13.215
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8. Yu, H.; Yalaoui, F.; Châtelet, Ė.; Chu, C. Optimal design of a maintainable cold-standby system. Reliab. Eng. Syst. Saf. 2007,

92, 85–91. [CrossRef]
9. El-Said, K.M.; El-Sherbeny, M.S. Stochastic analysis of a two-unit cold standby system with two-stage repair and waiting time.

Sankhya B 2010, 72, 1–10. [CrossRef]
10. Cui, L.; Chen, J.; Wu, B. New interval availability indexes for Markov repairable systems. Reliab. Eng. Syst. Saf. 2017, 168, 12–17.

[CrossRef]
11. Yi, H.; Cui, L.; Shen, J.; Li, Y. Stochastic properties and reliability measures of discrete-time semi-Markovian systems. Reliab. Eng.

Syst. Saf. 2018, 176, 162–173. [CrossRef]
12. Cha, J.H.; Finkelstein, M. Stochastic modeling for systems with delayed failures. Reliab. Eng. Syst. Saf. 2019, 188, 118–124.

[CrossRef]
13. Tohidi, H.; Chavoshi, S.; Bahmaninezhad, A. A continuous-time Markov chain model for redundancy allocation problem: An

economic analysis. Qual. Reliab. Eng. Int. 2019, 35, 1866–1877. [CrossRef]
14. Kadyan, S.; Malik, S.C. Stochastic Analysis of a Three-Unit Non-Identical Repairable System with Simultaneous Working of Cold

Standby Units. J. Reliab. Stat. Stud. 2020, 7, 385–400. [CrossRef]
15. Kadyan, S.; Barak, M. Stochastic analysis of a non-identical repairable system of three units with priority for operation and

simultaneous working of cold standby units. Int. J. Stat. Reliab. Eng. 2020, 7, 269–274.
16. Kumar, A.; Gupta, S.; Taneja, G. Comparative study of the profit of a two server system including patience time and instruction

time. Microelectron. Reliab. 1996, 36, 1595–1601. [CrossRef]
17. Sridharan, V.; Mohanavadivu, P. Stochastic behaviour of a two-unit standby system with two types of repairmen and patience

time. Math. Comput. Model. 1998, 28, 63–71. [CrossRef]
18. Sridharan, V. Probabilistic measures of redundant system with two types of repairmen, sensing device and analytical approach to

find the optimium interchanging time. Int. J. Qual. Reliab. Manag. 2000, 17, 984–1002. [CrossRef]
19. Mahmoud, M.; Moshref, M. On a two-unit cold standby system considering hardware, human error failures and preventive

maintenance. Math. Comput. Model. 2010, 51, 736–745. [CrossRef]
20. Parashar, B.; Taneja, G. Reliability and profit evaluation of a PLC hot standby system based on a master-slave concept and two

types of repair facilities. IEEE Trans. Reliab. 2007, 56, 534–539. [CrossRef]
21. Gupta, R. Stochastic analysis of a reliability model for one-unit system with three types of repair policy. Int. J. Stat. Appl. Math.

2017, 2, 126–130.
22. Ross, S.M. Stochastic Processes; Wiley: New York, NY, USA, 1996; Volume 2.

http://doi.org/10.1002/asmb.801
http://dx.doi.org/10.2991/jsta.d.210611.001
http://dx.doi.org/10.1016/j.spl.2006.04.046
http://dx.doi.org/10.1016/j.jkss.2009.05.001
http://dx.doi.org/10.1007/s00170-005-0298-0
http://dx.doi.org/10.1016/j.ejor.2006.09.075
http://dx.doi.org/10.1016/j.ress.2005.11.001
http://dx.doi.org/10.1007/s13571-010-0001-9
http://dx.doi.org/10.1016/j.ress.2017.03.016
http://dx.doi.org/10.1016/j.ress.2018.04.014
http://dx.doi.org/10.1016/j.ress.2019.03.017
http://dx.doi.org/10.1002/qre.2480
http://dx.doi.org/10.13052/jrss0974-8024.13249
http://dx.doi.org/10.1016/0026-2714(95)00075-5
http://dx.doi.org/10.1016/S0895-7177(98)00145-9
http://dx.doi.org/10.1108/02656710010353894
http://dx.doi.org/10.1016/j.mcm.2009.10.019
http://dx.doi.org/10.1109/TR.2007.903151

	CC4.0 cover
	mathematics-10-00852
	Introduction
	Literature Review
	System Description and Mathematical Framework
	Computing Limiting Availability and Limiting Profit
	The MRE-RPT Model
	The SRE-RPT Model

	Comparison of Models
	Concluding Remarks
	References


