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ABSTRACT

Title of Dissertation: Adaptive Constrained Independent Vector Analysis:
Application to Large-Scale fMRI Analysis

Suchita Bhinge, Doctor of Philosophy, 2020

Dissertation directed by: Dr. Tiilay Adali, Distinguished University Professor
Department of Computer Science and
Electrical Engineering

Functional magnetic resonance imaging (fMRI) provides non-invasive indirect measures
of neuronal activation in the brain. Analysis of large-scale fMRI datasets, acquired from a
large pool of individuals, has become prominent in recent studies for the identification of
global functional networks that summarize the population, and networks specific to individ-
uals, groups, conditions, or modalities. Dynamic functional network connectivity (dFNC)
analysis has gained popularity over recent years for extracting networks that are function-
ally correlated and continuously changing over the scanning period, due to their ability to
identify distinct biomarkers in a variety of disorders such as schizophrenia, bipolar disor-
der, post-traumatic stress and in different stages of development. However, the methods
used to extract dFNC patterns mostly capture the time-varying associations of the spatial
networks, while assuming that the spatial network itself is stationary over the scanning pe-
riod. Hence, a model that allows for the variability in both spatial and temporal domain, and
jointly extracts networks specific to individuals while exploiting the dependence across a
large group of individuals, provides an efficient way for analysis of fMRI data. Group inde-
pendent component analysis (ICA) has been widely-used for the analysis of multi-subject
fMRI data for nearly two decades, and has been applied to jointly analyze data from a large
pool of subjects. However, glCA employs a significant group-level dimension reduction to
estimate a common spatial subspace, which may cause loss of individual specific informa-

tion making it limited in terms of preserving subject-specific information. Joint ICA, on



the other hand, assumes a common temporal domain across multiple subjects, making it a
model mismatch to analysis of resting-state fMRI data.

Independent vector analysis (IVA) assumes variability in both temporal and spatial
domain, and extracts subject-specific spatio-temporal patterns by jointly analyzing multi-
subject fMRI data, effectively preserving subject variability in a data-driven manner. How-
ever, the performance of IVA depends on a number of key aspects of the data, namely the
number of datasets, number of sources, number of samples and level of correlation across
datasets. In this work we study the effect of each of these aspect, and observe that the
performance of IVA degrades with increase in number of datasets and number of sources,
and decrease in the level of correlation across datasets, for a fixed number of samples. In
fMRI analysis, the number of samples for each subject is fixed, and the use of large num-
ber of datasets and sources is desirable, with the sources exhibiting low level of correlation
across datasets. Hence, the application of IVA on large-scale fMRI data often gives unde-
sirable results. In this work, we propose the adaptive constrained IVA (acIVA) technique
that incorporates multiple reference signals into the IVA cost function and adaptively con-
trols the effect of inaccurate and accurate references through an adaptive parameter-tuning
technique. We study the performance of acIVA on high dimensional datasets, and demon-
strate its superior performance in terms of its ability to meaningful patterns from large-scale
fMRI datasets. We propose a sliding-window analysis technique using acIVA to extract dy-
namic functional network connectivity patterns that assume variability in both spatial and
temporal domains. We demonstrate the significance of spatial dynamics through a clas-
sification technique, which shows an increase in prediction accuracy for spatial dynamic
features, and also propose graph-theoretical metrics to quantify the variability in functional

connectivity across networks and variability within each spatial network.
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Chapter 1

INTRODUCTION

1.1 Motivation

As a non-invasive technique to measure the neuronal activation in the brain, functional
magnetic resonance imaging (fMRI) provides data with a high spatial resolution (typically
in millimeters) and low temporal resolution (typically in seconds). FMRI detects changes
in the blood oxygenation levels in certain areas of the brain when these regions are acti-
vated while performing a certain task or at rest. Functional network connectivity (FNC)
analysis is a widely studied topic in fMRI analysis, which studies the connectivity between
anatomically separated regions of the brain, i.e., FNC identifies a network of regions that
have similar activation patterns [1]]. The study of differences in FNC has led to the identi-
fication of biomarkers of a number of neurological disorders such as Alzheimer’s disease,
post-traumatic stress disorder, bipolar disorder, autism, schizophrenia, and attention deficit
hyperactivity disorder [2-6]. Joint analysis of fMRI data from a large pool of individuals
has become important for identifying global functional networks that summarize the pop-
ulation, and networks specific to individuals, groups, conditions, or modalities. It allows
for the extraction of robust features that can be used to summarize a group of disorders,
and identification of networks specific to certain groups and individuals, enabling extrac-
tion of sub-group of individuals, or traits that are distinct to a certain type of disorder. In

order to obtain such robust features that well describe the data, the use of methods that



preserve individual specific information, while accounting for the dependence across many
individuals, is especially desirable.

A primary challenge in the analysis of FNC is the identification of separate brain re-
gions that share a common activation pattern, i.e., activated functional networks, from a
large pool of individuals. A number of approaches are used for identification of brain re-
gions, and these can be broadly classified as model-driven and data-driven techniques [/7].
Model-driven techniques make use of some prior information regarding the data, such as
the nature of the activation pattern or the nature of the brain regions. Although these meth-
ods are robust to noise and other artifacts, they make stronger assumptions about the data.
Another class of techniques are the data-driven techniques that make weaker assumptions
about the data and are more flexible in terms of estimation of the structure of the activation
patterns and the brain regions. A popular type of data-driven technique for the analysis of
fMRI data is independent component analysis (ICA), which is based on the assumption of
statistical independence across the brain regions [8|]. ICA decomposes each individual’s
fMRI data into a mixing matrix, whose columns correspond to the activation pattern or the
time course, and a source matrix, whose rows correspond to the separated brain regions.
However, the conventional ICA model can only be applied to a single subject’s data.

Group ICA (gICA) is an extension of ICA to multiple subjects, which jointly analyzes
multi-subject fMRI data with an assumption that these subjects share a common spatial
subspace spanned by the brain regions that are similar across multiple subjects [9,|10].
Although gICA is widely-used in fMRI analysis and can be used to analyze data from a
large population group, it is limited in terms of preserving subject specific information.
Independent vector analysis (IVA), an extension of ICA to multiple datasets, jointly de-
composes multi-subject fMRI data into subject-specific spatial maps (i.e. brain regions)

and time courses. IVA provides a general framework for the identification of sources and



has shown better performance compared to gICA in terms of preserving individual-specific
information [11-13]. However, IVA presents limitations in terms of analysis of large-scale
fMRI data as the performance of IVA degrades when a higher number of subjects are de-
composed jointly, for a fixed number of samples. The performance of IVA also depends on
other aspects of the data, such as number of sources, and level of correlation of the sources
across datasets, which has not been studied so far to the best of our knowledge.

Dynamic functional network connectivity (dFNC) analysis has emerged over the re-
cent years due to evidence that FNC changes over the duration of the scanning period [14].
This led to the categorization of FNC analysis into stationary functional network connec-
tivity analysis and dFNC analysis. Stationary FNC analysis groups studies that assume
FNC patterns do not change over the scanning period, and measure the association be-
tween the activation patterns of different brain regions over the entire scanning period, as
shown in Fig[I.T[a). This may yield an average FNC measure, limiting our understanding
of the functioning of the brain. However, a number of studies have shown the presence
of multiple structured patterns corresponding to different FNC in task-related and resting-
state fMRI data, see e.g., [15H19]. Analyzing these connectivity patterns in resting-state
data has enabled the identification of distinct biomarkers in a variety of disorders such
as schizophrenia [20]], bipolar disorder [21], autism [22, 23], post-traumatic stress disor-
der [24,25]], generalized anxiety disorder [26[],attention deficit hyperactivity disorder [27]
and mild cognitive impairment [28]. Studies have also shown changes in functional con-
nectivity patterns in different stages of development [29] and due to hallucinations [30].
Most dFNC analysis methods however, extract dFNC patterns with an assumption that the
connectivity of the networks changes over time while the network itself is stationary, as
shown in Fig[[.T[b). These methods are grouped under temporal dFNC analysis methods.

However, studies have shown that changes in FNC implies changes in the spatial networks
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Fic. 1.1. Functional connectivity analysis studies the association among the activation pat-
tern between different regions of the brain. (a) Static connectivity analysis assumes station-
arity in both spatial and temporal domain, resulting in an average association over the scan-
ning period. (b) Temporal dynamic connectivity analysis assumes stationarity in the spatial
domain and variability in the temporal domain. (c) Spatio-temporal dynamic functional
connectivity analysis assumes variability in both spatial and temporal domain enabling a
better understanding on the varying functional associations.

[31-33]]. Hence, a model that extracts time-varying dFNC patterns with an assumption of

variability in both spatial and temporal domain is desirable for dFNC analysis, as shown in

Fig[T.T|c).

Studies have shown that changes in FNC in resting-state are not random but exhibit



structured patterns that vary over time ([[19,34,35]). This has led to the identification of
the structured patterns, which are referred to as states, and identifying metrics such as
fraction of time spend in a certain state, number of transitions from one to another, and
probability of occurrence of a state within a group of subjects. Temporal dFNC analysis
has identified hyperconnected or hypoconnected connectivity states associated with a num-
ber of neurological disorder such as schizophrenia, autism, post-traumatic stress disorder
and Alzheimer’s, and has found differences in the degree of variability of temporal FC pat-
terns between healthy controls and patients [20,[36-39]. Although exploiting variability in
the spatial domain for dFNC analysis has shown better performance in terms of classifica-
tion using a model-driven analysis ([32]), which is sensitive to the networks selected, the

features extracted from spatio-temporal dFNC patterns are not explored.

1.2 Contributions

In this dissertation, we address the challenges that we discuss above, specifically:
the extraction of relevant, meaningful functional networks from large-scale fMRI data in
a robust yet data-driven manner, the study of different aspects of IVA, which affect its
performance in terms of estimating meaningful sources, and determination of a model for
the extraction of time-varying spatio-temporal patterns from large-scale fMRI data. In

order to study these challenges, we make the following contributions:

e We propose the use of prior information regarding the nature of the data in order to
extract spatio-temporal patterns from large-scale fMRI data. We propose the use of a
semi-blind IVA technique, that provides a desirable balance between data-driven and

model-driven techniques, while benefiting from both.

e We propose the adaptive constrained IVA technique, which incorporates prior infor-

mation regarding the estimated source or column of the mixing matrix, into the IVA

5



framework. This technique adaptively tunes the effect of the prior information on the
corresponding source or the respective column of the mixing matrix. We investigate
the performance of this technique using a series of simulation examples and show
that the proposed technique adaptively tunes the effect of accurate and inaccurate

prior information, thus significantly improving the performance of IVA.

We study the effect of different aspects, such as number of sources, number of
datasets, number of samples and level of correlation, on the performance of IVA
using simulation examples. We investigate the performance of acIVA and IVA tech-
nique on high dimensional datasets through a simulation study and by applying it
on a large-scale fMRI dataset. Our results indicate that the performance of acIVA is
significantly better than standard IVA in terms of estimating the underlying sources

from high dimensional datasets.

We propose a technique to extract spatio-temporal dynamic patterns from fMRI data
using a sliding-window acIVA framework, which assumes variability in both spa-
tial and temporal domains. We apply this technique on fMRI data acquired from 88
healthy controls (HC) and 91 patients with schizophrenia (SZ), and estimate 17 func-

tionally relevant components along with the time courses at different time instances.

We analyze the variability of spatio-temporal dFNC patterns obtained using the pro-
posed method and temporal dFNC patterns obtained using gICA. Our results show
that more meaningful connections demonstrated group differences when variability
in both spatial and temporal domains is considered. Our results also show higher
variability among the connectivity between different networks for the SZ group, pro-
viding support for the tendency of SZs to engage more brain regions that HCs. We

study the variability of spatial networks and observe a disrupted medial visual net-



work for patients with schizophrenia, along with more variability in the sensorimotor,

fronto-parietal and parietal regions.

e We investigate the strength of spatial dynamic patterns through a prediction tech-
nique, where we compare the ability of temporal dynamic patterns and spatial dy-
namic patterns to predict if a subject is a healthy control or a patient with schizophre-
nia. We observe an increase sensitivity using spatial dynamic patterns, i.e., spatial
dynamic features are better able to identify patients with schizophrenia. We also
study the structured patterns of connectivity obtained using spatial dFNC patterns
and observe that patients with schizophrenia tend to stay in or switch to states corre-

sponding to an abnormal and hyperconnected state.

1.3 Overview of Dissertation

The remainder of the dissertation is organized as follows.

In Chapter 2} we provide an introduction to functional magnetic resonance imaging
(fMRI) data and the methods that we will use throughout this dissertation. We begin by
briefly describing the acquisition of fMRI data and introduce different methods used to ex-
tract patterns from fMRI data. We then describe the general IVA model and the different
types of IVA algorithms. We introduce the IVA with multivariate Laplacian sources with
second-order correlation (IVA-L-SOS) algorithm, which jointly accounts for both second
and higher-order statistics (SOS and HOS), followed by a discussion of a method for se-
lecting the most consistent run using cross joint inter-symbol interference.

In Chapter |3] we study the effect of different aspects on the performance of IVA,
such as number of datasets, number of sources, number of samples and level of correlation
between sources across datasets. We show that the performance of IVA is affected with

increase in number of datasets and sources, and decrease in the level of correlation, for a



fixed number of samples.

In Chapter[d, we describe the development of the adaptive constrained IVA (acIVA) al-
gorithm that effectively incorporates prior information regarding the sources or the columns
of the mixing matrix into the IVA cost function, by adaptively tuning the constraint param-
eter. We demonstrates the successful performance of acIVA over regular constrained IVA
(cIVA), which makes use of a fixed constraint parameter, using simulated data. We observe
that acIVA performs better than cIVA in terms of incorporating accurate and inaccurate
constraints, and in terms of preserving dataset-specific information.

In Chapter [5 we discuss the application of acIVA on high dimensional datasets and
study the application of acIVA and IVA on datasets with varying number of sources and
varying number of datasets. We fix the number of samples and level of correlation among
sources across datasets for this simulation study, as for real-world applications these aspects
do not change. We apply acIVA on a large-scale fMRI data acquired from 327 healthy
subjects (164 females and 163 males), and show that acIVA performs better than IVA.
We also observe that acIVA is able to extract meaningful regions that share a common
activation pattern.

In Chapter [6] we propose a method to extract time-varying spatio-temporal patterns
from large-scale resting-state fMRI data using acIVA. The proposed implementation con-
sists of two stages. The first stage extracts stationary representations of the resting-state
networks, and in the second stage these networks are used as reference signals in a sliding-
window acIVA analysis, in order to extract their time-varying representation at each time
window. We propose the use of both temporal and spatial features to study dFNC and pro-
pose two graph theoretical metrics: inter-network connectivity fluctuation and component
stationarity, to quantify the variability in spatial and temporal functional connectivity and

spatial network variability. We also study the significance of spatial dynamic features using



a prediction technique and through analyzing the spatial dFNC states.
We conclude the dissertation with Chapter [§]and present possible directions for future

research.



Chapter 2

BACKGROUND

This chapter provides an introduction to fMRI data and provides a brief overview of
the methods applied to extract features from fMRI data. We also introduce some of the

methods that we will use throughout this dissertation.

2.1 Introduction to fMRI data

FMRI measures the changes in the magnetic properties of the blood caused as a re-
sult of changes in the blood oxygenated level during a neuronal activation. The onset of
neuronal activation is mainly followed by the brain’s need for glucose that is not stored in
the brain, but transported from blood. This need for glucose causes more blood to flow in
the area of neuronal activation, along with oxygen. The change in the blood flow is typi-
cally localized between 2 to 3 millimeters around the neural activity. Usually the amount
of oxygen brought in is more than the amount of oxygen consumed in burning glucose
causing a net decrease in deoxygenated blood. Since deoxygenated blood has slightly dif-
ferent magnetic properties than oxygenated blood, fMRI measures neuronal activation by
recording these small changes in magnetic sensitivity. The change in the magnetic signal
from neuronal activity is called the haemodynamic response, which typically lasts for 10
seconds, deciding the temporal sensitivity of fMRI scanners.

Commonly used fMRI scanners have a spatial resolution of 3 millimeters and repeti-

10
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time

Fic. 2.1. FMRI data for each subject, data is collected as a 3D volume as a function of
time. Each time point shows samples of 2D slices obtained across the transverse plane.

tion time (TR) of 1 or 2 seconds, i.e., each slice along the transverse plane of the brain is
scanned at a TR of 1 or 2 seconds, and a 3D volume is formed by grouping these scanned
slices at a particular time instant. FMRI data is collected as a 3D volume at different time
instances, as shown in Fig. These fMRI images undergo a series of standard pre-
processing steps. Images are realigned using INRIalign, and slice-timing corrected using
the middle slice as the reference frame. Data are then spatially normalized into the stan-
dard Montreal Neurological Institute space, resliced to 3 mm X 3 mm X 3 mm voxels, and
smoothed using a Gaussian kernel with a full-width at half-maximum of 10 mm. Masking
is performed on each volume to remove the non-brain voxels and vectorized, resulting in
an observation set for each subject as, X[k] eR™ k=1,...,K, where T is the number of

time points, V is the number of voxels and K is the number of subjects.
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2.1.1 Extraction of functional networks

The haemodynamic response measured after a stimulus is applied rises at a faster rate
peaking at 4-5 seconds, and then dropping at a faster rate below a standard level referred to
as undershoot, before becoming stable. If the neurons keep firing, for example from a con-
tinuous stimulus, the peak stays constant for a longer duration until the neurons stay active.
When a group of neurons are activated, the blood oxygenated level dependent (BOLD) re-
sponse at each time instant is expected to add linearly, and can be modeled using a linear
mixing model given as,

X0 -a¥s¥ k=1, K @.1)

where A" € R™T is the mixing matrix and $" € R™V are the latent source compo-
nents/spatial maps for the kth dataset. The column of the mixing matrix is referred to as
the time course of the corresponding spatial map. A spatial map represents a functional
network that is a group of neurons that have a similar activation pattern/time course.

Brain functional networks, at a broader level, are relatively consistent across healthy
subjects [40]. On the other hand, significant heterogeneity exists across different subjects
within a group, modality or a condition [41]]. Capturing these individual specific neural
patterns can thus be used to predict individual differences [42]]. Hence methods that capture
the global information across subjects while preserving subject-specific information from a
large-scale population are desirable in the analysis of fMRI data. FMRI analysis techniques

can be broadly classified into model-driven and data-driven techniques.

Model-driven techniques: Model-driven methods make stronger assumptions re-
garding the structure of the time courses or spatial maps. These methods are robust to
noise and other artifacts, however make stronger assumptions about the data. General lin-

ear model (GLM) is a type of model-driven method that specifies a user-defined mixing
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matrix, commonly referred to as a design matrix, that fixes K[kl and estimates g[k] using
a regression type approach. This type of approach is commonly used in task-based fMRI
data, where the nature of the task paradigm or the time course is known and is used to es-
timate the functional networks that follow the task paradigm. Another sub-type of model-
driven techniques is the region of interest (ROI)-based method that defines the structure of
a spatial map using pre-defined templates of the brain regions. While GLM type methods
are common to task-based fMRI data, they cannot be used to decompose resting-state fMRI
data, where the true nature of the time course is not known. On the other hand, ROI-based
methods make use of predefined templates of the functional networks that are defined based
on the assumption that each region has a similar activation pattern. A number of atlases
have been made available that divide the brain into cortical regions ranging from 70 to
333 [43-48]]. These atlases are defined based on previous studies and might result in the

functional connectivity dependent on the choice of ROIs.

Data-driven techniques: Data-driven methods are more flexible than model-driven
methods since they make fewer assumptions about the nature of the solution, such as ICA,
which assumes source independence, and dictionary learning (DL), which assumes spar-
sity. Statistical independence assumption has shown desirable performance for the analysis
of fMRI data due to its ability to discover interpretable functional networks in a data-driven
manner and due to minimal assumptions placed on the data [[7]. We discuss the methods
that exploit statistical independence and their application to fMRI data in the following

sections.
2.1.2 Independent component analysis

The generative ICA model written as x = As € R’, which can also be written in

matrix form as X = AS, assumes that a single dataset is formed from the linear mixture of
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T independent sources, i.e., p(s) = H,T: . P: (s1). Here x € RT denotes the random vector
that contains the 7 mixtures, x,, | < ¢ < T. The estimates are given as § = Wx, where W is

a demixing matrix estimated minimizing the mutual information cost function,
T
JIcA = Z H (5,) — log|det W| — H (x). (2.2)
=1

In H (5,) denotes the entropy of §,, log|det W] acts as a regularization term and H (x)
denotes the entropy of the observed signals, which is a constant with respect to W [[13]].
By modeling and exploiting different types of statistical diversity, such as sample de-
pendence and higher order statistics (HOS), various ICA formulations are developed. The
most commonly used diversity, HOS, is exploited by ICA implementations such as Info-
max [49] and FastICA [50]. While FastICA and Infomax make use of fixed nonlinearities,
algorithms like entropy bound minimization (EBM) use a flexible density model for each
source estimate and hence, maximizes independence for a wider class of source distribu-
tions in an efficient manner [51]. Entropy rate bound minimization (ERBM) extends EBM
by using an invertible filter and takes both higher order statistics and sample dependence
into account [[52,/53]. ERBM provides a better match for fMRI analysis due to ability to
account for voxel-wise dependence and flexible density model of the spatial maps, and
has shown superior performance compared with other widely-used ICA algorithms for the

analysis of fMRI data [54,55].
2.1.3 Estimation of fMRI sources based on statistical independence

The assumption of source independence has shown promising and reliable results for
the analysis of fMRI data [8], and has been used widely to identify biomarkers from dif-
ferent population groups. The linear mixing model for ICA of fMRI data, defined in (2.1)),
is typically overdetermined in nature, i.e., the number of spatial maps, N, is less than the

number of observations, 7. Hence applying dimensionality reduction techniques such as
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principal component analysis (PCA) on each subject’s dataset, prior to ICA is a common
practice in order to obtain a signal subspace, X € RV where N is the number of sources.

PCA estimates uncorrelated features in the order of highest variance, thus defining the
signal subspace using the features that provide most information about the dataset. The
principal component transformation is associated with the singular value decomposition of
X, and is expressed as XT = UDF, where D is a V X T diagonal matrix consisting of the
singular values of iT, U is a V x V matrix consisting of the left singular vectors of X and
F is a T x T matrix, whose columns are T orthogonal right singular vectors of X, also
equivalent to the eigenvectors of the covariance matrix of X. Principal components of the
observation set, X, are obtained by considering the N right singular vectors corresponding
to the first N highest singular values, and are computed as X = (XTFN)T, where Fy is a
T x N matrix.

ICA is applied on the signal subspace, X, to estimate A and S, where A € RV is the
mixing matrix and S € RV is the source matrix, the rows of which denote statistically
independent spatial maps. The observation set, X, and estimated source matrix, S, can then
be approximated as X = (FyA)S. The time courses of the N sources are the columns of
the matrix, A € RTXN , which can be computed as A = FyA. Hence, the general model
for fMRI dataset can be expressed using the estimated source matrix, S, and time course
matrix, K as X = KS, and is shown in Fig.

ICA is originally designed for analysis of a single subject’s fMRI data. Group inde-
pendent component analysis (gICA) is an extension of ICA for the analysis of multi-subject
fMRI data [9,/10]. It performs two levels of dimensionality reduction, where the first level
involves the application of PCA on each subject’s data individually in order to obtain a
signal subspace for each subject. In the second level, the signal subspace for each subject

are temporally concatenated to form a matrix and a group-level PCA is performed on this
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Fig. 2.2. Given an observation matrix, X ICA decomposes a single subject’s fMRI dataset
into A and S, where the columns of A are the time courses and the rows of S are the
corresponding spatial maps.

matrix to obtain group-level principal components, which represent the features that ac-
count for most variability across subjects. Thus these components represent the subspace
spanned by the features that are common across subjects. Since PCA estimates uncorre-
lated features, which separates the components using only second order statistics, ICA is
performed on the principal components to estimate maximally independent components.
The choice of ICA algorithm plays a vital role in the estimation of fMRI sources. In
our work, we use the ERBM algorithm [52,53] to account for HOS and sample depen-
dence, which has shown better performance than the widely-used ICA algorithm, Infomax
[54,55]. The group-level ICA features are the global representation of the functional net-
works across all subjects, which are back-reconstructed to obtain subject-specific features
and corresponding time courses, as shown in Fig. [2.3]

GICA is one of the most widely used data-driven technique to analyze multi-subject
fMRI data. It has shown desirable performance in terms of extracting functional networks

common to a large-scale fMRI dataset [56]. However gICA is limited in terms of cap-
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Fic. 2.3. GICA model for analysis of multi-subject fMRI data. Given K datasets from K
subjects, GICA first performs PCA on each subject’s data to obtain subject-level principal
components (PCs). The subject-level PCs from all subjects are concatenated vertically
and a second-level PCA is applied, in order to obtain a subspace spanned by the common
components across all subjects. ICA is applied on the group-level PCs to estimate group
level independent components (ICs). These ICs are then back-reconstructed in order to
obtain subject-specific time courses and spatial maps.

turing subject-specific information since most of the variability is lost in the group-level
dimensionality reduction step. Hence a method that jointly analyzes large-scale fMRI data
while preserving subject variability is beneficial. IVA provides a flexible model to preserve
subject-specific information while capturing the joint information of multiple subjects, and

is discussed in Section
2.1.4 Extraction of time-varying functional networks

GICA has also been widely used for temporal dFNC analysis, in which the back-
reconstructed, subject-specific time courses are divided into overlapping windows and FC
is obtained at each time window. This however, assumes that the spatial networks are sta-
tionary, as shown in Fig[I.T[(b). Model-driven methods such as ROI-based methods, have
been used to obtain time-varying spatio-temporal patterns and have shown better classi-
fication of subjects when variability in both spatial and temporal domains is considered

compared with variability assumed in either spatial or temporal domain [31,[32]. Dy-
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namic mode decomposition (DMD), a spatio-temporal modal decomposition technique,
has demonstrated changes in the temporal activation of RSNs [33]]. Although these tech-
niques provide interesting results, the use of pre-defined ROIs causes the estimated FC to
be sensitive to network selection whereas DMD requires significant dimension reduction
that may restrict the method to estimation of few spatial components. Hence a more flexi-
ble model that simultaneously captures both time-varying patterns and spatial networks of

the whole brain is desirable.

2.2 Independent vector analysis

IVA is a type of joint blind source separation algorithm that jointly estimate compo-
nents that are independent within each dataset and dependent across datasets. Given K
datasets, each comprised of N components, x*! € RN, k = 1,...,K, we can write the
general IVA model as,

xM = AWM f =1, K, (2.3)
where A"l € RV is the mixing matrix. IVA estimates K demixing matrices, W, to
compute the source estimates, §%! = WW*xXl by maximizing the likelihood function or
equivalently minimizing the mutual information based cost function given as [13.,/57],

N K K
JvA = ), L 1 H (547) - I@n)} - ; log|det WH| - €, 2.4)

n=1 Lk=
where C; is a constant term independent of the demixing matrices, H (§,[1k]) denotes the
entropy of the nth source estimate for the kth dataset, and 7 (s,) denotes the mutual infor-
mation of the nth source component vector (SCV), §7 = [S‘L”, - §ELK]]. An SCV takes into
account the dependence across the datasets and the nth SCV is formed by concatenating

the nth component from all the K datasets as shown in Fig. The covariance matrix

of the nth SCV, X, € R¥*K is a positive definite matrix. The minimization of the cost
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function simultaneously weighs the independence within the dataset through the entropy
term along with the log determinant term and dependence across the datasets through the
mutual information term. For a given set of observations, the IVA model can be written
as XM = AWKSK ¢ RM™V where S = [s[lk],...,sg\l,‘]]T, sl e RVn = 1,...,N are la-
tent sources and V is the number of samples. The estimated sources are obtained using

A T
S8 = WIMXH and the nth SCV is defined as s, = [s}/),...,s/!| e REV.

—» V

Source component
1 — = vector (SCV)
N —_— o
E— "\
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Fic. 2.4. Given a set of observations, the IVA model is given as X¥ = AWKSK  f =
1,...,K, where A" is the mixing matrix and the rows in S'¥!, are the latent sources that
are dependent across datasets. The nth SCV is formed by grouping the corresponding nth
source from each dataset together.

Recent IVA algorithms utilize the decoupling trick that allows the method to individ-
ually optimize each demixing vector in a flexible and efficient manner [57,/58]. We will
now introduce the implementation of the decoupling trick in IVA. We define u¥ as the nth

decoupling vector such that WY = 0 and W is formed by removing the nth row of

o™ where wf £ \/ det (W[k] (W[k])T)'

W 1t is shown that ’det (W[k])‘ = '(ug‘])T wit
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[58]. Following [57]], the cost function in (2.4) can be rewritten as,
K
JIVA = Z [Z H (W) -1 (sn)} Z log\ “‘] ,[,"1\ M -, (2.5)
k=1
The terms w[k] and Z,Ile H (§,[,/f]) — I (8,,) for m # n, are independent of WE,k] and are fixed
with respect to changes in w'!. Thus, the cost function used for individually updating w'

consist only of the following terms,

jIVA [k] [ZW S — 7 (8, )]—log'( ”‘]) -G, (2.6)

where C, denotes the quantity containing all the fixed terms. Derivative of (2.6) with

respect to each demixing vector, wl is given by,
oI (Wi 1
WA ) gy
ow! (u [k]) [k

where ¢! £ —dlog p(8,) /5. The gradient is used to iteratively update the demixing
vector as follows,

Wi = w1 g Ty oW,

where 7 is the step size.

2.2.1 Choice of IVA algorithm

The assumption of a different model for the latent source distribution, p (§,) has led
to the development of different IVA algorithms. IVA-Gaussian (IVA-G) assumes that the
underlying SCVs are multivariate Gaussian [57]], and thus only takes second-order statis-
tics (SOS) into account and estimates the covariance matrix for each SCV, X, € R¥*X,
IVA-Laplacian (IVA-L) assumes the sources are multivariate Laplacian distributed [S9] and
takes only higher-order statistics (HOS) into account. It assumes there is no second-order

correlation within each SCV, i.e., the covariance matrix is an identity matrix for all SCVs.
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Although the assumption of no second-order correlation favors some applications, in many
others, such as fMRI, it degrades the estimation performance since fMRI sources exhibit
a moderate level of correlation across datasets [8,10]. IVA-GL, another implementation
of IVA that performs IVA-L initialized to the result of IVA-G, has shown more robust per-
formance than using IVA-G or IVA-L alone [57] since it accounts for both SOS and HOS,
although sequentially [8]. In the next section, we introduce the IVA-L-SOS algorithm that

jointly accounts for SOS and HOS.

2.3 1IVA on fMRI data

A number of studies have shown the superior performance of IVA to analyze fMRI
data as compared with gICA in terms of capturing subject variability [11-13]. The IVA
model applied on multi-subject fMRI data is shown in Fig[2.5] For the kth subject, the
rth snapshot of the three dimensional brain scan is vectorized to form rows of the kth data
matrix, X[k] € R,k = 1,...,K, where K is the number of subjects. Following the
definition of ICA of fMRI data, the number of sources are less than the number of time-
points. Hence PCA is typically applied on each subject’s data to obtain a signal subspace,
XK e RV The IVA model is then written as X*! = AKISI*and the kth mixing matrix,
AM_ s back-reconstructed to obtain the time courses for each subject as Al = FIFAK,
The matrix F¥, is the reduction matrix for the kth subject. The rows of source matrix
represent maximally independent functional networks that are dependent across subjects.
The columns of the mixing matrix correspond to the subject-specific time course of the
corresponding functional network. The nth source from each dataset is grouped together
to form a K-dimensional SCV, which represents subject-specific representation of a func-
tional network, as shown in Fig[2.5] In Fig[2.5] an example of a network corresponding to

the visual cortex is shown for two different subjects.
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Fic. 2.5. IVA model for analysis of multi-subject fMRI data. The tth time snapshot of a

subject’s three dimensional brain scan is vectorized to form the rth row of the data matrix,
<lkl . . . . . .
X' . IVA decomposes the K datasets corresponding to K subjects into subject-specific mix-

ing matrix and source matrix. The rows of source matrix represent maximally independent
functional networks that are dependent across subjects. The columns of the mixing matrix
correspond to the subject-specific time course of the corresponding functional network.

2.4 TIVA-L-SOS algorithm

In the analysis of fMRI data, it is widely known that the functionally relevant net-
works have a super-Gaussian distribution [8]. However, the level of correlation between a
network for one subject with the same network from another subject is unknown. In or-
der to investigate the level of correlation, we perform group ICA on three datasets: MRN-
resting-state fMRI (rst-fMRI) dataset acquired from 327 subjects at the Mind Research Net-
work (MRN) [56]], Center for Biomedical Research Excellence (COBRE) dataset, which

is available on the collaborative informatics and neuroimaging suite data exchange reposi-
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tory (http://coins.mrn.org/dx) [60] and sensorimotor task-related fMRI dataset, which is a
part of the MIND Clinical Imaging Consortium (MCIC) dataset [[61]]. The number of com-
ponents is estimated using the entropy-rate based order selection by finite memory length
model. We visually selected functionally relevant components and back-reconstructed to
obtain subject-specific components. Pearson’s correlation coefficient between a component
from one subject and the same component from another subject is obtained for each pairs
of subjects and for all selected components. The distribution of the correlation values of all
unique pairs is shown in Fig. for the three datasets. We can see that the components

exhibit low-moderate levels of correlation between subjects.

Correlation Values
o
I

rst-fMRI COBRE MCIC

Dataset

Fic. 2.6. Distribution of correlation values for all pairwise correlations between subjects
computed for all functionally relevant components. The components exhibit low-moderate
levels of correlation between subjects.

Since the SCVs are multivariate super-Gaussian distributed with a low to moderate

level of correlation across datasets, an algorithm that simultaneously exploit the benefits
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of these algorithms is preferable. In this section, we introduce the IVA-L-SOS algorithm
that assumes the sources are multivariate Laplacian distributed, like IVA-L, but also takes
second-order correlation of the SCVs into account, like IVA-G, for full statistical charac-
terization of a Laplacian multivariate random vector. It jointly exploits both second and
higher order statistics unlike IVA-GL, which does it sequentially.

The multivariate generalized Gaussian distribution (MGGD) covers a wide range of
unimodal distributions by controlling the shape parameter, 3, such as super-Gaussian (8 <
1), normal (8 = 1) and sub-Gaussian (8 > 1), and assumes second-order correlation within
an SCV [62]. The MGGD is given by,

KT(K/2)|x[!/? A=Y

p(s;E,B) =
mlKPI(L + £)214%

(2.8)

where K is the dimension of the multivariate distribution, X is a covariance matrix and
I'(-) is the Gamma function. By setting the shape parameter g to 0.5, the MGGD distri-
bution is equivalent to a multivariate Laplacian distribution that accounts for second-order

correlation through X and is expressed as,

_ T(K/2) 2 | Jaye
p(S,E) = er([{)exp —5 sTX-lg , (29)

where X estimated at each iteration. Since fMRI sources are in general expected to
have a super-Gaussian distribution, like Laplacian [8]], and are dependent across sub-
jects/windows, the IVA-L-SOS model is a good match for fMRI data.

The score function, ¢£,k], for MGGD is given by,
()|
KT (35)

K+2
2B

pEs(sT= ) (2.10)

d(s) =

where the Gamma functions, I'(55) and T’ (%) grow at a rate faster than the exponential

function towards infinity as M increases, leading the score function to be undefined. Since
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B = 0.5 provides a better match for fMRI sources [8]], by direct substitution of g = 0.5,
which corresponds to multivariate Laplacian distribution, in (2.10), we obtain

_ls

_ 05
¢(s) = (K +1) =
which enables a stable version for large K.

The successful performance of IVA algorithms that account for SOS, such as IVA-G
and IVA-L-SOS, depends on the structure of the covariance matrix, X, which is a positive
definite matrix. Throughout the dissertation, we assume that the sources are normalized,
and hence the covariance matrix and the correlation matrix are equivalent. In Appendix

A1, we talk about three different structures for the generation of the correlation matrix and

discuss the bounds for these matrices to be positive definite.

2.5 Consistent Run Selection using cross joint ISI

IVA is an iterative algorithm and there is a need to determine a best reproducible solu-
tion for a given set of the data. In order to identify the most consistent solution we perform
IVA on the same set of observations for multiple runs, with each run initialized randomly,
and apply the consistent run selection using cross joint inter-symbol interference (GISI)
method, which is an extension of the method proposed in [[63]] to multiple datasets. The
JISI metric measures the performance of IVA algorithm when the groundtruth is available.
If the demixing matrix is perfectly estimated, the matrix G!*! = WIXIA% i5 jdentity subject
to scaling and permutation ambiguities. The jISI metric computes the distance of G!*! from
the identity matrix and is computed as,

. 1 (e &nm = 8nm
81 = s [Z (Z - ]+ Z(Z T 1) e

m=1 \n=1
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[k]

where g, = Yx_, gn,m| and 0 < JISI < 1, where 0 indicates ideal separation. The cross jISI

run selection method defines the cross jISI (cjISI), which measures the distance between
the estimated demixing matrices across runs. Let R denote the number of runs and WK
denote the kth estimated demixing matrix obtained from the rth run. For two runs that are
close to each other, the matrix D*-(172) — WIkL(D (W["]’(’Z))_l is close to identity subject to
scaling and permutation ambiguities, hence the cross jISI can defined as,

N (N - N (N 7

15~ s B 2 )
n=1 \m=1 pYnp m=1 \n=1 p Gpm

- K k
where dn’m = Zkzl dz[1,l]n

. For each run, the cross jISI is computed between that run and all
other runs and average distance is obtained as, chSI(r) = 1/RYF GISI | r # ry. The

r1:1

most consistent run, 7,

consistent is obtained as the run that has the least average distance

—a(”
, I

from all the runs, i.e., rogngistent = argmin, cjISI =1,...,R

2.6 Permutation test for identifying significant differences between two groups

The identification of features that demonstrate differences between two groups of sub-
jects is one of the primary goals for the analysis of fMRI data. In this work, we use the
permutation test on the metric of interest to evaluate differences between groups under
study, which is a non-parametric statistical test which controls the false alarm rate under
the null hypothesis [64,|65]. The idea of a permutation test is to determine whether the
difference between the two groups is large enough to reject the null hypothesis that two
groups have identical distributions. The test first obtains the observed difference between
the two groups using the true labels of the subjects. The labels for the subjects from the
two groups are randomly pooled and a difference statistic using the new labels is obtained
for every permutation of the labels. A distribution of the calculated differences is the exact

distribution of possible differences under the null hypothesis. If the observed difference is
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within 95% of the exact distribution, then we do not reject the null hypothesis. This test
hence assumes that there are no differences between the two groups and tests if this hy-
pothesis is true or not. We use the #-statistic obtained from a two-sample #-test to measure
the difference between the two groups and identify whether a particular group has higher

intensity using the sign of the #-statistic.

2.7 Summary

In this chapter, we briefly introduced two broader classes of techniques used to extract
features from fMRI data, namely model-driven and data-driven techniques. We empha-
sized the need for a flexible method that estimates functional networks from multi-subject
fMRI data while preserving subject-specific information from a large-scale fMRI data. We
discussed the general IVA model and that it provides a flexible framework for the analysis
of fMRI data. Since we typically obtain multiple IVA solutions, we discussed a technique
to select the most consistent solution using a cross-joint ISI run selection technique. We
ended the section by introducing a statistical test for identifying significant differences be-
tween two groups under study.

Although IVA provides a flexible framework for estimating sources of different nature,
its performance is affected by a number of factors. In the next chapter, we discuss these
factors in further detail and provide simulation examples to demonstrate the effect of high

dimensionality in IVA.
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Chapter 3

KEY ASPECTS OF INDEPENDENT VECTOR
ANALYSIS

In this chapter, we discuss the key factors that affect the performance of IVA, namely,
number of sources, number of datasets, number of samples and level of correlation among
sources across datasets. We study the performance of IVA with respect to number of
datasets and level of correlation, for a fixed number of samples and sources, and with
respect to number of datasets and sources, for a fixed number of samples and level of cor-

relation, using simulated data.

3.1 Introduction

ICA is a popular data-driven approach used to extract subject-specific time courses
and spatial maps under the assumption of statistical independence, however it is limited
to the analysis of a single dataset. Two extensions of ICA, namely joint ICA and gICA,
are proposed to analyze multiple datasets that perform ICA on a matrix constructed by
concatenating multiple datasets either along the temporal dimension or spatial dimension.
However, joint ICA assumes a common mixing matrix or time courses across multiple
datasets, while capturing spatial variability across multiple datasets. GICA jointly ana-
lyzes the data from multiple subjects and estimates a common, global representation of the

functional networks across subjects, however it might be limited in terms of preserving sub-
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ject variability. IVA is an extension of ICA to multiple datasets that jointly decomposes the
multi-subject data into subject-specific time courses and spatial maps. It has been shown
in various studies that IVA is better in capturing subject variability [11-13|] compared with
gICA and provides automatic source alignment across subjects by exploiting the source
dependence across datasets. It presents a wide range of algorithms depending on the as-
sumption of the latent multivariate source distribution and provides general identification
conditions that allow for flexibility in the estimation of the underlying sources [13]. Al-
though IVA provides a general framework for the analysis of multi-subject fMRI data, its
performance depends on a number of factors such as number of samples [66]], number of
datasets [67], number of sources and the level of correlation between the marginals of the
multivariate sources.

As with maximum likelihood based estimators, the performance of IVA improves
when the sample size increases [66]. On the other hand, with more datasets available
to exploit the dependence structure in IVA, the performance of IVA is expected to improve
with an increase in the number of datasets, due to the availability of more cross-dataset in-
formation [57]]. However, this effect depends on the number of samples available. Given an
infinite number of samples, the performance of IVA will keep on improving with increasing
number of datasets. However, in real world applications, there is a limitation to the number
of available samples, and the trend of improvement in performance with increasing number
of datasets is expected to stop after a certain limit, after which the performance degrades
with a further increase in number of datasets [[67]. We refer to this decrease in performance
trend as the effect of high dimensionality in IVA. This trade-off between high dimension-
ality and utilization of maximal cross-dataset information depends not only on the number
of samples, but also is a function of the number of sources and the level of correlation ex-

hibited among the sources of an SCV. The performance of IVA is a joint effect of all these
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factors and is not explored to the best of our knowledge.
In this chapter, we study how these factors affect the performance of IVA through

simulations, and discuss the potential strengths and weaknesses of IVA.

3.2 Simulation study

3.2.1 Effect of number of datasets and level of correlation

In order to demonstrate the effect of the number of datasets and the level of correlation
on IVA, for fixed V and N, we generate K datasets, x'*! € RV, such that x/¥ = A¥lglXl The
elements in the mixing matrices, AW k=1,...,K are randomly generated from a uniform
distribution. The N SCVs are generated from a K-dimensional multivariate Laplacian dis-
tribution with a covariance structure X, = QQ’, where Q € R¥*K is a randomly generated
matrix. We vary the level of correlation within an SCV through the generation of the matrix
Q, where the elements in Q denoted as g;;, are generated randomly from a normal distri-
bution, N (0, 1) for Case 1, N (0.1,0.3) for Case 2, a uniform distribution, U (—0.2,0.8)
for Case 3, U (0, 1) for Case 4, and U (0.1,0.3) for Case 5. The resulting distribution of
correlation values in X, for K = 10 is shown in Fig. We can see that the correlation
values demonstrate an increasing trend from Case 1 to Case 5 corresponding to increase in
the level of correlation within an SCV.

After obtaining the SCVs, the sources for the kth dataset are obtained by grouping
together the kth row from all the N SCVs, slfl = [sﬁk], o s%‘]]. We generate V = 1000 sam-
ples and vary the number of datasets from 2 to 40. We obtain three independent observation
sets of the datasets, X'*!, by randomly generating the mixing matrices and sources for each
set. IVA using the IVA-L-SOS algorithm is performed for five runs on each set, and the
performance of both methods is measured in terms of joint inter-symbol interference (JISI)
[57]. The jISI metric measures the performance of the methods in terms of its ability to sep-

arate the sources (0 < jISI < 1), where 0 indicates better separation of underlying SCVs,

30



Correlation values

Casel Case2 Case3 Case4 Caseb
Level of correlation

Fic. 3.1. Distribution of correlation values in X, = QQ for Cases 1-5.

ie.,, WHAW = [ Vk € {1,...,K}. IVA-L-SOS simultaneously accounts for second and
higher order statistics, and assumes the sources are correlated multivariate Laplacian dis-
tributed [67]]. This assumption is a good model match for fMRI analysis since the sources
tend to have a super-Gaussian distribution with correlation across subjects [8,/10]. The
average of the jISI metric across all converged runs for IVA is shown in Fig.[3.2]

When there are sufficient samples available, the advantage of exploiting source de-
pendence across datasets in IVA is observed in Fig. [3.2] The performance improves with
increase in number of datasets for a fixed number of sources and samples. However, this
increasing trend is observed upto a certain limit, after which IVA is affected by high di-
mensionality after K = 20. The effect of dimensionality in IVA is observed when there is
insufficient statistical power to provide reliable and meaningful estimates of the high di-
mensional multivariate probability distribution functions, due to the availability of limited

samples. Additionally the high dimensional effect is more prominent in Cases 1 and 2, i.e.,
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Fic. 3.2. Performance of IVA in terms of jISI with respect to number of datasets, K, for
each case. The jISI metric is the average jISI computed across all converged runs. The
level of correlation increases from Case 1 to Case 5 with Case 1 corresponding to low
correlation within an SCV whereas Case 5 corresponds to high correlated SCVs. The
number of sources and number of samples is fixed to N = 85 and V = 1000, respectively.
For Case 3 and Case 4 at K = 40 no run converged in 1024 iterations, which is indicated
by ‘A’, however with an increase in K we start observing an increasing trend.

for the low correlated SCVs, since Cases 3 to 5 take advantage of the dependence structure
in IVA, as compared to Cases 1 and 2. The low correlation structure of the SCVs for these
cases have higher distances between the marginals resulting in the data points to be sparsely
located in the multidimensional space, hence the estimation of such SCVs becomes even
more difficult in high dimensional scenarios. For highly correlated SCVs, as in Case 5, the
marginals are more densely located, which aids the estimation of these sources and yields
a more efficient estimator in the maximum likelihood sense.

There has been a debate regarding the additional diversity of IVA, namely, source de-
pendence across datasets, and that is IVA requires or forces the sources across datasets to
be dependent and hence does not allow for variability across datasets. Cases 1 through 3
address this scenario where the distribution of the correlation values have high variability
and low to moderate correlation across datasets. Note that for these cases, the jISI is similar
to that of Cases 4 to 5 when the number of datasets is less than 20, which indicates that

the performance of IVA is similar across different levels of correlation. Hence, IVA does
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Fic. 3.3. Performance of IVA in terms of spatial correlation between estimated sources and
ground truth, with respect to number of datasets, K, for each case. The level of correlation
increases from Case 1 to Case 5 with Case 1 corresponding to low correlation within an
SCV whereas Case 5 corresponds to high correlated SCVs. The number of sources and
number of samples is fixed to N = 85 and V = 1000, respectively. For Case 3 and Case 4
at K = 40 no run converged in 1024 iterations, which is indicated by ‘A’, however with an
increase in K we start observing an decreasing trend.

not require or enforce the sources across datasets to be highly correlated. We also compute
the spatial correlation of the estimated sources and ground truth in order to verify if IVA
preserves variability across datasets, and observe similar trend, see Fig. @ Spatial cor-
relation between the estimated source at each dataset and the corresponding ground truth
increases with increase in K until K = 20, after which the correlation value drops. For
number of datasets less than 20, the spatial correlation is high for all cases, indicating that
IVA does not require or force the sources to be dependent and preserves dataset-specific
information.

In the analysis of fMRI datasets, the nth SCV typically corresponds to a functional
network activated across multiple subjects. The structure of the multivariate distributions
of these SCVs show high activations in a smaller group of voxels and lower activation

values for a larger group of voxels. This results in fMRI sources to have low correlations

33



across datasets, affecting their estimation significantly in high dimensional scenarios, see

Appendix A3 for more details.
3.2.2 Effect of number of datasets and number of sources

In order to study the performance of IVA with respect to increase in number of datasets
and sources, we generate simulated datasets similar to the set-up described in Section[3.2.1]
We vary the number of datasets, K, from 2 to 60, and the number of sources, N, from 40
to 85, with a fixed sample size V = 1000. The SCVs are generated from a multivariate
Laplacian distribution with a covariance structure, £ = QQ’, ¢; ;7 = N(0.1,0.3). This
structure results in low to moderately correlated sources that is a good match to the fMRI
sources, since the fMRI sources are known to have a super-Gaussian distribution [[8] with
low to moderate level of correlation, see Appendix A3. The sources are linearly mixed us-
ing a randomly generated mixing matrix for each dataset to obtain the observation set, X1,
We generate three different observation sets by randomly generating the mixing matrices
and sources for each set. We obtain 20 runs of IVA using the IVA-L-SOS algorithm. We
measure the performance of IVA using jISI, which measures the estimation of the whole
demixing matrices. The estimated sources are aligned with respect to the original sources
using correlation metric. The average of the jISI metric of the constrained sources across
20 runs and three observation sets for IVA is shown in Fig.[3.4]

From Fig. we observe that IVA performance improves with an increase in number
of datasets upto a certain limit for different numbers of sources. This range can be defined
as the best range in which there are sufficient samples available for IVA to accurately es-
timate the underlying parameters. Although the increase in number of sources for a fixed
number of datasets does not significantly affect the performance, it does determine the limit
for better performance. The range of better performance becomes tighter as we increase the

number of sources, after which we observe a degradation in performance due to the effect
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Fic. 3.4. Performance of IVA in terms of jISI with respect to number of datasets, K, and
number of sources, N. For each N, the performance of IVA improves at first with increase
in number of datasets, until a certain limit, after which the performance degrades with
increase in K. The limit at which the performance changes depends on the number of
sources, for a fixed number of samples.

of high dimensionality.

3.3 Summary

In this chapter, we demonstrate that the performance of IVA depends on a number of
factors such as number of samples, number of datasets, number of sources and the level
of correlation between the marginals of the multivariate sources. To summarize, the IVA
performance degrades with decrease in number of samples and the level of correlation
within the SCVs, and with an increase in datasets and number of sources. For a fixed
number of samples and number of sources, the performance first improves with increase
in number of datasets until a certain limit, after which the performance drops with further

increase in number of datasets. The limit of is determined by the number of sources and
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number of samples. For a higher number of sources, the limit is observed at a lower value
of number of datasets. Since in real-world applications, such as in fMRI data, the number
of samples is fixed, joint analysis of a large sample of subjects becomes a challenging
problem. Additionally the use of a higher model order, i.e., number of sources, is of interest
in fMRI analysis in order to extract more functionally relevant networks [68,|69]], which
further increases the complexity in fMRI analysis.

In this work, we propose the use of prior information regarding the decomposition in
order to address the effect of high dimensionality in IVA. In the next chapter, we talk about
the proposed method to incorporate prior information into the IVA framework, using an
adaptive tuning technique, and demonstrate its potential strength through simulations with

respect to incorporating accurate and inaccurate reference signals.
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Chapter 4

ADAPTIVE CONSTRAINED
INDEPENDENT VECTOR ANALYSIS

This chapter talks about the design of the adaptive constrained IVA (acIVA) algorithm
that effectively incorporates prior information regarding the sources or the columns of the
mixing matrix into the IVA cost function, by adaptively tuning the constraint parameter.
We demonstrates the successful performance of acIVA over the regular constrained IVA

(cIVA), which makes use of a fixed constraint parameter, using simulated data.

4.1 Introduction

The success of IVA is due to its use of a simple generative model that enables flexibil-
ity while minimizing the assumptions placed on the data. However, as discussed in Chapter
E], the performance of IVA suffers in high dimensional scenarios, i.e., when the number of
datasets or the number of sources is large for a fixed, smaller set of samples, and is more
prominent in cases of low level of dependence across the datasets. In many applications,
important prior information about the data is available and incorporating this information
into the IVA framework is expected to improve the estimation of the true latent sources by
providing a better model match. By incorporating prior information into the optimization
process can provide a guidance for the search for a better solution in high dimensional sce-

narios, provided that the information is accurate. Acquiring accurate information about the
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data is equally important in order to obtain meaningful results. This can be challenging
is many applications since prior information extracted from one dataset may not be desir-
able for another dataset. In the case of fMRI analysis, information regarding functional
networks varies across different groups of subjects. Hence using a fixed network structure
extracted from one group of subjects to obtain the networks for a different group of subjects
results in loss of subject-specific information. Hence an algorithm that provides a flexible
way of incorporating prior information is desirable in order to capture variability across a
large group of subjects.

In Chapter [2] we discussed two broader classes of feature extraction techniques for
fMRI analysis, namely, model-driven and data-driven techniques. Model-driven techniques
make stronger assumptions about the data and are robust to noise and other artifacts pro-
vided that the model is correct. However the performance of these methods depends on
the model assumptions, which cannot be generalized to different datasets, limiting their
usage. On the other hand, data-driven techniques make fewer/weaker assumptions about
the data and enable the discovery of functional networks in a data-driven manner. However
the performance of these methods depends on the model order, where the use of a higher
model order results in splitting of functional networks, whereas the use of a lower model
order results in functional networks getting merged with artifact and noise components. A
technique that provides a balance between model-driven and data-driven techniques, and
takes advantage of both is desirable. Incorporating prior information into a data-driven
framework, such as in ICA, relaxes the independence assumption, and yields robust results
[[70]]. With a fair amount of interest to benefit from the known information [[71-76]], a num-
ber of methods have been proposed to incorporate prior knowledge into the optimization
framework [74,/77480]. However, these methods do not make use of the decoupling trick

that relaxes the assumption of orthogonality of the demixing matrices and make use of an
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user-defined threshold to fix the effect of the prior information on the source estimation.
Additionally, these methods are proposed for incorporating reference information regard-
ing sources from one dataset, and cannot be used to exploit common prior information
regarding multiple datasets.

A method was developed in [81] that takes advantage of this diversity, however, the
mathematical framework is limited by the application, speech processing, and requires the
demixing matrices to be orthogonal. Constrained IVA is an effective method that incor-
porates prior information regarding the sources or the columns of the mixing matrix into
the IVA cost function [82]. It employs the decoupling trick that assumes the demixing
matrices are non-orthogonal and relaxes the independence assumption by enabling a de-
sirable balance between data-driven, which minimize the assumptions placed on the data
and model driven methods, which make use of the prior information, which if correct yield
them robust to noise and artifacts.

However, cIVA makes use of a user-defined constraint parameter that fixes the degree
of correspondence between reference signal and the estimated component. The successful
performance of cIVA depends on the selection of prior information and the user-defined
constraint parameter, i.e., when the prior information is incorrect a lower constraint pa-
rameter must be used such that the prior information is not enforced on the decomposition
[67,82]. On the other hand, when the prior information is correct, a higher constraint
parameter must be used such that the components are deterred from effect of noise and
artifacts. However, in most practical applications, the selection of a constraint parameter
becomes difficult since it is unknown whether the information is accurate or inaccurate and
becomes more complicated when information regarding multiple signals need to be incor-
porated. The use of a fixed constrained parameter also affects the estimation of dataset-

specific information, and hampers one of the main objectives of analyzing fMRI data, i.e.,
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preserving subject-specific information.

In this chapter, we introduce the proposed acIVA technique that adaptively tunes the
constrained parameter and relaxes the orthogonality assumption by using the decoupling
trick. We demonstrate the superior performance of cIVA and acIVA in terms of incorpo-
rating multiple reference signals into the IVA framework and in terms of their ability to

preserve dataset-specific information, using simulated examples.

4.2 Adaptive constrained IVA

We will now introduce the formulation for acIVA. Let d,;, [ = 1,..., L, denote the /th
reference sample belonging to a known vector d; and L denote the number of references.
Note that the number of constraints, L, is less than or equal to N, and the index »n and [
can be used interchangeably for constrained sources or mixing vectors. In the following
text we will use index [/ to refer to constrained sources and n to refer to the unconstrained
sources. Given an inequality constraint function, g (fy‘], d,), the mutual information based

cost function in (2.5) is optimized subject to the inequality constraint,
Alk K Al
g dp) = ! < €5, dp. (4.1

where §y‘] = (wgk])T x¥! is the estimated component, €(-,-) is a function that defines the
measure of similarity between the estimated source and reference sample, and py‘] is the
constraint parameter. A simple dot product as the distance metric in (4.1) results the con-
straint function to be of the form a’x > b, where b acts as a lower bound on the product
. Hence provides a more general formulation for the constraint function allowing the
use of different distance functions such as the Euclidean distance, square error and mutual

information. In this work, we use Pearson’s correlation coefficient as the distance function,

e, di) = |oorr (5, )| (4.2)
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The distance function is hence normalized to be between 0 < e(§y‘],d1) < 1, and from

(k]

(4.1) we have 0 < p; < 1. The constraint parameter, p,

, controls the degree of correspon-
dence between reference signal and the estimated factor. The regular cIVA model proposed
in [82] uses a fixed value for the constraint parameter and requires the user to define this
value. However, in most application the effect of the prior information is not known making
the selection of the constraint parameter a difficult task, and may introduce bias. Due to the
presence of variability across datasets, the use of a fixed value for the constraint parameter
does not effectively estimate the underlying components. Naturally, the selection of con-
straint parameter plays an important role in the effective estimation of the sources and leads
to the need for an adaptive way for the method to select the constraint parameter. Hence
we propose to adaptively tune the constraint parameter in order to effectively incorporate
the prior information into the IVA decomposition.

We start by defining a set of possible values for p, denoted as #. Following the def-
inition in (.1)) and (4.2)), we define the set # consisting of values between 0 and 1. The
adaptive tuning technique selects a highest lower bound from this set using the following
criterion,

pit = argmin [|p - [e(s]", )| (4.3)

This updates computes g(§y‘], dy) for all k£ and for each value in set  and selects the highest
value of p, from set % that satisfies the condition in lb for all datasets. A value for ﬁy‘] is
obtained using (@[), at each iteration for all constrained sources, and is further used in the
optimization of the constrained cost function.

In order to integrate the constraint into the IVA cost function, we use the decoupled

version defined in (2.6), which allows the method to individually update each demixing

vector. The constrained cost function defined using the augmented Lagrangian optimization
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function is as follows,

j(wgk]) = JIVA (WE"]) - 2%/1 {[max{O,,uEk] + 718(@5"],0'1)}]2 - (/uE"])z},

where 7y, is the penalty parameter and ,uy(] is the Lagrange multiplier. The gradient of this

function with respect to each demixing vector is given as,

o7 (W) _ 0T1va (W)

_ o (4IK] []
awgk] - awgk] g (S] 7dl)/'ll (dl)a (44)
ROIPAY L <l - [K] TTyA (M) .
where g’ (Sz ,dl) is the derivative of g (Sz ,dl) with respect to w;" and — i 1s com-
1

puted using (2.7). The Lagrange multiplier is updated using gradient ascent,
(k] 0 sk g (K] 4.5
u, — max0,yg(8;,di) + 1 (4.5)

Algorithm [.1] describes the acIVA technique. We randomly initialize the demixing
matrices, WX, set ,uy‘] = 0 and v, to a positive scalar value. At each iteration, we obtain an
estimate of the sources, §Ek], k=1,...,K, [ =1,...,L and estimate p; and ,uy‘] as given in
line 8 and 9 of Algorithm respectively. The update given in line 9 computes g(§y‘], d))
for all k and for each value in set # and selects the highest value of p from set # that
satisfies the condition in for all datasets. The new value of the constraint parameter,
01, 1s then used to compute the gradient, 0./ GWE"], and update the demixing matrix as in
line 9 followed by obtaining a new estimate of the sources. The process is repeated until
the convergence criterion, following the one proposed in [82], is met. The adaptive tuning
technique improves the estimation of the constraint source at every iteration providing a

better solution as compared with using a fixed p; at every iteration.
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Algorithm 4.1 Adaptive constrained IVA (acIVA)

1: Define set P as possible values for p!\’

2: Randomly initialize demixing matrices, [W“J, s W[KJ] and set ! = 0,7y, to be a
positive scalar value
forn=1,...,Ndo
fork=1,...,Kdo
Compute 81 = WIx!H k=1, K
ifne{l,...,L}then
ﬁy‘] = arg min,cp “p - |e(§£k], d1)||]

,uyd = max {0, V8 (ﬁgk], dl) + uy‘]}
Compute 0.9 (wl[“) /ngk] using

Update W}k] = Wy‘] +noJ (wy‘]) / ﬁwy‘]

o)

A Y

else

Compute 69yA JowH] using 1b
9: Update wil = wif! 4+ no g (WLH) JowH!
end

o

end
end

10: Repeat 3 to 13 until convergence

4.3 Simulation results

In this section we study the performance of cIVA and acIVA in terms of incorporating
multiple reference signals into the IVA framework. For this study, we vary the level of
similarity measure between the groundtruth and the reference signal, e(sy‘], d)), in order to
account for choice of accurate and inaccurate reference signals, and in the variability in the
choice of the reference signals. We also study the ability of cIVA and acIVA in terms of

their ability to capture dataset-specific information.
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4.3.1 Comparison of cIVA and acIVA in terms of accurate and inaccurate con-
straints

The goal of this experiment is to study the effect of accurate and inaccurate reference
signals, and also to study the effect of varying the level of similarity between the ground
truth and the reference signal, e(sy‘], d)). In order to vary the level of similarity between the
[£]
1

groundtruth and the reference signal, we vary the correlation between the true source, s

and the reference signal, d;. We consider three different scenarios for this experiment,

Scenario A : The correlation between the reference signal and ground truth is high for all

sources

Scenario B : The correlation between the reference signal and ground truth is high for

some sources and low for remaining sources

Scenario C : The correlation between the reference signal and ground truth is high for

some sources, low for some sources and zero for remaining sources

The datasets are generated as follows for each of the scenarios. We generate M = 5
datasets such that x/¥ = AKIs® k = 1, .. K, where the mixing matrix for each dataset,
AK€ RMN is randomly generated with elements drawn from a normal distribution with
zero mean and unit variance. The N = 5 SCVs are formed from K-dimensional SCVs of
V = 10* samples. Each SCV is generated from a multivariate Laplacian distribution where
the scatter matrix, X, has a uniform-type correlation structure, as discussed in Appendix
Al. For this experiment, we generate a high correlation parameter, ¢ ~ U (0.7,0.9), such
that the sources within an SCV do not deviate much from its mean. We constrain N = L =5
SCVs and the reference signal for each SCV is generated such that it is e(st], d,) correlated

with the mean of the SCV. The values for €(-, -) for each scenario are as follows,

Scenario A : e(s,[f],dn) =08, n=1,...,5
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Scenario B : e(s™,d,) = 0.8, n = 1,2 and (s, d,) =04, n =3,4,5

Scenario C: e(s™,d,) =08, n =1, e(s¥.d,) = 04, n = 2,3 and (s, d,) = 04, n =
4,5.

We measure the performance of cIVA and acIVA in terms of jISI computed over 50
runs. The statistics of the jISI metric over 50 runs for each method is shown in Fig. {.1]
The red line indicates the median value, the bottom and top edges of the box indicate the
25th and 75th percentiles respectively, and the whiskers indicate the 99.3 percent coverage
of the data. The *+’ markers indicate outliers.

Fig. a) shows the results for Scenario A, when the correlation between all the
sources and corresponding reference signals is equal. The results indicate that for cIVA,
jISI is higher and more variable for a lower value of the constraint parameter, indicating
a weaker constraint. As we increase the value of the constraint parameter, to increase the
effect of the reference signal the jISI value decreases and the result is less variable for 50
runs. The jJISI is low and less varying for acIVA indicating its superior performance to
estimate the true sources.

Fig.[d.1(b) shows the results for Scenario B, when the correlation between two sources
and corresponding reference signals is 0.8 and for remaining three sources, it is 0.4. We
observe a comparatively high median value and high variability when a constraint parame-
ter of 0.1 is used. For a constraint parameter greater than 0.3, the median value is high and
variability is less, indicating thing that cIVA starts to enforce the reference signal for the
sources with e(s,[f], d,) = 0.4. The median and variability of JISI metric for acIVA is less for
this scenario indicating that acIVA efficiently incorporates multiple reference signals with
varying levels of correlation.

Fig. c) shows the results for Scenario C, when the correlation between one source

and corresponding reference signal is 0.8, for remaining two sources it is 0.4 and remain-
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Fig. 4.1. Effect of multiple reference signals with varying e(sy‘],dl). (a) Scenario A :
e(sil,d,) = 0.8, n = 1,...,5. (b) Scenario B : €(s)\',d,) = 0.8, n = 1,2 and €(s}}’, d,) =
0.4, n = 3,4,5. (c) Scenario C : (s, d,) = 0.8, n = 1, e(sh",d,) = 0.4, n = 2,3 and
e(s,[f], d,) = 0.4, n = 4,5. The performance of acIVA is better than cIVA for all Scenarios,
indicating that acIVA is not affected by the use of inaccurate constraints and efficiently
incorporates a range of accurate constraints into the decomposition.

ing two sources it is 0. This scenario is a better match to real-world application where the
choice of reference signals is not known, and covers a range of accurate and inaccurate con-
straints. For this Scenario, the jISI for cIVA is high compared to acIVA and the jISI value

for cIVA obtained for Scenarios A and B. This indicates that cIVA enforces inaccurate
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constraints on the decomposition, and this affects the estimation of sources corresponding
to the accurate constraints as well. On the other hand, acIVA has low jISI for this sce-
nario, indicating that it effectively incorporates inaccurate and accurate constraints into the

decomposition.

4.3.2 Comparison of cIVA and acIVA in terms of capturing dataset-specific in-
formation

We generate M = 5 datasets such that x!*! = AKIsKI k=1, ... K, where the mixing
matrix for each dataset, AXl € RV s randomly generated with elements drawn from a
normal distribution with zero mean and unit variance. The N = 10 SCVs are formed from
M-dimensional SCVs of V = 10* samples. Each SCV is generated from a multivariate
Laplacian distribution where the scatter matrix, X, has an AR-type correlation structure, as
discussed in Appendix Al. We use the AR-type correlation structure in order to incorporate
variability across datasets, such as in dynamic analysis of fMRI data. Among the 10 SCVs,
first five are generated with medium to high second-order correlation, ¥ ~ U (0.5,0.9),
and the remaining five with lower second-order correlation, ¢ ~ U (0.2,0.5). A reference
signal is generated such that it has e(sy‘],d,) correlation with the mean component of the
first SCV. We consider three scenarios to test the performance of acIVA to cover the range

of possibilities,

Scenario A: The correlation between the reference signal and ground truth is high,

(s, d) = 0.6

Scenario B: The correlation between the reference signal and ground truth is low,

e(s',d) =03

Scenario C: The correlation between the reference signal and ground truth is zero,

e(sgk], dy) = 0. This scenario accounts for use of inaccurate constraints.
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For each scenario, acIVA is applied with the set # defined as 0.001,...,0.9, v, = 3 and
cIVA with fixed constraint parameter for 50 runs using the IVA-L-SOS algorithm. We
tested the performance of the acIVA approach using different values of y; between 1 and
1000, and observed no change in the performance. In this work, we set y; = 3 following
[82]]. For cIVA with a fixed constraint parameter, we vary p from 0.001 to 0.9, where
p = 0.9 corresponds to stronger influence of the constraint and p = 0.001 corresponds to
weaker influence.

We measure the performance of the methods in terms of jISI, and dissimilarity be-
tween the constrained estimated source and ground truth. The average of the jISI metric
computed over 50 runs for each method is shown in Figure. 4.2] For each scenario in
Figure. JISI obtained using regular cIVA increases when the constraint parameter is
fixed to a value above the true parameter value indicating poor separation of the sources.
On the other hand, acIVA demonstrates lower jISI for all three scenarios indicating good
separation performance. The constraint parameter selected at each IVA iteration for the
three scenarios for all 50 runs is shown in Figure 4.3] We can see that the parameter con-
verges to the true value (indicated by ‘x’) for all the scenarios. The true value is computed
by plugging in the true constrained sources, sgm], into the equation in line 9 of Algorithm
1. Hence, it is lower than p,,,. for scenarios A and B. In order to verify if the proposed
method accurately estimates the constrained source across time windows, we measure the

alml

dissimilarity factor, @, between the constrained estimated source, §;", and corresponding
ground truth, SE'"], computed as, @ = 1 — /M Zf,‘le corr (@Em], sgm])‘. A higher value of this
metric indicates poor estimation of the sources. Figure. d.4] shows the dissimilarity fac-
tor obtained using regular cIVA and acIVA for the three scenarios. The estimation of the

constrained component degrades using regular cIVA when a higher constraint parameter

is used whereas the proposed method has low dissimilarity factor for scenarios A and B.
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Fic. 4.2. Performance of cIVA with fixed constraint parameter varied from p =
0.001,...,0.9 and acIVA with # € {0.001,...,0.9} in terms of jISI for the three scenarios.
The performance of cIVA with fixed constraint parameter degrades if the parameter is fixed
to value higher than the true constraint parameter whereas acIVA has low jISI for all three
scenarios.

Noting the lower jISI and dissimilarity factor metric for lower values of p in regular cIVA,
it might be initially thought that cIVA might be preferable rather than acIVA . However,
since in real world applications, one does not know the true value of the constraint parame-
ter and whether the constraint is present or not, setting a lower value for p might adversely
affect the performance of the estimation. For scenario C, i.e., when the constraint is not
present, acIVA demonstrates better performance than regular cIVA for lower values of p.
At p = 0.001, which is equivalent to performing unconstrained IVA, the jISI value is sim-
ilar to that of acIVA, however the dissimilarity factor is high for all scenarios, indicating a
weaker influence of the constraints on the source. For scenario C the estimated constraint

parameter, p,, is 0.001, imposing a weaker constraint on the IVA decomposition. This is
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Fic. 4.3. Constraint parameter selected at every IVA iteration for all 50 runs for scenarios
A, B and C. The marker ‘*’ indicates the corresponding true value of p. The estimated
constraint parameter using acIVA converges to the true value for all scenarios.

equivalent to performing regular IVA that holds permutation ambiguity. Thus the dissim-
ilarity factor between the estimated source and constraint source is high even though the

jISI value is low.

4.4 Summary

In this chapter, we describe the proposed acIVA technique, that adaptively tunes the
constraint parameter to control the effect of accurate and inaccurate constraints on the de-
composition. We demonstrate the performance of cIVA, which makes use of a fixed value
for the constrained parameter, and acIVA in terms of varying the level of correlation be-
tween the true sources and the reference signals, and in terms of their ability to capture
dataset-specific information. Our results indicate that acIVA performs better than cIVA for

a range of scenarios, increasing our confidence to use it on the analysis of large-scale fMRI
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Performance of cIVA with fixed constraint parameter varied from p
,0.9 and acIVA with £ € {0.001,...,0.9} in terms of dissimilarity factor for
(a) Scenario A, (b) Scenario B and (c) Scenario C. For each box, the horizontal red line
indicates the median, the top and bottom edges indicate the 75th and 25th percentiles, re-
spectively, the whiskers show the extreme points not considered as outliers and the "+’
symbol indicate outliers. The dissimilarity factor of the constrained component is low for

acIVA whereas it increases using regular cIVA when a higher constraint parameter is used.

data and to extract time-varying spatio-temporal patterns from fMRI data.

In the next chapter, we investigate the performance of acIVA on high dimensional

datasets using a simulation data and real-world resting state fMRI dataset.
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Chapter 5

EXTRACTION OF FUNCTIONAL NETWORKS FROM
LARGE SCALE FMRI DATA

In this chapter we discuss the potential use of applying acIVA on high dimensional
datasets. We study the performance of acIVA and standard IVA using simulated and real-

world resting-state fMRI dataset.

5.1 Introduction

Neuroimaging analysis has allowed for the identification of distinguishing character-
istics of the human brain based on gender, age, addiction, and different brain disorders.
Neuroimaging modalities such as functional magnetic resonance imaging (fMRI), struc-
tural MRI, magnetoencephalography, and positron imaging tomography, have proven to
be effective in capturing different properties of the brain at a wide range of spatial and
temporal resolutions. With the availability of such effective tools for capturing brain ac-
tivity, the use of datasets acquired from more number of subjects has increased in order to
obtain robust and reliable estimates. Most joint blind source separation methods become
increasingly complex when the dimensionality of the model increases, causing estimation
of unreliable solutions [67,[83]]. Few approaches to mitigate the high dimensionality issue
involves extraction of per subject features summarizing the overall temporal activity as in

[841185], transformation of high-dimensional datasets to a lower dimensional feature space

52



such as in group independent component analysis (gICA) [9,/10], multisubject dictionary
learning [[86]], tensor decompositions [[83]], or using prior information such as regions-of-
interest (ROI) or a task paradigm in a regression type analysis to analyze a single subject
at a time. Some approaches adopt on a divide-and-conquer approach that divide the high
dimensional problem into a series of smaller dimensional problems and carefully com-
bine the results [87,88]]. Although these approaches have successfully identified relevant
biomarkers, they are prone to loss of information, sensitive to ROI selection and do not
exploit the complimentary information across multiple subjects.

In this chapter, we study the potential use of acIVA to overcome the high dimension-
ality issue for the case when the sources have low correlations across datasets. We consider

this case, as it is a better match to the fMRI sources.

5.2 Application to simulated data

In order to study the performance of acIVA over regular IVA on high dimensional
datasets, we generate simulated datasets similar to the set-up described in Section ??. We
vary the number of datasets, K, from 2 to 60, and number of sources, N, from 40 to 85,
with fixed sample size V = 1000. The SCVs are generated from a multivariate Laplacian
distribution with a covariance structure, X = QQT, qij = N (0.1,0.3). This structure re-
sults in moderately low correlated sources that is a good match to the fMRI sources. The
fMRI sources are known to have a super-Gaussian distribution [8]], such as the multivariate
Laplacian distribution, and these sources demonstrate low to moderate level of correlation
across datasets, see Appendix A3. The sources are linearly mixed using a randomly gener-
ated mixing matrix for each dataset to obtain the observation set, XM, We generate three
different observation sets by randomly generating the mixing matrices and sources for each

set. We obtain 20 runs of regular IVA and acIVA using the IVA-L-SOS algorithm. For
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acIVA half of the total number of sources are used as constraints, L = N/2, y, = 3 and the
set P is defined as 0.1,...,0.9. The reference signal for the constraint source is obtained
by computing the mean of the SCV. We measure the performance of the two methods using
jISI, which measures the estimation of the whole demixing matrices, and spatial correla-
tion, which measures the estimation of the individual sources of interest. For regular IVA
we align the estimated sources with respect to the original sources, whereas for aclVA
no additional alignment step is required to align the constrained sources. The average of
the jISI metric and spatial correlation of the constrained sources across 20 runs and three
observation sets for IVA and acIVA is shown in Fig.[5.1[(a) and Fig.[5.1|b) respectively.
From Fig.[5.1) we observe that IVA performance improves with increase in number of
datasets upto a certain limit for different numbers of sources. This range can be defined
as the optimal range in which there are sufficient samples available for IVA to accurately
estimate the underlying parameters. In this range, however, the application of acIVA does
not improve the performance compared with IVA, indicating that it is the lower bound on
performance for the fixed choice of algorithm and number of samples. The range of optimal
performance, however, becomes tighter as we increase the number of sources, after which
we observe a degradation in performance due to the effect of high dimensionality. The
application of acIVA in this high dimensional range however shows a significant improve-
ment in performance, indicating that the use of prior information is providing reference to

the search for an optimal solution in IVA.

5.3 Application to real fMRI data

We use a large-scale resting-state fMRI dataset acquired from 327 subjects (164 fe-
male and 163 male) at the Mind Research Network [56]]. All images were collected on a

3-Tesla Siemens Trio scanner with a 12-channel radio frequency coil. T2*-weighted func-
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FiG. 5.1. Performance of IVA and acIVA in terms of jISI (a) and spatial correlation (b), with
respect to number of sources, N and number of datasets, K. The number of sources, N, is
varied from 40 to 85, the number of datasets, K, is varied from 2 to 60, and the number
of samples ,V, is fixed at 1000. For acIVA, half of the components are constrained, i.e.,
L = N/2. For K = 40 and N = 40 none of the IVA runs converged in 1024 iterations.
(a) The jISI is averaged across all converged runs for both acIVA and IVA. We observe
degradation in performance of IVA for higher number of datasets, across different values of
N whereas acIVA provides improvement in performance compared to IVA. (b) The spatial
correlation of the constrained sources with groundtruth is averaged across all converged
runs. We see that acIVA was able to recover the constrained sources in high-dimensional
scenarios, however IVA showed poor performance.

tional images were acquired using a gradient-echo EPI sequence with TE = 29 millisec-
onds, TR = 2 seconds, flip angle = 75°, slice gap = 1.05 millimeters (mm), slice thickness
= 3.5 mm, field of view = 240 mm, matrix size = 64 x 64, voxel size = 3.75 mm X 3.75
mm X 4.55 mm. The participants were asked to keep their eyes open during the scan and
stare passively at a fixation point for 5 minutes, 4 seconds (152 volumes). Any additional

volumes were discarded to match data quantity across participants. Images were realigned
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using INRIalign, and slice-timing corrected using the middle slice as the reference frame.
Data are then spatially normalized into the standard Montreal Neurological Institute (MNI)
space, resliced to 3 mm X 3 mm X 3 mm voxels, and smoothed using a Gaussian kernel
with a full-width at half-maximum (FWHM) of 10 mm. Masking using the group ICA for
fMRI toolbox (GIFT) was performed on each volume to remove the non-brain voxels and
vectorized, resulting in an observation set for the kth subject as, X%l € R152x38541,

The knowledge of the desired outcome is available is most applications and in fMRI
analysis, the desired outcome could be the structure of the functional networks, the na-
ture of the time course, or subject class information to enhance the estimation of group-
differentiating features [82]. In resting-state fMRI data, the nature of the time course is
not known, and using subject class information is a complicated task for the IVA model in
Fig[2.5] hence in this work we incorporate the structure of functional networks as reference
signals.

The reference signals for acIVA are extracted using the group ICA for fMRI toolbox
(GIFT). The model order, that determines the dimension of the signal subspace, is obtained
as the mean plus one standard deviation of the orders computed across all subjects. The
mean and standard deviation of the orders estimated using the entropy rate based order
selection by finite memory length model (ER-FM) [[89]], which incorporates sample depen-
dence into the information theoretic criteria, is 79.56 and 8.98 respectively. We select the
final order as 90. ICA using the entropy-rate bound minimization algorithm [52,53] is
applied on the subject datasets to estimate 90 components. We select L = 42 group-level
independent components corresponding to functionally relevant resting-state networks by
visual inspection and these components are used as reference signals in acIVA.

We perform acIVA on male and female group separately using the group ICA com-

ponents as reference signals. Each subject’s data is dimension reduced using principal
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component analysis in order to remove noise from the data and N = 55 uncorrelated com-
ponents are used to form a dimension reduced dataset, X! € R3>384! for each subject.
Five runs of acIVA using the IVA-L-SOS algorithm are obtained with different initializa-
tions and the best run is selected using the cross jISI method, which is an extension of
the method proposed in [63] to multiple datasets. The estimated demixing matrices of the
selected run are used to compute the sources. The estimated sources from the selected run

and the corresponding reference components are shown in Appendix A2.
5.3.1 Identification of associated networks

The use of reference signals enables the identification of functionally associated net-
works due to the adaptive nature of acIVA that allows for flexible estimation of the sources.
It naturally groups the regions that have correlated and anti-correlated relationship with
the reference signal. The default mode network (DMN) is a large-scale brain network of
interconnected brain regions that form hubs and subsystems. It is commonly known to
be activated when the person is in the resting-state with thoughts pertaining to oneself,
others, the past and future, and hence is one of the widely explored network in various
disorders. The core functional hubs of DMN are located in the medial prefrontal cortex
(mPFC), posterior cingulate cortex (PCC), Precuneus and angular gyrus (AG). The acIVA
method identified the core default mode network in IC 21, when only mPFC is used as
the reference signal, as shown in Fig. This IC also shows activation in the regions
of the central executive network namely the dorsolateral prefrontal cortex (dIPFC) and the
posterior parietal cortex (PPC), which has shown anti-correlation with the default mode
network [90]. Similarly for IC 22, the ventrolateral prefrontal cortex (vIPFC) is extracted
along with posterior DMN (PCC+AG) using acIVA for a corresponding reference signal
showing activation in the AG. For IC 23, the anterior cingulate cortex (ACC) and regions

are extracted along Precuneus. The ACC and INS regions form the salience network that
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plays a critical role in switching between DMN and CEN [90,91]]. The reference signal in
IC 24 consists of the regions associated with the dorsal medial subsystem [92]], namely the
temporoparietal junction (TPJ), lateral temporal cortex (LTC), temporal pole (TempP). The
dorsal medial subsystem also consists of dmPFC which is extracted using acIVA alongwith
the reference signal. Precuneus and anterior mPFC (amPFC) have shown strong associa-
tion with the dorsal medial subsystem and act as functional hubs for information transfer

across the subsystem [92]].
5.3.2 Performance of acIVA and gICA in terms of preserving subject-variability

In this section, we study the performance of acIVA in terms of its ability to preserve
subject-specific information using two techniques, namely, ‘variability maps’ and captur-
ing gender differences in spectral power, and compare its performance with the widely-
used gICA technique for fMRI analysis [9,|10]. The acIVA technique computes subject-
specific spatial maps and time courses, where the dependent components are grouped to-
gether to form an SCV. In order to obtain subject-specific spatial maps and time courses
for gICA, the group level ICs/reference signals are back-reconstructed using PCA-based
back-reconstruction [8]].

The variability map for each component is obtained as the standard deviation at each
voxel computed across subjects. The results for the variability maps for the components
associated with the DMN are shown in Fig. The maps from acIVA demonstrate high
standard deviation across subjects, at voxels corresponding to meaningful regions in the
DMN and dorsal medial subsystem, whereas glCA demonstrates lower standard deviation
at these voxels. This suggest that since glCA performs a significant dimensionality reduc-
tion step in the group-level PCA stage, most of the variability associated with individual
subjects is lost. Hence, the subject-specific components from gICA are mostly centered

around the group ICs with a low standard deviation. However, since acIVA does not per-
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Fig. 5.2. Components estimated using acIlVA and corresponding reference signal, which
are the group-level components of GICA. Our results indicate that the proposed acIVA
technique naturally groups together associated networks, e.g., acIVA identified the whole
default mode network (PCC, mPFC, AG) when only the anterior DMN (mPFC) was used as
the reference signal. (Abbreviations: medial prefrontal cortex (mPFC), anterior cingulate
cortex (ACC), posterior cingulate cortex (PCC), angular gyrus (AG), dorsolateral prefrontal
cortex (dIPFC), posterior parietal cortex (PPC), ventrolateral prefrontal cortex (vIPFC),
insular (INS), dorsal medial prefrontal cortex (dmPFC), temporoparietal junction (TPJ),
lateral temporal cortex (LTC), temporal pole (TempP).
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form the group-level dimensionality reduction step, it is able to capture the variability as-
sociated with each subject resulting in a higher standard deviation.

We compare the performance of acIVA and gICA in terms of capturing gender dif-
ferences in spectral power. We obtain the component power spectra for all subjects using
the time courses from acIVA and gICA, and identify differences using a two-sample #-test
between male and female group at each frequency level. The components showing signif-
icant difference (p < 0.05, corrected) are shown in Fig.[5.4] Significantly higher spectral
power is observed in the male group at low frequencies (< 0.05 Hz) in few motor (ICs 5),
frontal (IC 22) and DMN (IC 33) components. High spectral power in the motor (IC 5)
and frontal component (IC 22) is also observed in a similar study [56]]. Significantly higher
spectral power is observed in the female group at higher frequencies (0.05 to 0.15 Hz) in
the frontal component (IC 22) and visual component (IC 30). In general, our results show
high spectral power in the female group in the frequency range 0.05 to 0.15 Hz across the

motor, parietal, frontal, visual, DMN and cerebellum components, although not significant.

5.4 Discussion

In this work, we present the acIVA algorithm that efficiently incorporates prior in-
formation regarding the sources or the columns of the mixing matrix, into the IVA de-
composition and demonstrate its potential use in the analysis of large-scale datasets. Our
results from Fig. [5.1] indicate that acIVA provides reliable and meaningful estimation of
the underlying sources when there are insufficient samples available with respect to the
number of sources and datasets. Although acIVA demonstrated superior performance than
regular IVA for higher number of datasets, it is not impervious to the effect of high di-
mensionality. As the number of dimensions approaches the number of samples or in the

sample-poor regime, where the number of samples are less than the number of dimensions,
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Fic. 5.3. Variability maps (threshold at 1) for acIVA and gICA. High standard deviation is
observed at voxels corresponding to the DMN and dorsal medial subsystem for acIVA as
compared to gICA.
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FiG. 5.4. Frequency range that demonstrates significant (p < 0.05) difference between male
and female group, displayed as —sign(#)log,,(p). Hot colors demonstrate higher spectral
power in female group whereas cold colors indicate high spectral power in male group.
The line on the colorbar indicates the FDR-corrected threshold (p = 0.05) for significance.
Higher spectral power is observed in the male group at low frequencies (< 0.05 Hz) for
the motor, frontal, visual and DMN components, whereas females show higher spectral
power at high frequencies (0.05 to 0.15 Hz). The acIVA technique better captures gender
differences than gICA technique, indicating its ability to preserve subject variability.
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the performance of acIVA is expected to drop, as observed in Fig. at N = 85 and
K = 160. However, this drop in acIVA performance is observed at a more extreme case as
compared with regular IVA. Additionally, the jISI results from Fig.[5.1[(a) show that the per-
formance of acIVA is slightly affected in the sufficient sample regime for some cases, e.g.,
N = {40, 55}, K = {40, 60}. The spatial correlation of the constrained sources for the cor-
responding points demonstrates similar performance as IVA, indicating that the estimation
of the unconstrained sources is penalized to some degree. This effect can be reduced by in-
corporating prior information regarding the remaining sources. It should also be noted that
the performance of acIVA depends on the number of constraints, i.e., aclVA performance
might improve further if prior information regarding all the sources is incorporated.
Data-driven techniques are most popular in the analysis of fMRI data due to its flexible
nature that allows for identification of natural relationships that were not derived a-priori
[7,[8]. On the other hand model-driven methods such as region-of-interest based methods
make stronger assumptions regarding the nature of the decomposition, and are robust to
noise and other artifacts. Typically model-driven methods extract associated regions from
resting-state fMRI data by identifying voxels that have correlated activation patterns with
a pre-defined region-of-interest or a seed voxel. These methods usually outperform the
data-driven techniques only when prior information is accurate [/4]]. Data-driven methods,
on the other hand, are flexible, but might result in splitting of the correlated regions into
multiple components for a high model order as seen in Fig.[5.2] A comparison of data-
driven, model-driven and semi-BSS method on task-related fMRI data demonstrated robust
performance of semi-blind ICA in the presence of noise and when the prior information
is not completely accurate [74]. The acIVA technique provides a balance between data-
driven and model-driven techniques, and takes advantage of the robustness properties of

model-driven methods and flexible nature of data-driven techniques. The use of adaptive
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parameter tuning technique allows for flexibility for the associated regions to interact and

does not enforce the sources to be exactly similar to the reference component, as shown in

Fig.

5.5 Summary

In this chapter, we demonstrated the potential use of acI[VA on high dimensional
datasets using simulated example. We showed that acIVA demonstrates superior perfor-
mance than IVA in terms of jISI for higher number of datasets and sources, for a fixed set
of samples. We measured the performance of acIVA and IVA in terms of spatial correlation
between the estimated source and ground truth and observe that acIVA results in high cor-
relation values. This indicates that incorporating reference signals into the IVA framework
significantly improves the estimation of the underlying sources, in high dimensional sce-
narios. We also applied acIVA on a large scale fMRI data to extract functionally relevant
networks. Our results indicate that the acIVA extracts meaningful functional networks from
large-scale fMRI data while successfully preserving subject variability, while standard IVA
did not converge on this dataset. It identified the default mode network when only parts of
the network are used as reference signals. It also identified hubs within the default mode
network when regions of the dorsal medial subsystem are used as reference signals. The
acIVA technique also captures gender differences in spectral power, where higher spectral
power is observed in males at low frequencies, and higher spectral power is observed in
females at high frequencies in the motor, attention, visual and default mode networks.

In the next chapter, we talk about our proposed method to extract time-varying spatio-
temporal patterns from large-scale fMRI data. The proposed method exploits variability in

both spatial and temporal domains using a sliding-window based acIVA framework.
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Chapter 6

EXTRACTION OF TIME-VARYING
SPATIO-TEMPORAL PATTERNS FROM
LARGE-SCALE FMRI DATA

6.1 Introduction

Dynamic functional network connectivity (dFNC) analyzes the time-varying associa-
tions among different regions of the brain and has been widely studied in order to identify
correlations between functional changes and cognitive abilities ([15,93,94]]). In order to
identify these functional patterns of different brain regions, conventional methods identify
groups of temporally coherent voxels, referred to as spatial maps, and their corresponding
activation patterns, referred to as time courses ([95]). Followed by the estimation of time
courses, a sliding window is applied on the time courses that divides it into consecutive
windows and an analysis on the time points within each window is performed ([[19]]). The
analysis of dFNC patterns depends on the length of the window, where the use of a longer
window length increases the risk of averaging the temporal fluctuations of interest resulting
in false negatives ([96]]), and the use of a shorter window length has too few samples for
a reliable computation of correlation ([97]]), resulting in the temporal variations to capture
spurious fluctuations and increasing the risk of false positives ([15,98,99]). Previous stud-
ies have shown that a window length between 30-60 seconds successfully estimates tempo-

ral fluctuations in resting-state functional magnetic resonance imaging (fMRI) data ([96])),
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and for most cases higher window lengths do not alter the results significantly ([100-102]).
However, there is a lower bound in being able to capture fluctuations due to the limited
number of samples, limiting the use of dFNC analysis in the temporal domain.
Conventional methods also estimate the time-varying FNC patterns of the spatial net-
works while assuming that the spatial network itself is stationary. However, studies have
shown that changes in the FNC patterns imply changes in the spatial networks ([103]).
Hence, spatio-temporal dFNC analysis relaxes the assumption of stationarity in both the
spatial and temporal domain, and provides a more general framework for capturing time-
varying FNC patterns ([32,(33,/104]). The availability of higher number of samples in the
spatial domain also guarantees reliable estimation of functional correlations ([97]), thus
providing a promising direction for the use of spatial domain for dFNC analysis. However,
the methods used to extract time-varying spatio-temporal patterns face few challenges. Re-
gion of interest based methods use pre-defined resting-state networks causing the estimated
functional connectivity to be sensitive to network selection. Dynamic mode decomposition,
a spatio-temporal modal decomposition technique, requires significant dimension reduction
that may restrict the method to estimate fewer dynamic components ([33]]). In this work,

we propose the use of IVA for capturing time-varying spatio-temporal patterns.

6.2 IVA for capturing dynamic spatio-temporal patterns

Independent vector analysis (IVA) provides a general and flexible framework to
spatio-temporal dFNC analysis and estimates window-specific time courses and spatial
maps. Due to its flexible nature, it has been successfully applied to fMRI data to captue
variability in spatial networks of patients with schizophrenia and healthy controls [[104].
The method proposed in [104] divides each subject’s data is divided into M overlapping

windows of length L resulting in a total of KM datasets, where K is the number of subjects,
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Fic. 6.1. Sliding-window based IVA technique for capturing time-varying spatio-temporal
patterns from fMRI data. Each subject’s data is divided into M windows of length L result-
ing in a total of KM datasets, where K is the number of subjects. Performing IVA on these
KM datasets, results in window-specific time-courses and spatial maps, which are maxi-
mally independent within each window and dependent across windows and subjects. An
SCV groups the dependent sources from KM datasets together and represent the temporal
evolution of a spatial region for each subject.

as shown in Fig[6.1] Performing IVA on these KM datasets, results in window-specific
time-courses and spatial maps, which are maximally independent within each window and
dependent across windows and subjects. An SCV groups the dependent sources from KM
datasets together and represent the temporal evolution of a spatial region for each subject.
While this approach assumes variability in both spatial and temporal domain, and
successfully captures the dynamics of the spatial networks, it is limited to a small number
of subjects (20 subjects analyzed in [104]]) due to effect of high dimensionality to which
IVA is susceptible. The flexibility of IVA comes at a cost that for a fixed number of samples,
its performance degrades with the increase in number of datasets and number of sources

since it requires estimation of high-dimensional probability density functions, as discussed

in Chapter 3]
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In this work, we develop a two-stage procedure while addressing two important points:
(1) use of a flexible model, like IVA, that captures variability in both spatial and tempo-
ral domain, and (2) address the performance degradation with high dimensionality in IVA,
while preserving the variability in both domains for application to large scale fMRI data.
One way to reduce the effect of high dimensionality in IVA is through the use of refer-
ence signals to limit the size of the solution space, using acIVA. The two-stage procedure
includes extraction of a common stationary representation of the spatial maps and using
these as reference signals in acIVA to capture their variation in the temporal and spatial
domain. The use of acIVA preserves variability across time windows and reduces the un-

desirable effects of high dimensionality by enabling analysis of each subject at a time.

6.3 Implementation

In this section, we present the methodology to capture time-varying spatial and tem-
poral components using acIVA. This method extracts steady-state representation of func-
tionally relevant components from all subjects using gICA followed by performing acIVA

on each subject to obtain the time-varying representations of these components as shown
in Figure[6.2]
6.3.1 Extraction of reference signals

The proposed implementation provides flexibility in the choice of the method used
to extract the exemplar components. The two most predominant methods used to extract
RSN are seed-based techniques and spatial ICA. Seed-based methods extract voxels that
exhibit temporal dependencies with respect to a user-defined seed voxel or region of inter-
est (ROID) [105H111]. Spatial ICA is a data-driven technique that decomposes the observed
data into maximally independent spatial maps that correspond to regions with similar time

courses [[112-114]]. Matrix decomposition techniques such as multiset canonical correla-
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Fic. 6.2. The two-stage method for obtaining time-varying spatial networks and corre-
sponding time courses. (a) Reference signals are obtained using gICA from all subjects.
These signals represent the stationary representation of the brain regions. (b) Each subject
data is divided into windows and acIVA is applied on the windowed datasets with features
extracted from gICA used as reference. The sliding-window acIVA framework extracts the
time-varying representation of the reference signals, which is reflected in an SCV.

tion analysis (MCCA) [115], population value decomposition [116], nonnegative common
feature extraction (NCFE) [117]], shared dictionary learning [118], joint and individual
variation explained (JIVE) and common orthogonal basis extraction (COBE)
extracts common and individual features from multiple subjects. Templates of resting-

state networks of interest that are pre-defined based on extensive studies of resting-state
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fMRI data can be used as exemplars. Sparsity-learning methods such as dictionary learn-
ing ([86]) or sparse ICA ([121]]) can be used to extract more focal spatial components. One
of the widely used methods for extraction of components from multiple subjects is group
independent component analysis (gICA) that estimates a common subspace consisting of
the most informative components across all subjects ([9,/10]). In this work, we perform
gICA on all subjects to extract exemplars of resting-state networks using the group ICA for
fMRI toolbox (GIFT). gICA performs a subject-level principal component analysis (PCA)
to extract the signal subspace for each subject followed by a group-level PCA on the prin-
cipal components (PCs) from all the subjects. In order to exploit higher order statistics,
it performs independent component analysis (ICA) on the group-level PCs. The details of

gICA are described in Section|2.1.3
6.3.2 Sliding-window based acIVA

In the second stage, we divide each subject’s data into M windows of length L with
an 50% overlap yielding a total of MK windows. Considering all the MK windows in
the analysis results in IVA to model MK-dimensional SCVs from the fixed V samples.
However, as discussed, the performance of IVA degrades with a large number of datasets
and sources for a fixed number of samples. Thus, we perform a subject-level analysis to
mitigate the high dimensionality issue by modeling a M-dimensional SCV instead of a M K-
dimensional SCV by performing a subject-level IVA, where the windowed data from each
subject defines a dataset. Using this setup, IVA also takes advantage of source dependence
across windows since the spatial maps are expected to change smoothly across windows,
thus aligning the components across windows. The N reference signals, d,, n = 1,..., N,
obtained from gICA are used as constraints in acIVA to constrain the first SCVs for each
subject. The acIVA technique we introduced in Chapter 4| enables each window to have a

different level of correlation with the constraint and setting a fixed value for the constraint
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parameter can deteriorate the estimation of the SCVs as shown in the simulation examples

in Chapter 4]

6.4 Identification of resting-state dynamics

We use a large-scale resting-state fMRI data obtained from the Center for Biomedi-
cal Research Excellence (COBRE), which is available on the collaborative informatics and
neuroimaging suite data exchange repository (http://coins.mrn.org/dx) [60], to capture the
variability using the proposed pipeline. This resting-state fMRI data includes K = 179 sub-
jects: 91 healthy controls (HCs) (average age: 38 + 12) and 88 patients with schizophrenia
(SZs) (average age: 37 + 14). For this study, the participants were asked to keep their
eyes open during the entire scanning period. The resting fMRI data were obtained using
a 3-Tesla TIM Trio Siemens scanner with TE = 29 ms, TR = 2 s, flip angle = 75°, slice
thickness = 3.5 mm, voxel size = 3.75 x 3.75 x 4.55 mm? and slice gap = 1.05 mm. Image
scans were obtained over five minutes with a sampling period of 2 seconds yielding 150
timepoints per subject. We removed the first 6 timepoints to address T1-effect and each
subject’s image data was pre-processed including motion correction, slice-time correction,
spatial normalization and slightly re-sampled to 3 x 3 x 3mm? yielding 53 X 63 x 46 voxels.
We perform masking on each image volume to remove the non-brain voxels and flatten the
result to form an observation vector of V = 58604 voxels, giving 7 = 144 time evolving
observations for each subject. Each subject’s data is normalized to zero mean per time
point and whitened.

In order to extract the reference signals using a data-driven approach, we perform
gICA using the Group ICA for fMRI (GIFT) toolbox (http://mialab.mrn.org/software/gift)
on the resting-state fMRI data. We estimate the model order for each subject using the

minimum description length criterion that accounts for sample dependence ([|122]) and
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the final order is selected as the mean (30) plus one standard deviation (5) across all sub-
ject’s model orders. The dimension of the signal subspace in the subject-level PCA stage
is set as 53 and the order for the group-level PCA stage is set as 35. By default, GIFT
selects the subject-level PCA order (53) to be 1.5 times the final order (35). ICA using
the entropy rate bound minimization algorithm (ERBM) [52,53] is used to estimate 35
components/networks. ERBM is a flexible ICA algorithm that exploits multiple statistical
properties of the sources such as sample dependence and higher order statistics, and pro-
vides a better estimation of fMRI sources ([?,54]]). The ICA algorithm is run 10 times and
the best run is selected using the minimum spanning tree approach ([123]). Among the 35
group-level components, we visually select N = 17 components as exemplars, denoted as
d,, n=1,...,17, and these components are used as reference signals in the second stage.
The 17 networks are categorized into 8 domains: auditory (AUD), sensorimotor (SM),
frontal (FRO), fronto-parietal (FP), parietal (PAR), visual (VIS), default mode network
(DMN) and cerebellum (CB). The PAR domain comprise three networks: PARI1, PAR2
and PAR3, corresponding to their peak activation located in the primary somatosensory
cortex, supramarginal gyrus and somatosensory association cortex, respectively. The DMN
domain consists of one component corresponding to posterior DMN, one component corre-
sponding to anterior DMN (ADMN), one DIC network and one insular (INS) component.
The DIC component shows a network of a de-activated posterior DMN component and
an activated central executive network and right fronto-insular (INS) network. The VIS
domain comprise two networks: VIS1 and VIS2, corresponding to their peak activation
situated in the lateral and medial visual cortex, respectively. The FRO domain comprise
two networks: FRO1 and FRO2 corresponding to their peak activation in the frontal cortex
located anterior to the premotor cortex and dorsolateral prefrontal cortex, respectively.

Each of these N = 17 components is used as a reference signal in the aclVA model
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EXECUTIVE NETWORK (2)

FiG. 6.3. The 17 components selected are divided into 8 domains: auditory (AUD), sensori-
motor (SM), frontal (FRO), fronto-parietal (FP), parietal (PAR), visual (VIS), default mode
network (DMN) and cerebellum (CB). The DMN domain includes spatial maps consisting
the anterior, posterior DMN, central executive network and insular (INS) components. The
number indicated next to each domain name is number of components belonging to that
domain.

in order to capture their variation in both the spatial and temporal domain. For the acIlVA
model, we divide each subject’s data into M = 17 windows of length L = 16 with a 50%
overlap, resulting in a total of MK = 3043 windows. By performing acIVA on each sub-
ject’s data, we reduce the dimensionality of the SCV from 3043 to 17. The first SCV is
constrained to be correlated with one of the 17 group components. The acIVA method

using IVA-L-SOS algorithm, with the set # defined as 0.001,...,0.9 and y, = 3, is ap-
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plied on the windowed datasets of each subject to estimate 10 solutions. Since IVA is an
iterative algorithm, optimization of IVA results in different solutions depending on the ini-
tialization. Hence, in order to select the most representative run, we perform the cross jISI
run selection method, as described in Section [2.5] Along with addressing the issue of high
dimensionality by limiting the size of the solution space, the use of references in IVA also
results in components that are ordered across multiple subject-level IVA decomposition,
thus yielding SCVs that are aligned across subjects. In order to verify that the estimated
constrained SCVs are ordered across subjects, we visually inspected the estimated com-
ponents and observed that these components were similar to the reference signal. We also
inspected the final constraint parameter for all reference signals and for all subjects and the
range of these values was between 0.4 to 0.9, indicating that the components are ordered
as per the reference signal. The estimated source corresponding to nth constraint for the

kth subject at mth window from the consistent run is denoted as 8!

. The corresponding
time courses at each window are further processed to correct for quadratic, linear and cubic

trends, and low-pass filtered with a cutoff of 0.15 Hz [19].

6.5 Identification of spatial dFNC and temporal dFNC patterns

As discussed in Chapter|[I] FC measures the association between activation patterns of
different regions of brain. We use Pearson’s correlation coefficient to measure the connec-
tivity between the time courses and spatial maps at each time window. We obtain M graphs
for each subject, R* k =1,...,K, ,m = 1,..., M, using N nodes and N(N — 1) edges,
denoted as rl,lj’,’,’;]. The N nodes represent spatial maps or time courses and an edge defines
the Pearson’s correlation coeflicient between the n;th and n,th nodes, ny,n, = 1,...,N.

Thus, we obtain M temporal dFNC (tdFNC) and spatial dFNC (sdFNC) graphs of dimen-

sion N X N from time courses and spatial nodes respectively for each subject, as shown
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in Fig[6.4] These graphs are further analyzed in the next chapter to measure the degree of

1 M

Time course/
Spatial map

tdFNC/
sdFNC

F1G. 6.4. sdFNC and tdFNC graphs are obtained by computing the Pearson’s correlation
coeflicient between each pair of time courses and spatial maps.

fluctuation of connectivity, for prediction of subject class and for identification structures

FC patterns, referred to as states.

6.6 Summary

In this chapter, we proposed a technique that assumes variability in both spatial and
temporal domains to extract time-varying spatio-temporal patterns from large-scale fMRI
data. We propose the use of acIVA to mitigate the effect of high dimensionality, where the
reference signals are efliciently incorporated in an sliding-window based framework, and to
avoid an additional source alignment step. The reference signals are extracted using gICA
applied on all subjects and correspond to the stationary representations of the fluctuating
components. In the sliding-window based acIVA framework, the time-varying representa-

tions of these stationary components is extracted through an adaptive tuning technique. We
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apply the proposed technique on COBRE dataset that consists of 179 subjects (91 healthy
controls and 88 patients with schizophrenia), and estimate 17 functionally relevant compo-
nents at each of the 17 time windows. We describe about a technique to compute dFNC
graphs from time courses and spatial maps at each time window. In the next chapter, we
propose metrics to quantify the variability of FC and spatial network, and demonstrate the
benefits of spatial dynamic features using a prediction technique and through the analysis
of states.

In the next chapter, we explore the benefits of exploiting variability in the spatial
domain, and propose metrics to quantify the variability of dFNC patterns and spatial net-
works. We also propose a prediction technique to study the features obtained using sdFNC

and tdFNC graphs, and perform a state-based analysis on sdFNC graphs.
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Chapter 7

SPATIAL DYNAMIC FUNCTIONAL NETWORK
CONNECTIVITY ANALYSIS

In the previous chapter, we discussed the proposed technique to extract time-varying
spatio-temporal patterns from fMRI data using a sliding-window based acIVA framework.
In this chapter, we explore the use of spatial domain for dFNC analysis in order to demon-
strate the benefits of exploiting variability in the spatial domain and taking advantage of

the large sample size in this domain, using a data-driven approach.

7.1 Introduction

The emergence of dFNC analysis has allowed for the study of temporal behavior of
the brain and how it changes over the period of time. Studies have shown that changes
in FC are not random, but exhibit structured patterns of connectivity, referred to as states,
[19,34,35]]. State-based analysis using temporal dFNC patterns includes identification of
these structured patterns, commonly using a k-means clustering framework, followed by
computing metrics such as number of transitions from one state to another, mean dwell
time in a state and probability of occurrence of a state. These metrics are further analyzed
to study differences between two groups of subjects in order to identify distinct biomark-
ers of disease, condition or modalities [[19}20}104,/124,|125]. Studying the differences in

the degree of variability of FC across different brain regions is also of interest, and has
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identified differences in various disorders [16,38,(104,(126]].

In this work, we perform post-analysis of the time-varying spatio-temporal patterns in
order to identify distinct patterns that show differences between HC and SZ. We propose
two graph-theoretical metrics to quantify the degree of variability of the functional connec-
tions and spatial networks, and perform permutation tests to identify differences between
HC and SZ. We perform a prediction technique to compare the ability of temporal dFNC
(tdFNC) patterns and sdFNC patterns to predict if a subject is a patient or a control. We
also perform a joint analysis by combining the sdFNC and tdFNC patterns together in order
to explore the contribution of each towards prediction and observe that the use of sdAFNC
patterns alone provides higher prediction accuracy than using tdFNC patterns, or a com-
bined feature set. This shows that exploiting the variability and taking advantage of large
sample size in the spatial domain provides meaningful discriminative features. We also ob-
tain structured patterns of connectivity/states from sdFNC patterns and identify differences
between patients and controls in terms of dwell time, transition matrix and fraction of time
spent in each state. To the best of our knowledge, no study has been performed to identify
these properties from sdFNC patterns. Our results indicate that patients tend to stay in or
transition between states associated with hyperconnected brain network. We also find sig-
nificant associations between the resulting functional connectivity and signs of paranoia in

the patient group using sdFNC patterns.

7.2 Quantification of dynamics

A number of studies have focused on identifying biomarkers that show differences in
the HC and SZ groups [127-129]]. We were interested in determining if any of the estimated
spatio-temporal component features would be sensitive to mental illness. One feature that

is of interest is variability of functional connectivity and spatial maps [[104,/130]. In this
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work, we define two metrics: component similarity and functional connectivity fluctuation,

to identify the spatial components and functional connections that are variable.
7.2.1 Functional connectivity fluctuation
The functional connectivity fluctuation, O'LkI]nz, for each subject using tdFNC and

sdFNC graphs is computed as follows,

1 il 2
k mk —[k
O-}[’ll]nZ = m Z (r}!lll‘lzJ - c}['lljnz) ’ (7.1)

m=1

[m,k]
rnlnz

is the mean of the connectivity metric, /"~

_[k
where cLl]nz = ﬁ fozl , computed across

M windows for nodes n; and n,, and ™" denotes the Pearson’s correlation coefficient
between the nodes n; and n,. Each node represents a spatial map/time course obtained
using acIVA. We also compute this metric on the tdFINC graphs obtained from gICA, which
estimates time courses while assuming the spatial networks are stationary. The estimated
reference signals are back-reconstructed to estimate subject specific time courses, and a
sliding window of length L = 16 is applied with a 50% overlap yielding M = 17 windows.
For each subject, tdFNC graphs are obtained as mentioned above.

The permutation test results on the functional connectivity fluctuation metric identifies
a number of distinct and relevant connections. Fig. [7.1|shows the connections identified as
significantly different using tdFNC: acIVA (Fig. [7.1[a)) and sdFNC: acIVA (Fig. [7.1(b)).
The combined result using tdFNC and sdFNC graphs computed from our method suggests
lower variability within the cognitive control network and within the default mode network
for the SZ group. Studies have reported descreased hemodynamic response in the insula
region in the SZ group causing low variability in this region [131]. Higher variability is
observed across components in different clusters, namely, the visual and cognitive control

cluster, visual and DMN cluster, visual and frontal component, and fronto-parietal and sen-
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sorimotor component for the SZ group. This variability across brain regions may be due to
dysfunction in the working memory, attention and visual learning [132]] and the tendency
of patients with schizophrenia to engage more brain regions than healthy controls [[133].
Fig. shows the connections identified as significantly different using glCA. The anal-
ysis on the tdFNC matrices from gICA identifies higher temporal variability in HC group
between DMN and the frontal component of the cognitive network and higher variability in
the SZ group between visual and auditory component, and between auditory and sensori-
motor component. These results suggest that the use of tdFNC graphs alone does not fully
characterize the dynamic functional connectivity and assuming variability in both spatial

and temporal domains results in identification of more distinct biomarkers.
7.2.2 Component similarity

In order to quantify the variability of the nth feature for each subject k, we compute the
absolute value of the Pearson’s correlation coefficient between the nth component at win-
dow m, 8, and the nth component at window m+1, ylm AL Component similarity is then
obtained by computing the mean across all adjacent windows. A higher value of this metric
suggests that the spatial network is less variable. Figure. shows the results for the com-
ponents that demonstrated significant differences (p < 0.05, corrected) using a permutation
test between healthy controls and schizophrenia patients. The medial visual (VIS2), SM,
FP and primary somatosensory cortex (PAR1) components exhibited less variability within
the HC group whereas the supramarginal gyrus (PAR2) component exhibited less variabil-
ity in schizophrenia. These components were also identified as less variable among healthy
individuals in a previous dynamic study [[104]]. Deficits in visual perception, attention and
motor regions have been previously shown in schizophrenia, which may lead to variability

in these components. Figure.|/.4{shows an example of the changes in the visual component

of one subject for whom the stationarity is estimated as the highest within the HC and SZ
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Auditory
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Fic. 7.2. Associations that demonstrate significant difference (p < 0.05, corrected) between
HC and SZ group, using gICA. Blue connections indicate higher measures in controls
whereas red indicates higher measure in patients. Thickness of the connection indicates a
more significant difference (lower p-value) between HCs and SZs. More group differen-
tiating and relevant connections with significantly lower p-values are obtained using the
proposed method as compared with gICA.

groups. The activated voxels corresponding to the visual component also shows disrupted
activation patterns across time for the SZ subject. This is consistent with previous work
showing disruptions in the perceptual functions in SZ subjects including abnormalities of

smooth pursuit in this group of subjects [134].

7.3 Prediction technique

A primary goal in a dFNC state-based analysis is the identification of states that are

distinctively associated to healthy controls and patients with schizophrenia. A natural way
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to identify such states, is to measure the probability of occurrence of a state for each group
separately. In this work, we propose a technique to predict if a subject is a HC or SZ, based
on the occurrence of a state within each group over the entire scanning period. In order
to study how informative the spatial and temporal dFNC features are, we obtain the prob-
ability of occurrence of states using the sdFNC and tdFNC graphs computed as described
in Section [6.5] Note that the aim of this experiment is to observe potential advantages
of sdFNC features and not the actual prediction accuracy, hence we use a simpler Naive
Bayes classifier that does not require tuning of parameters. The flowchart for the prediction
technique is shown in Figure We obtain 1000 independent Monte-Carlo subsamplings
of the data. In each subsampling, subjects from HC and SZ group are divided into train-
ing and testing sets, where each training group consists of 75 randomly sampled subjects
from the HC and the SZ group (Ki4ij, = 150). The remaining subjects form the testing
set (Kiest = 29). We then obtain K ,;, X M observations of N(N — 1)/2 dimensional
features from the tdFNC/sdFNC matrices. In order to select the distinguishing features
from the N(N — 1)/2 features, we perform a two-sample ¢-test on the features from the HC
and SZ group as shown in Figure [7.5(B). Features that demonstrate significant difference
(p < 0.05) are used in further stages. The indices of the significant features are recorded and
used in the testing stage. This feature selection is done separately for tdFNC and sdFNC
matrices. The selected features are clustered into C clusters, where in this experiment we
vary the number of clusters from 3 to 30. For training the Naive Bayes classifier, we ob-
tain the probability of each state for the HC group and SZ group, p(C;), g = {HC, SZ}.
In the testing stage, the features that indicated significant difference in the training stage
were selected and each observation from a test subject is assigned a state with maximum
Pearson’s correlation between the observation and the cluster centroid. We then obtain the

probability of each state using pi*/(C;) = n!*'/M, i = 1, .., C and use the test feature vector
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Fic. 7.5. Flowchart to obtain the features for prediction. (A) The subjects are divided into
training and testing set, where the training set consists of 150 subjects, 75 from the HC and
SZ group each. The remaining 29 subjects form the testing set. (B) Each tdFNC/sdFNC
matrix is flattened to a row and the distinguishing features are extracted using a two-sample
t-test. The indices of the distinguishing features are recorded and used to select the cor-
responding features in the testing stage. In the combined feature set for joint analysis, the
flattened features from both domains are concatenated in the feature dimension and simi-
lar steps are performed. (C) The selected features from the training set are clustered into
C clusters using K-means clustering to obtain the centroids and the state vector for each
subject. (D) The probability of occurrence of each state is computed for the HC and SZ
group separately. For the testing stage the state vector for each subject is obtained using the
centroids from the training stage and probability of occurrence for each state is computed.
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to predict the class of the subject. A test subject is assigned to HC or SZ group using the

following rule,

C
y = § Cl’ i 7.2
pmay p(g) D [p4(C)] (7.2)

where n; denotes the number of occurrences of state i in the test subject. Steps (B-D) from
Figure[/.5|are performed for each sub-sampling of the data.

For the joint analysis of spatio-temporal features, the sdFNC and tdFNC features se-
lected after the two-sample 7-test on these feature sets separately, are concatenated in the
feature dimension to study the effect of combining the two feature sets on prediction ac-
curacy. We compare the results from the combined feature set with the results from using
sdFNC and tdFNC feature set alone. Table provides some inferences regarding the
comparison results. Let Qg denote the prediction accuracy obtained using sdFNC matri-
ces, Ot denote the prediction accuracy obtained using tdFNC matrices and Qg denote the
prediction accuracy obtained using the combined feature set. We can say that if the predic-
tion accuracy increases after combining the sdFINC and tdFNC features, both feature sets
provide unique discriminative features, whereas if the prediction accuracy using sdFNC
features is greater than Qgr, then tdFNC provide non-discriminative features, hindering the

classification performance.
7.3.1 Comparison of sdFNC and tdFNC features with joint feature set

The average prediction accuracies computed across 1000 Monte Carlo subsamplings,
using the sdFNC, tdFNC and combined feature set for different number of clusters is shown
in Figure[7.6] Figure[7.6(A) shows the result for the HC group and Figure[7.6(B) shows the
result for the SZ group. In order to test if the prediction accuracies computed using sSAFNC
and tdFNC features are significantly different from the combined feature set, we perform a

permutation test using a two-sample #-test as the hypothesis test. The results indicate that
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Ost > QOs, Or sdFNC and tdFNC yield unique discriminative features

jointly contributing to classify subjects

Ost < Qs, Or sdFNC and tdFNC both yield non-discriminative features

that are unable to classify subjects

Qs or Ot > QOst > O or Qg tdFNC or sdFNC yield non-discriminative features

affecting the prediction

QOst = Qs or Ot tdFNC or sdFNC are not providing additional information

to classify subjects

Table 7.1. Inferences about predictability of sdFNC, tdFNC and combined feature set. Qs
denotes the prediction accuracy obtained using sdFNC matrices, Qr denotes the prediction
accuracy obtained using tdFINC matrices and Qgr denotes the prediction accuracy obtained
using the combined feature set.

the prediction accuracy computed using sdFNC features is significantly higher than the one
computed using tdFNC and the combined feature set for the SZ group for different number
of clusters. This suggests the use of tdFNC features yield non-discriminative features that
degrade the prediction performance for the SZ group. For the HC group, the prediction
accuracy computed using sdFNC features is higher than the one computed using tdFNC
features and equal to the combined feature set for the SZ group for different number of
clusters. This suggests that the tdFNC features are not providing additional information to

classify subjects as controls.
7.3.2 Comparison of sdFNC and tdFNC features

In order to test for differences between the prediction accuracies using sdFNC and
tdFNC features, and between the HC group and the SZ group, we perform a permutation
test between these groups using a two-sample #-test as a hypothesis test. The distribution
plots of the accuracies and the permutation test results are shown in Figure The per-

mutation test result indicates that the sdFNC features yield a significantly higher prediction
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FiG. 7.6. Average prediction accuracy computed over 1000 independent Monte-Carlo sam-
plings using tdFNC, sdFNC and combined features for (A) HC group and (B) SZ group.
A blue triangle denotes significant difference between tdFNC result and combined feature
set result, whereas a read triangle denotes significant difference between sdFNC result and
combined feature set result. A triangle pointing left, ’<’, indicates the prediction accuracy
of tdFNC/sdFNC is greater than the combined feature set result, whereas a triangle point-
ing right, ’»’, indicates the prediction accuracy of tdFNC/sdFNC is less than the combined
feature set result.

accuracy when compared with tdFNC features, providing evidence that exploiting vari-
ability in the spatial domain yields meaningful distinguishing information. The average
prediction accuracy using tdFNC features is around 50%, which is equivalent to provid-
ing random guesses regarding the class of a subject. This provides additional evidence
that tdFNC features are not providing any additional information as compared to a random
classifier. The permutation test result between the HC and the SZ group indicates a signifi-
cantly higher prediction accuracy for the SZ group using sdFNC features. Since the feature
used in this technique is the probability of occurrence of each state, we can infer that pa-
tients with schizophrenia tend to stay or transition to a certain group of states more often
than healthy controls. A natural question is the identification of these predictable states

and their differences with respect to states associated to a healthy group of subjects. In
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Fic. 7.7. Predictability results using Naive Bayes classifier. Red color indicates the his-
togram of prediction accuracies obtained for the SZ group whereas blue indicates the his-
togram of prediction accuracies for the HC group. X-axis denotes the number of clusters,
C used to cluster the features from tdFNC/sdFNC graphs. The green ‘+’ sign denotes the
mean value and ‘O’ sign indicates the median value. The markers at the bottom show re-
sults from a permutation test to test for statistical differences (p < 0.05, corrected). A
‘*’ denotes the accuracies are significantly higher using sdFNC features compared with
tdFENC features. A ‘<’ denotes prediction accuracy for HC group is higher whereas ‘>’
denotes higher prediction accuracy for SZ group. We observe a higher prediction accu-
racy using sdFNC features and a significantly higher accuracy for the patients group, for
different number of clusters.

Section[7.4] we discuss the results obtained from the state-based analysis using the sdFNC
matrices and identify the states that are associated with the patients and controls group.
We also compute the sensitivity and specificity of the prediction model obtained using
sdFNC and tdFNC features. The true positives (TP) denote the percentage of SZ sub-
jects that are correctly identified as SZ, true negatives (TN) denote the percentage of HC
subjects that are correctly identified as HC, false negatives (FN) denote the percentage of
SZ subjects incorrectly identified as HC, and false positives (FP) denote the percentage of
HC subjects incorrectly identified as SZ. Sensitivity and specificity for each Monte Carlo

subsampling is computed as follows,

TP TN

Sensitivity = ————, Specificity = ———.
TP + FN TN + FP
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Figure [7.8| shows the results of these measures computed for sdFNC and tdFNC fea-
tures. Sensitivity and specificity values are higher using sdFNC features compared with
the tdFNC features. A higher sensitivity for sdFENC features indicates that these features

are better able to identify SZ subjects than HC subjects.
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Fic. 7.8. Sensitivity and specificity of the prediction model trained using sSdAFNC and tdFNC
features. The sensitivity and specificity values are averaged over 1000 Monte Carlo sub-
samplings. The results indicate that sensitivity and specificity is higher using sdFNC fea-
tures compared with the tdFNC features. A higher sensitivity for sdAFNC indicates a better
prediction ability of these features to correctly identify SZ subjects.

7.4 Identification and analysis of states

Recent studies have shown that fluctuations in the brain networks in resting-state are
not random but exhibit structured patterns that vary over time ([[19,34,35]]). In this study,
we obtain these structured patterns or states using sAFNC matrices. In the first step towards

identifying the states, we flatten the upper diagonal part of each correlation matrix, RI"1,
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to obtain a feature vector of dimension N(N — 1)/2 yielding MK observations. For each
subject, the standard deviation across the feature dimension is computed and a subset of
FNC matrices are selected corresponding to the maximum standard deviation as subject
exemplars. Thus the subject exemplars represent the features that are more informative,
alternatively those with higher variability. Further k-means clustering is performed to clus-
ter these subject exemplars into C clusters using Pearson’s correlation coefficient as the
distance measure. The centroids resulting from clustering the subject exemplars are used
as initial points to cluster the entire observation set. This two-step clustering process is
performed in order to obtain a robust solution. The performance of k-means clustering as-
signs a cluster or state index to each observation resulting in a state vector for each subject.
The state vector thus represents the evolution of the states over time. This vector is further
analyzed to obtain the transition matrix, dwell time and fraction of time spent for each state
and for each subject. The transition matrix denotes the number of transitions from state i to
state j, i, j = {1,..., C}, the dwell time denotes the amount of time a subject remains in a
particular state, and fraction of time spent denotes the probability of occurrence of a state.

We identify six distinct states using spatial dFNC matrices. The number of clusters is
estimated as six using the silhouette criterion. We also compute the optimal number of clus-
ters using other criteria available in the group ICA for fMRI toolbox. The estimated values
are in the range 2-10, with the median value being six. Hence, we choose the final values as
six for the optimal number of clusters. The group-specific states and features that demon-
strate significant differences between HC and SZ group using sdFNC matrices are shown
in Figure [7.9(A). The significantly different features within each state were identified by
performing a permutation test between the HC group and the SZ group. The group-specific
states show differences in the level of connectivity between pairs of components, which are

reflected in the third row of Figure [7.9(A) that shows differences between the HC and SZ
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group. The parietal component has high positive connectivity with the auditory, sensori-
motor and frontal components in all states and indicates simultaneous activation of these
regions. The parietal lobe plays a vital role in processing sensory information such as
touch, sound and vision, which is obtained from different parts of the body. A subject in
the scanner is exposed to scanner noise and hence the brain is involved in processing the
auditory information, causing activation of parietal and auditory components. The pari-
etal component also plays a role in receiving signals from sensory organs, which is then
passed to motor-related regions, such as sensorimotor and frontal components, in order to
control the body posture. Since a subject is asked to lay still in the scanner, the subject is
focusing on balancing his/her body, causing the activation of these regions. An observed
positive correlation between the sensorimotor and frontal component provides additional
support towards the hypothesis. Cerebellum on the other hand, receives the sensory infor-
mation from different parts of the body. Hence, a high negative correlation between the
parietal and cerebellum component indicates simultaneous deactivation of one component
while the other is active, suggesting a process of first receiving and then processing the
sensory information. This might also help explain the observed negative correlation be-
tween cerebellum and motor-related components. These connections are observed in all
states, indicating that these regions form a central hub at resting-state and play a vital role
resting-state fMRI data.

We obtain the transition matrix, dwell times and fraction of time spent in each state for
each subject. For each transition pair {i, j}, i, j = 1,...,6, we perform a permutation test
to identify differences between the HC and the SZ group. Each significantly different pair
denotes that one group transitioned from state i to j more frequently than the other group.
Similarly, we perform a permutation test on the mean dwell time of each state and fraction

of time spent in each state to test for differences between HC and SZ group. The results
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for transition matrices (TM), mean dwell time (MDT) and fraction of time spent (FR) are
shown in Figure.[7.9(B), Figure.[7.9(C) and Figure. [7.9(D) respectively. The transition ma-
trix indicates that healthy controls tend to stay in State 1 more frequently, whereas patients
with schizophrenia tend to transition more frequently from State 3 to State 4 and State 1
to State 5. State 3 and 4 differ in the level of positive correlation between cerebellum and
auditory component, insular and parietal component, visual and parietal component and
anterior DMN and visual component, whereas State 1 and 5 differ in the level of positive
correlation within the visual network, and between the cerebellum and visual component.
These states also differ in the level of negative correlation between the cerebellum and left
fronto-parietal component. These connections are also observed in State 2 where patients
demonstrate a significantly higher mean dwell time and fraction of time spent compared
to controls. Hence patients with schizophrenia tend to reside in or switch to a state that
has high positive correlation within the visual network and between the anterior DMN and
frontal component, visual and parietal component, anterior DMN and frontal component,
and cerebellum and visual component. The patients group also tend to reside in or switch
to a state that has high negative correlation between the cerebellum and left fronto-parietal
component. This suggests that patients with schizophrenia are associated to a hypercon-
nected brain network and studies have shown their tendency to engage more brain regions
than healthy controls ([133,/135,/136]).

Since patients with schizophrenia demonstrate a significantly high mean dwell time
and fraction of time spent in State 2, and controls show a high (although not significant)
mean dwell time in State 1, we discuss these two states in detail. State 2 differs from State 1
in terms of high positive correlation within the visual network, between frontal and anterior
DMN component, cerebellum and parietal component, cerebellum and visual component,

and DMN and insular component. A high negative correlation is also observed between
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the frontal and visual component, parietal and anterior DMN, DMN and anterior DMN. As
discussed above, a high negative correlation between parietal and cerebellum component is
due to the cognitive process of receiving and processing sensory information one at a time,
a positive correlation between these components in State 2 suggests abnormal connectivity.
A healthy brain has shown evidence of positive correlation between anterior and posterior
DMN, and a deactivation in DMN due to an activated INS region ([90,(137]). However a
high negative correlation between the anterior DMN and posterior DMN, and a high posi-
tive correlation between posterior DMN and insular region in State 2 of the SZ group also
provides evidence of dysfunction in the DMN domain of schizophrenia, which is a common
trait in this group ([137]]). A high positive correlation between anterior DMN and frontal
component might suggest the activation of both region due to their role in social behavior
and impulse control. Patients with schizophrenia are known to have paranoia traits, caus-
ing them to be constantly aware of the surroundings and prone to impulse control disorder.
This causes hyperactivity in the DMN and frontal components of schizophrenic patients
([138-140]). The bottom row of Figure indicates the connections that demonstrated
significant difference (p < 0.05, corrected) between the HC and SZ group. High absolute
connectivity is SZ group is indicated by red while high absolute connectivity in the HC
group is indicated by blue. State 2 shows most connections that have significantly high
absolute correlation in the SZ group. Patients exhibit high correlation between the cere-
bellum and parietal component, posterior and anterior DMN component, posterior DMN
and left fronto-parietal, auditory and DIC component, and cerebellum and DIC network.
A significantly high correlation between these components in the SZ group suggest a hy-
perconnected DMN, which is a common trait of patients with schizophrenia ([[141,/142]).
A significantly higher connectivity between the anterior DMN and frontal component, and

parietal and cerebellum component provides additional support to the hypothesis of para-
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noia and abnormal behavior in schizophrenia patients.

7.5 Summary

In this chapter, we perform a post-analysis on the sSAFNC and tdFNC patterns to study
the benefits of assuming variability in the spatial domain, and analyze the potential use of
sdFNC patterns and dynamic spatial networks. We propose two metrics to quantify the
variability of dFNC and variability of spatial networks. Our analysis on quantifying vari-
ability of spatial networks reveals higher variability in the sensorimotor, fronto-parietal,
medial visual and primary somatosensory cortex and low variability in the supramarginal
gyrus for the SZ group. We also plot the spatial changes in the medial visual cortex of a
healthy subject and patient with schizophrenia and observe deficits in the activation of the
neurons in this region. A comparison of sdFNC and tdFNC patterns results in a higher sen-
sitivity using sdFNC patterns, indicating their ability to correctly classify individuals in the
SZ group. The analysis of time-varying spatial FNC reveals higher inter-cluster variability
in the SZ group, and higher transitions to states with hyperconnected brain networks. This
is due to the tendency of patients to engage more brain regions than HC.

In the next chapter, we summarize this thesis by discussing the main contribution and

results. We also provide possible directions for future research.
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Fic. 7.9. (A) The top two rows shows the group-specific states obtained using sdFNC
matrices. The bottom row corresponds to the features that demonstrated significant differ-
ence (p < 0.05, corrected) between HC and SZ group. Red indicates higher value for SZ
whereas blue indicates higher value for HC. (B) Transition matrix (TM) with each element
in the matrix showing transitions that are significantly (p < 0.05, corrected) different. Blue
indicates HCs transitioned more frequently from current state to next state whereas red in-
dicates SZs transitioned more frequently from current state to next state. (C) Mean dwell
time of each state for the HC and SZ group. (D) Fraction of time spent (FR) in each state
by the HC group and SZ group. Results indicate that SZ subjects tend to transition more
frequently from State 3 to State 4 whereas those obtained using dsFNC graphs indicate that
SZ subjects transition more frequently from State 1 to State 5. We also observe that SZ
subjects tend to stay more in State 2.
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Chapter 8

CONCLUSION AND FUTURE WORK

The goal of this dissertation has been the development of a method that extracts mean-
ingful, timev-varying, functionally relevant networks from large-scale fMRI data, while
preserving the variability across individuals. Due to the high dimensionality effect of IVA,
we have sought to the address issue of analyzing large-scale fMRI data by taking advan-
tage of the known prior and expected outcome of a particular task. We have looked for an
efficient way to incorporate that knowledge into our model, to drive our outcome towards
the desired result in such a way that the decomposition is not affected by undesired vari-
ables. Due to the flexible nature of the proposed algorithm, it has applications far beyond
the context of this dissertation and the datasets to which they were applied. In this chapter,

we summarize our results and present possible directions for further research.

8.1 Conclusion

Extracting global signatures that provide a general view of the data and capturing the
individual-specific aspects of the signatures that provide a detailed view of a group of in-
dividuals, modalities or condition, enables a better understanding of the function of the
brain. IVA provides a flexible framework to estimate the underlying sources by making use
of dataset-specific information that is dependent across datasets. It jointly decomposes mul-

tiple datasets into dataset-specific mixing matrix and source matrix such that the sources
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within each dataset are maximally independent and sources across datasets are maximally
dependent. However, the flexibility of IVA comes at a cost, that is for a fixed number of
samples, its performance is affected by a number of aspects.

In Chapter [3]of this dissertation, we study the performance of IVA in terms of increas-
ing number of datasets, number of sources and varying levels of correlation of sources
across datasets. The use of more datasets that share a common attribute allows for the
utilization of more information content for IVA to exploit the dependence structure across
datasets. In fMRI analysis, individuals share the functional networks and the use of datasets
from more individuals results in a more robust estimate of the functional networks. The
performance of IVA is expected to improve with increase in number of individuals given
that the number of samples, voxels in fMRI, are large enough. However, since the number
of samples are fixed in fMRI, the improvement in performance is observed until a certain
number of datasets, beyond which the performance begins to degrade. The limit of change
in performance also depends on other aspects, namely, number of sources and level of cor-
relation. For large number of sources this limit is observed at lower number of datasets. The
use of a high model order, number of sources, is desirable for the analysis of fMRI data,
due to the estimation of more relevant functional networks. Additionally, the effect of high
dimensionality is more prominent in datasets that demonstrate low to moderate correla-
tion among sources across datasets, which is similar to the case observed in fMRI datasets.
These two factors, namely, the use of high model order and low correlated sources, increase
the complexity even further for the analysis of large-scale fMRI data.

The knowledge of the desired outcome is available is most applications and in fMRI
analysis, the use of the reference signals corresponding to functional networks provides a
guidance in high dimensional scenarios. In Chapter[d], we propose a technique to adaptively

incorporate reference information into the IVA framework in order to guide the search for a
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meaningful solution. Although it may seem biased to use functional networks as references
to extract functional networks, the idea of this approach is to use a global representation or
a stationary representation of the functional networks to guide the estimation of individual-
specific or window-specific functional networks. Additionally, selecting accurate global
features is still essential and a difficult task since the impact of these functional networks on
each individual’s dataset is not known prior. The acIVA technique makes use of an adaptive
tuning mechanism to control the effect of accurate and inaccurate reference signals, thus
providing an efficient and meaningful decomposition.

Extraction of relevant functional networks in a data-driven yet robust manner from
a large population group is a topic of interest in many research studies. The use of a
high model order, number of functional networks, is well justified through a number of
studies, due to the extraction of distinct and meaningful networks. This poses a great
challenge for implementing IVA on fMRI data, since its performance degrades with high
number of individuals and sources. Additionally the correlated networks across individuals
are super-Gaussian distributed with a low degree of correlation, affecting the estimation
performance in large-scale scenarios. In Chapter [5] we discuss the use of acIVA to extract
meaningful individual-specific networks from large-scale fMRI data acquired from 164
females and 163 males. We propose the use of group-level ICs extracted from the entire
population using gICA as reference signals in acIVA, which adaptively tunes the effect of
each functional network on each individual’s dataset. Our result indicates that the proposed
method not only extracts networks that are similar to the reference but also other brain
regions that are functionally correlated with the reference signal.

In Chapter [0] of this dissertation, we propose a method to extract time-varying spatio-
temporal patterns from large-scale fMRI data, which assumes variability in both spatial and

temporal domain. We propose a sliding-window based acIVA framework that uses the sta-
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tionary representations of the functional networks as reference signals, in order to capture
their window-specific representation. We apply the proposed method on fMRI data ac-
quired from 91 healthy controls (HC) and 88 patients with schizophrenia (SZ). We perform
post-analysis on the sSdAFNC and tdFNC patterns to study the benefits of assuming variabil-
ity in the spatial domain, and analyze the potential use of sdFNC patterns and dynamic
spatial networks. Our analysis on quantifying variability of spatial networks reveals higher
variability in the sensorimotor, fronto-parietal, medial visual and primary somatosensory
cortex and low variability in the supramarginal gyrus for the SZ group. Deficits in the
medial visual cortex are also observed for a SZ patient. A comparison of sdFNC and
tdFNC patterns results in a higher sensitivity using sdFNC patterns, indicating their abil-
ity to correctly classify patients. The analysis of time-varying spatial FNC reveals higher
inter-cluster variability in the SZ group, and higher transitions to states with hypercon-
nected brain networks. This is due to the tendency of patients to engage more regions than

HC for a certain brain function.

8.2 Future work

8.2.1 MEG + fMRI analysis

Unlike fMRI, which measures the neuronal activation in the brain using an indi-
rect BOLD response, magnetoencephalography (MEG) is a non-invasive, functional neu-
roimaging technique that directly measures the magnetic fields produced by the electric
currents of activated neurons, using sensitive magnetometers. MEG data is collected with
a high temporal resolution, typically in milliseconds, using roughly 300-channel MEG sys-
tem. The higher number of channels in MEG compared with electroencephalogram (EEG)
data allows the use of source reconstruction techniques in order to reconstruct the 3D brain
volume at each time instant, as shown in Fig. [8.1(a). Although the choice of technique for

source localization in MEG analysis is a fairly new area and research topic in itself, the
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analysis on the reconstructed results has shown interesting results in terms of identifying
functional networks similar to fMRI 124143, 144]].

Fusion of multiple sensors or modalities in order to understand the common aspects
of multiple sensors and identify the unique contributions of each sensor is important in
many applications [[145-147]. However a primary issue in data fusion is identifying a
common dimension in order to exploit the complementary information across modalities
[[145]]. Since MEG data can be reconstructed to obtain a 3D volume similar to fMRI, fusion
of these two modalities along the spatial dimension becomes possible and enables the use
of data-driven techniques such as IVA. An individual analysis on fMRI and MEG data has
revealed that these two modalities share networks that have a high betweenness centrality,
i.e., the networks forming central hubs in cognitive processes [144]]. The common networks
also correspond to low frequency bands, since fMRI captures low frequency fluctuations
(0.01 to 0.15 Hz) and MEG captures a range of low to high frequency fluctuations (0.1 to
330 Hz) .

Through fusion of these modalities, we can study the common and distinct networks
across different frequency bands in a data-driven manner. In neuroimaging studies, the fre-
quency bands are commonly divided into delta (0.5 to 4 Hz), theta (4 to 7 Hz), alpha (8 to
12 Hz), beta (16 to 31 Hz) and gamma (32 to 100 Hz). In order to extract features from each
modality, we propose to compute the average power using the temporal signatures at each
voxel, within different frequency bands, namely, low frequency from fMRI (0.01 to 0.15
Hz), and delta, theta, alpha, beta and gamma bands from MEG, as shown in Fig. b).
The features within a frequency band obtained from all subjects can be grouped together
to form datasets, X'*1, in IVA. The TVA model in Fig.[8.1|c) takes advantage of the depen-
dence structure across different frequency bands and modalities. This model also allows

identification of networks that demonstrate significant differences between two groups of
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subjects, conditions, or between task-related vs resting-state data, or multiple groups, e.g.,
eyes-open vs eyes-closed vs task, within each modality and frequency bands. Using this
setup, an SCV corresponds to the components that are common across different frequency
bands. The dependence structure of the estimated SCVs, thus, can be further analyzed to
identify common, distinct networks and the networks that are common to a certain group

of frequency bands using the method proposed in [148]].
8.2.2 Application of decision trees to fill missing value and identify sub-groups

Filling missing values Handling missing data in datasets is a challenging task ob-
served in many applications and can significantly affect the results. The causes of missing
values can be from no response from the individual due to privacy constraints, human error
while filling datasets, and dropout of individuals from a studies of longer duration. One
way to handle missing data is to remove the entire observation with missing values. How-
ever, this results in loss of information and is not feasible in datasets with less observations
to begin with. Other ways include filling the missing value with the mean or median value
computed across the observations within a certain target group. Although this is a simpler
approach, it might be biased and does not account for other feature values, i.e., the missing
value might depend on other features along with the target value.

In this work, we propose the use of decision trees to fill missing entries, as a possible
future direction. Given a dataset, we train a decision tree using the observations with no
missing entries. An example of a trained decision tree is shown in Fig. [8.2] The example
shown in Fig. is a simple example of predicting an individual’s mood based on differ-
ent features. The attributes contain categorical values in this example that can be easily
distinguished, however in many cases the attributes contain continuous values, for which a
decision tree computes a threshold based on the target classes, to obtain sub-trees.

As a first step towards filling a missing value for a observation, we traverse along the
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Fic. 8.1. IVA model for fusion of fMRI and MEG source reconstructed data. (a) The
MEG data collected from sensors as a function of time, is reconstructed to obtain a 3D
volume at each time instant, resulting in a high spatial and temporal resolution. (b) In
order to extract features from each modality, we propose to compute the average power
using the temporal signatures at each voxel, within different frequency bands, namely, low
frequency from fMRI (0.01 to 0.15 Hz), and delta, theta, alpha, beta and gamma bands
from MEG. (c) The features within a frequency band obtained from all subjects can be
grouped together to form datasets, X'*!, in IVA. This model allows for the analysis of two
groups within each dataset, e.g., resting-state vs task, patients vs controls, eyes-open vs
eyes-closed, or multiple groups, e.g., eyes-open vs eyes-closed vs task. Applying IVA on
this set up results in sources that are independent within each frequency band and dependent
across frequency bands. The dependence structure across datasets can be further analyzed
to identify common and distinct component.
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Fic. 8.2. Example of a decision tree for predicting the mood of an individual. The tree is
trained on the observations with no missing values. All parent nodes represent an attribute
and a leaf node represent the target value achieved.

tree to reach possible leaf nodes, as shown in Fig. @Ka). The idea behind this is to selected
a set of possible leaf nodes we would have reached if we knew the value of the missing
entry. Each leaf node is associated with a cluster consisting of similar observations, which
are obtained from the training stage. Depending on the number of leaf nodes selected,
we form equivalent number of clusters. Next, we fill the missing entry with the average,
median or highest probable value within that cluster, as shown in Fig. [8.3[b). We obtain
a new observation based on each cluster, labeled as observation ‘A’ and ‘B’ in Fig. b).
Finally, we compute the distance between each new observation and the cluster centroids
in order to find the least distance. We select the observation that has the least distance to
any of the cluster centroid. The advantage of this method is that it makes use of all the

features to fill the missing value, which may result in a more accurate value.
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Work to do? | Weather | Friends busy?
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Work to do? Basedon Cluster2 | No | Warm | Yes |B
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Fic. 8.3. Steps to fill the missing value. In this example, the observation has no value for
the attribute “Work to do?’. (a) As a first step, we traverse along the tree to reach possible
leaf nodes. The possible leaf nodes are the nodes to which we would have reached if we
knew the entry for the missing value. The observations at each leaf node are grouped into
a cluster. (b) Fill the missing entry based on the median or highest occurring value in the
missing attribute from each cluster. We thus obtain a new observation for each cluster,
denoted as observation ‘A’ and ‘B’. (c) Select the observation that is closest to any of
the selected cluster from step (a). In this example, we fill the missing value with ‘No’
corresponding to observation ‘A’.

Identification of sub-groups Studies have revealed sub-groups of patients with
schizophrenia and there is a significant interest in identifying the attributes that distinguish
the sub-types of patients. Decision trees can be used to identify sub-groups of subjects
and for investigating the attributes that are common and distinct for each sub-group. From
the example shown in Fig we can say that sub-groups 1, 3 and 5 are part of a bigger
group (‘Sad’), however are separated into different leaf nodes due to differences in certain
attributes. Sub-group 3 and 5 share a common attribute “Work to do?’, but need attributes
‘Weather’ and ‘Friends busy?’ to distinguish themselves. For identifying sub-groups of pa-

tients, we can form a decision tree using the clinical scores, subject covariations or a fusion
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of the two, as attributes and subject class, such as healthy or patient, as target attribute. The
resulting decision tree will then identify sub-groups of patients, and the attributes that are

common and distinct.
8.2.3 Interpretation of Lagrange Multipliers

In this work, we propose the use of an augmented Lagrangian optimization framework
to incorporate constraints into the IVA cost function. However, there are other simpler but
powerful constrained optimization techniques to incorporate constraints such as penalty
function method and method of Lagrange multipliers. While both techniques have their
pros and cons, the use of method of Lagrange multipliers allows for analyzing the estimated
Lagrange multiplers and studying different aspects of the problem. In order to understand
the role of the Lagrange multiplier in the constrained optimization problem, consider the
following example.

Given a function f(x), we want to find the optimum value for x that minimizes or
maximizes the function subject to a constraint, g(x) < p. The cost function for the method

of Lagrange multipliers can be written as,

L(x) = f(x) —u(g(x) - p)

Let x* denote the optimum value of f(x). It is natural to say that the optimum value
depends on the constraint parameter, p, and hence we can write x*(p) as the optimum value
of function f(x) for a given value of p. The relation between the Lagrange multiplier, u and

function f(x) is given as,
aof (x"(p)) _
a— — /’l
o

Hence, the value of y indicates the rate of change of function f for a change in the

constraint parameter p. In other words, it indicates how sensitive the cost function is to
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the given constraint. The Lagrange multipliers can have different interpretations in dif-
ferent applications, e.g., in revenue maximization problem, the objective is to maximize
revenue under a certain budget constraint. The interpretation of Lagrange multipliers in
this problem is “how much more money we can get by changing the budget”.

In the context of neuroimaging analysis, the Lagrange multipliers can be interpreted
as how sensitive the ICA/IVA cost function is to a change in the constraint parameter for
a particular functional network. Note that this formulation makes use of a fixed value for
the constraint parameter, and hence makes an inherent assumption that the constraints are
accurate. Hence given that the functional networks used as reference signals are accurate,
the Lagrange multiplier computed for each constraint can be analyzed further for different
groups of individuals or time windows. Since there is high variability among the func-
tional networks across patients with schizophrenia, this variability might be reflected in the

estimated value for the Lagrange multiplier.
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APPENDIX

Appendix A1 : Correlation structures for generating X

In this dissertation, we use three different structures for generating the correlation

matrix, x.

AR-type correlation structure The structure of an K X K AR-type correlation ma-

trix follows a symmetric Toeplitz structure given as,

| A w"'-f'—
v 1y ...yl
L=|y? V2R B ] (8.1)

l/,li—jl
gl yli=i oy

where i, j is the row and column index and i, j = 1,..., K. This type of structure is more
common in analysis of time-series data. The use of this structure for generating a SCV
results in sources that are highly correlated across adjacent datasets. This structure is useful
in studying dynamics of fMRI data using IVA, where the entire scanning period is divided
into subsets of overlapping or non-overlapping adjacent windows and each window forms
a dataset in the IVA model. However, this structure must be used for smaller number
of datasets and keeping in mind that for a large number of datasets, the elements in the

correlation matrix become close to 0.

Uniform correlation structure Another form of the correlation structure is the uni-

form type correlation structure, where the off-diagonal elements are all equal to ¥, as fol-
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lows,

L v v W

v 1y v
=ly v 1 ... y| (8.2)

W

oy oy

This structure can be used for the analysis of a large number of datasets, however the
number of datasets, K, and choice of the correlation parameter, ¢, play an important role
in defining the positive definiteness of the matrix.

A positive definite matrix is a matrix whose eigenvalues are non-negative. For a K X K
correlation matrix defined by (8.2), the K — 1 eigenvalues are equal to 1 — ¢ and one
eigenvalue is equal to 1 + (K — 1)¢. For all eigenvalues to be greater than or equal to zero,
wegetl —y >0and 1+ (K — 1)y > 0. This defines a bound on ¢ with respect to K given

as,

- <y<l1
K—l_l//_

We plot the lower bound for ¢ with respect to the number of datasets, K, in Fig/A4]Hence,
for the uniform structure, one must be careful of negative correlation for a higher value of

K.

Random correlation structure The random correlation structure guarantees the
correlation structure is positive definite and can be used for large number of datasets. The
correlation matrix is generated as X = QQ7, where the elements of the matrix Q, gij are
generated from a certain distribution. Depending on the choice of the distribution and the
parameters for the distribution, the distribution of the elements in X varies. We use this

structure for analysis of high dimensional datasets in Chapters [3] and [5] We use different
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Fic. A4. Lower bound for ¢ for the correlation matrix to be positive definite.

distributions and parameters to generate the elements in Q and is discussed in detail in

Chapters 3]
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Appendix A2 : Reference signal and estimated sources from large scale fMRI data

We select L = 42 group-level independent components corresponding to function-
ally relevant resting-state networks by visual inspection and these components are used as
reference signals in acIVA. We apply acIVA on fMRI data from male and female group
separately and compute the sources using the demixing matrices from the most consistent
run. The nth SCV is obtained by grouping together the nth source from each dataset. We
then perform a one-sample #-test across the subject dimension for each voxel and note the
t-statistic of the significantly (p < 0.05) activated voxels. We then visually compared these
thresholded maps with the reference signal. Out of the 42 components, 36 matched the ref-
erence signal while the remaining 6 components included motion artifacts. The thresholded
maps and the corresponding reference signal for the 36 matched components are shown in
Fig.[A5|and Fig. while 6 unmatched components are shown in Fig.

As observed in Fig. the estimated components included motion artifacts for either
male or female groups (IC 3, 4 and 5) or both groups (ICA 1 and 2). However, the corre-
sponding reference signal shows activation around the surface of the brain coinciding with

the motion artifact, which affected the estimation performance.
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aclVA Refererence signal aclVA Refererence signal

IC2

Fic. AS. 18 out of the total 36 matched component from acIVA and corresponding reference
signal. The slices corresponding to the peak voxel co-ordinate across the sagittal, coronal
and transverse planes,indicated by 'x’, ’y’, ’z’ respectively.
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aclVA Refererence signal aclVA Refererence signal

Fic. A6. Remaining 18 out of the total 36 matched components from acIVA and corre-
sponding reference signal. The slices corresponding to the peak voxel co-ordinate across
the sagittal, coronal and transverse planes,indicated by ’x’, ’y’, ’z’ respectively.
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aclVA (Female) aclVA (Male) Refererence signal

Fic. A7. Six unmatched components from acIVA for female and male groups, and the
corresponding reference signal. The slices corresponding to the peak voxel co-ordinate
across the sagittal, coronal and transverse planes,indicated by ’x’, ’y’, ’z’ respectively. As
observed, the estimated components consist of motion artifacts for either male or female

group, or both.
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