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Abstract

We investigate the validity of the Girsanov Transformation (GT) method for parametric
sensitivity analysis of stochastic models of chemical reaction networks. The validity depends
on the likelihood ratio process being a martingale and the commutation of a certain derivative
with expectation. We derive some exponential integrability conditions which imply both these
requirements. We provide further conditions in terms of a reaction network that imply these
exponential integrability conditions.

Keywords: Girsanov transformation, sensitivity analysis, chemical reaction networks, expo-
nential integrability

1 Introduction

Parametric sensitivity analysis is an essential part of modeling and analysis of dynamical systems.
In the context of stochastic dynamical systems the problem that is considered frequently is that of
estimating the sensitivity defined by the partial derivative

∂

∂c

∣

∣

∣

∣

c=c∗
Ef(X(T, c))

where c is a parameter of interest, c∗ is its nominal value, X is the stochastic process, f is a scalar
function of the state and T > 0 is a fixed terminal time.

While we focus on the well-stirred stochastic model of chemical kinetics [6], we like to mention
that similar models arise in applications that are concerned with populations (nonnegative integer
vectors). Due to the high dimensionality of the state space of the Markov process X describing
the chemical kinetics, Monte Carlo methods are usually the most viable. Monte Carlo methods of
sensitivity analysis for stochastic chemical models can be classified into the finite difference methods
(FD) [1, 13], the Girsanov Transformation (GT) method [10, 11], the regularized pathwise derivative
(RPD) method [15] and what might be termed the auxiliary path (AP) type methods [7, 8]. When
considering more general applications, one again finds roughly, a similar classification [2]. Among
these methods, the FD methods are always biased and the RPD method is biased in the context
of chemical kinetics and is not always applicable. The well known GT method is usually widely
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applicable and is unbiased. The main shortcoming of the GT method is that it has been observed
and that it often has large variance and hence less efficient [16]. For an asymptotic analysis of the
variance of the GT and related methods, see [16] where a centralized GT method is shown to be
more efficient under certain circumstances. The recently introduced auxiliary path type methods
are unbiased as well, and provide for an alternative to the GT methods. Nevertheless, due to the
ease of implementation, the GT method is of interest.

While the GT method is widely used, we are not aware of theoretical studies on the validity of
GT method. In particular, in the area of stochastic reaction networks, no sufficient conditions have
been provided to justify the method. Therefore, we believe a theoretical analysis of the method
could provide a guideline about the applicability of GT to certain types of problems. Our goal
in this manuscript is to provide some sufficient conditions that guarantee the validity of the GT
method.

1.1 Stochastic chemical kinetics

We describe the stochastic model of well-stirred chemical reactions involving n molecular species
undergoing m reaction channels [6]. In this model, the molecular copy number vector X(t) ∈ Z

n
+

(t ≥ 0) is considered as a Markov process in continuous time. Occurrence of jth reaction leads to a
change ofX(t) by νj ∈ Z

n for j = 1, . . . ,m where the νj are known as the stoichiometric vectors. We
denote by Rj(t) the counting process which counts the number of occurrences of reaction channel
j during (0, t], for j = 1, . . . ,m. The probabilistic rate of occurrence of reaction j, is given by the
intensity function or propensity function aj(x) which is defined such that conditioned on X(t) = x,
the probability that X(t + h) = x + νj is aj(x)h + o(h) as h → 0+, and the probability that
X(t+ h) = x is 1−

∑m
j=1 aj(x)h + o(h) as h → 0+.

The propensity function, in addition to the state x, potentially depends on other factors such as
the temperature and system volume and this dependence is captured by a set of parameters which
are non-random and constant in time. In particular, in the stochastic form of mass action case,
the propensity function is of the product form

aj(x, c) = cjbj(x), (1)

where cj > 0 is a parameter independent of x and bj(x) is a (multivariate) polynomial in x [6].
While our final results in this paper assume the product form (1) (but not necessarily the mass
action form), we shall keep our derivations as general as possible until the final steps.

It is possible to represent the processes for different parameter values c in the same sample
space (Ω,F ,P) (hence the notation X(t, c) and R(t, c)) via the random time change representation
[5]

X(t, c) = x0 +
m
∑

j=1

νjYj

(
∫ t

0
aj(X(s, c), c)ds

)

, (2)

where Y1, . . . , Ym are independent unit rate Poisson processes carried by (Ω,F ,P) and x0 ∈ Z
n
+ is

the initial state. The reaction count processes Rj are then given by

Rj(t, c) = Yj

(∫ t

0
aj(X(s, c), c)ds

)

j = 1, . . . ,m. (3)

We also note the relationship

X(t, c) = x0 +

m
∑

j=1

νjRj(t, c). (4)
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We note that the processes X(t, c) and R(t, c) are cadlag. We shall also assume that X(t, c) is
non-explosive for each c, that is, Rj(t, c) < ∞ for each t ≥ 0, each c and j = 1, . . . ,m. For sake of
readability, throughout the paper we suppress the dependence of X and R on ω ∈ Ω except when
necessary.

Without loss of generality we shall focus on estimation of sensitivity with respect to one scalar
parameter c and we assume that it corresponds to the first reaction channel, so that c = c1 and
thus a1(x, c) = c b1(x) under the product form. Let c∗ > 0 be a nominal parameter value and T > 0
be some terminal time. Given a function f : Zn

+ → R, we are interested estimating the sensitivity
defined by

∂

∂c

∣

∣

∣

∣

c=c∗
Ef(X(T, c)).

Throughout this paper, we assume that the sensitivity exists. We refer the reader to [7] for some
sufficient conditions that guarantee the existence of the sensitivity.

1.2 The Girsanov transformation method

One of the commonly used sensitivity estimation methods is the Girsanov transformation (GT)
method which is also known as the likelihood ratio (LR) method in literature. We first describe the
basics of this approach and then furnish details in the context of chemical kinetics. We consider a
nominal parameter value c∗ and an open interval Ic∗ = (c∗ − ǫ, c∗ + ǫ). As mentioned before, we
assume that the processes X(t, c) and R(t, c) for c ∈ Ic∗ are all carried by a common probability
space (Ω,F ,P). Let us denote by {Ft}t the filtration generated by X(t, c∗) and R(t, c∗). (We
remark that if we assume that the νj are all distinct then {Ft}t will be generated by X(t, c∗)
alone).

The GT method involves defining for each c ∈ Ic∗ a probability measure Pc on (Ω,F) which
satisfies the following condition.

Condition 1: For each c ∈ Ic∗ , (i) Pc is absolutely continuous with respect to P, (ii) Pc∗ = P

and (iii) for every bounded function f : Zn
+ → R

Ef(X(T, c)) = Ecf(X(T, c∗)), (5)

where E is the expectation with respect to P and Ec is the expectation with respect to Pc.
Suppose such a family of probability measures Pc satisfying Condition 1 exist. Let us denote

by L(c, t) the Radon-Nykodim derivative

L(t, c) =
dPc

dP

∣

∣

∣

∣

Ft

. (6)

Due to (5), the sensitivity can be written as

∂

∂c

∣

∣

∣

∣

c=c∗
Ef(X(T, c)) =

∂

∂c

∣

∣

∣

∣

c=c∗
Ecf(X(T, c∗)) =

∂

∂c

∣

∣

∣

∣

c=c∗
E[f(X(T, c∗))L(T, c)].

Condition 2: Suppose that the derivative

Z(t, c∗) =
∂

∂c

∣

∣

∣

∣

c=c∗
L(t, c)

exists almost surely with respect to Pc∗ and that the following commutation of derivative and
expectation holds:

E

(

∂

∂c

∣

∣

∣

∣

c=c∗
f(X(T, c∗))L(T, c)

)

=
∂

∂c

∣

∣

∣

∣

c=c∗
Ef(X(T, c∗))L(T, c). (7)
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This leads to the formula

∂

∂c

∣

∣

∣

∣

c=c∗
Ef(X(T, c)) = E[f(X(T, c∗))Z(T, c∗)]. (8)

Thus if Conditions 1 and 2 are satisfied, the required sensitivity equals the expected value of the
random variable f(X(T, c∗))Z(T, c∗) and hence can be estimated via iid sample estimation. Thus
ŝN given by

ŝN =
1

N

N
∑

i=1

f(X(i)(T, c∗))Z(i)(T, c∗),

where (X(i)(T, c∗), Z(i)(T, c∗)) for i = 1, . . . , N are iid pairs of samples, is the GT estimator for
a sample size of N . We note that the simulation is carried out with respect to the probability
measure P.

The GT estimator is unbiased but often has large variance unless N is very large [16]. Never-
theless, due to its simplicity, GT has been widely applied for sensitivity analysis in numerous areas
such as chemical kinetics and operations research.

While the GT method is widely used, we are not aware of theoretical studies on the validity of
GT method. In particular, in the area of stochastic reaction networks, no sufficient conditions have
been provided to justify the method. Therefore, we believe a theoretical analysis of the method
could provide a guideline about the applicability of GT to certain types of problems. In this paper,
we aim to provide sufficient conditions that ensure Conditions 1 and 2 stated above.

2 The validity of change of measure

2.1 Change of intensity

We explore some sufficient conditions that guarantee Condition 1 for the change of measure. Our
exposition here is based on the change of intensity theory in Section VI 2 of [3]. We start with
the probability space (Ω,F ,P) on which the processes X(t, c) and R(t, c) are defined for c ∈ Ic∗ =
(c∗ − ǫ, c∗ + ǫ). As before, we denote by Ft the filtration generated by X(t, c∗) and R(t, c∗). By
definition, the counting process Rj(t, c

∗) has the (P,Ft) predictable intensity aj(X(t−, c∗), c∗).
Now for any c ∈ Ic∗ , we want to explicitly construct a probability measure Pc on (Ω,F) such that
R(t, c∗) admits the (Pc,Ft) predictable intensity aj(X(t−, c∗), c). This is accomplished by defining
the likelihood ratio process L(t, c) which under the right conditions will serve as the Radon-Nykodim
derivative.

We first define an auxiliary (m dimensional) process µ(t, c) under a certain assumption on the
propensity functions as follows. Given an arbitrary c ∈ Ic∗ , we assume that for all x ∈ Z

n
+,

aj(x, c
∗) = 0 if and only if aj(x, c) = 0, j = 1, 2, · · · ,m. (9)

We note that this is assumption holds in particular when the propensity functions are of the product
form aj(x, c) = cjbj(x). Now, based on this assumption, the following process is well-defined (c∗ is
fixed). For each c ∈ Ic∗, we define

µj(t, c) =
aj(X(t−, c∗), c)

aj(X(t−, c∗), c∗)
, j = 1, · · · ,m. (10)

In the case that aj(X(t−, c∗), c∗) = 0, by assumption we have aj(X(t−, c∗), c) = 0 as well, so we can
simply define µj(t, c) to be any strictly positive constant. We note that µj(t, c) is Ft-predictable by

4



its left continuity, and moreover for each t ≥ 0, we have 0 < µj(t, c) < ∞ almost surely. We shall
make the extra assumption that µj(t, c) is bounded almost surely for each c ∈ Ic∗ . In the case of the
product form of propensity functions with c = c1, we note that the boundedness assumption holds
since µ1(t, c) = c/c∗ and µj(t, c) = 1 for j = 2, . . . ,m, that is the process µ(t, c) is a deterministic
and constant in t.

Next, following [3], we explicitly define the likelihood ratio process L(t, c) as follows

L(t, c) =

m
∏

j=1









Rj(t,c∗)
∏

n=1

µj(T
n
j , c)



 exp

(
∫ t

0
(1− µj(s, c))aj(X(s, c∗), c∗) ds

)



 , (11)

where T n
j is the n-th jump time of Rj(t, c

∗). By convention, we take the product
∏Rj(t,c∗)

n=1 to be
1 if Rj(t, c

∗) = 0. We remark that due to our non-explosivity assumption Rj(t, c
∗) is finite almost

surely for each t and thus L(t, c) is well defined and satisfies 0 < L(t, c) < ∞ for each t ≥ 0..
It can be shown that L defined above is the solution of the equation [3]

L(t, c) = 1 +
m
∑

j=1

∫

(0,t]
L(s−, c)(µj(s, c)− 1)dMj(s, c

∗), (12)

where

Mj(t, c
∗) = Rj(t, c

∗)−

∫ t

0
aj(X(s, c∗), c∗)ds. (13)

From the non-explosivity assumption, we see that for all t ≥ 0 and j = 1, · · · ,m,

∫ t

0
aj(X(s, c∗), c∗) ds < ∞, P a.s., (14)

and hence M(t, c∗) is an m-dimensional local martingale [3]. We summarize some key results from
[3] as a lemmas.

Lemma 1. (Bremaud [3], Section VI, Theorem T2) Under the non-explosivity assumption
(with respect to P), for each c ∈ Ic∗, L(t, c) is a (P,Ft) nonnegative local martingale and hence a
(P,Ft) supermartingale.

Lemma 2. (Bremaud [3], Section VI, Theorem T3) Suppose that EL(T, c) = 1. Then L(t, c)
is a (P,Ft) martingale over [0, T ]. Moreover, defining the probability measures Pc by the condition

dPc

dP
= L(t, c),

it follows that over [0, T ], Rj(t, c
∗) has the (Pc,Ft)-intensity

aj(X(t−, c∗), c) = µj(t, c)aj(X(t−, c∗), c∗).

Corollary 1. Under the conditions of Lemma 2, for each bounded function f : Zn
+ → R and each

c ∈ Ic∗

Ef(X(T, c)) = Ecf(X(T, c∗)). (15)

In other words, the Pc law of X(t, c∗) is the same as the P law of X(t, c).
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Proof. The law of a Markov process is uniquely determined by the Kolmogorov’s forward equation
and the Kolmogorov’s forward equations for p1(x, t) = P(X(t, c) = x) and p2(x, t) = Pc(X(t, c∗) =
x) are identical:

dpi(x, t)

dt
=

m
∑

j=1

(pi(x− νj , t)aj(x− νj , c)− pi(x, t)aj(x, c)), x ∈ Z
n
+, i = 1, 2.

In summary, the condition E(L(T, c)) = 1 in Lemma 2 ensures the validity of the change of
measure. In the next section we provide some sufficient conditions for it to hold.

2.2 Novikov type condition

In this section, we provide a Novikov type sufficient condition to ensure that L(t, c) is a martingale
over [0, T ] or equivalently E(L(T, c)) = 1. Under the product form of propensities aj(x, c) = cjbj(x),
and without loss of generality, taking c = c1, the likelihood ratio L(t, c) can be written as

L(t, c) =
( c

c∗

)R1(t,c∗)
exp

(∫ t

0
(c∗ − c)b1(X(s, c∗)) ds

)

. (16)

We make the following useful observation. We have

L(t, c) ≤
( c

c∗

)R1(t,c∗)
(17)

for any c ∈ I+c∗ = [c∗, c∗ + ǫ) and

L(t, c) ≤ exp

(∫ t

0
(c∗ − c)b1(X(s, c∗)) ds

)

(18)

for any c ∈ I−c∗ = (c∗ − ǫ, c∗]. This simple observation turns out to be useful for our analysis.

Theorem 1. Given c ∈ I+c∗, suppose that

E

[

( c

c∗

)R1(T,c∗)
]

< ∞, (19)

then L(t, c) is a (P,Ft) martingale over [0, T ].

Proof. By Lemma 1 L(t, c) is a local martingale. Thus there exists a sequence (σn) of increasing
stopping times with σn ↑ ∞ such that L(t ∧ σn, c) is a (P,Ft) martingale for each n. Define the
stopping times

τn = inf{t ≥ 0 | R1(t, c
∗) ≥ n}.

By the non-explosivity assumption, τn ↑ ∞. We define the stopped processes

Ln(t, c) = L(t ∧ σn ∧ τn, c).

Now for each n, as a stopped martingale, Ln(t, c) is a Ft martingale and hence ELn(T, c) = 1. By
the estimates in (17),

Ln(T, c) ≤
( c

c∗

)R1(T∧σn∧τn,c∗)
≤
( c

c∗

)R1(T,c∗)
.

Hence, the integrability condition (19) implies that EL(T, c) = 1 by the dominated convergence
theorem and therefore L(t, c) is a martingale over [0, T ].
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Similar result can be reproduced for the case c ∈ I−c∗ using the estimates (18).

Theorem 2. Given c ∈ I−c∗, suppose that

E

[

exp

(

(c∗ − c)

∫ T

0
b1(X(s, c∗)) ds

)]

< ∞, (20)

then L(t, c) is a (P,Ft) martingale over [0, T ].

Proof. Define the stopping times τn by

τn = inf

{

t ≥ 0 |

∫ t

0
b1(X(s, c∗))ds ≥ n

}

.

The rest of the proof is similar to that of Theorem 1.

One can get rid of the time integral by verifying the following stronger condition.

Corollary 2. If there exists ǫ > 0 such that

sup
s≤T

E

[

eǫT b1(X(s,c∗))
]

< ∞, (21)

then L(t, c) is a (P,Ft) martingale over [0, T ] for any c ∈ I−c∗ = (c∗ − ǫ, c∗).

Proof. Rearranging the right hand side of (20) and applying Jensen’s inequality to the term inside
the bracket, we obtain

E

[

exp

(

1

T

∫ T

0
(c∗ − c)Tb1(X(s, c∗)) ds

)]

≤
1

T

∫ T

0
E

[

e(c
∗−c)Tb1(X(s,c∗))

]

ds. (22)

Hence, it suffices to show that

sup
s≤T

E

[

e(ǫT b1(X(s,c∗)))
]

is finite for ǫ satisfying ǫ > c∗ − c.

3 Differentiation inside the integral

In this section, we provide a sufficient condition for the commutation (7) of Condition 2 via the
use of Theorem 6 in appendix. Referring to Theorem 6, we take G to be

G(c) = f(X(T, c∗))L(T, c).

We shall assume the product form with c = c1. Then it follows at once from (11) that

∂

∂c
lnL(T, c) =

1

c
R1(T, c

∗)−

∫ T

0
b1(X(s, c∗)) ds,

hence
∂

∂c
L(T, c) = L(T, c)

(

1

c
R1(T, c

∗)−

∫ T

0
b1(X(s, c∗)) ds

)

=
1

c
L(T, c)M1(T, c

∗).
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Then a Lipschitz constant K(ω) (independent of c) for G on the interval Ic∗ is

K = |f(X(T, c∗))M1(T, c
∗)| sup

c∈Ic∗

1

c
L(T, c).

We first consider c ∈ I+c∗ (the right hand sensitivity) , in which case we have

L(T, c) ≤
( c

c∗

)R1(T,c∗)
≤

(

c∗ + ǫ

c∗

)R1(T,c∗)

.

Hence in order to justify the integrability of K, it suffices to show that

f(X(T, c∗))M1(T, c
∗)

(

c∗ + ǫ

c∗

)R1(T,c∗)

is integrable. We also note that we may shrink the interval Ic∗ = (c∗ − ǫ, c∗ + ǫ) to be as small as
we wish.

Theorem 3. Assuming the product form (1) with c = c1, suppose the following conditions are
satisfied:

• E[|f(X(T, c∗))|3] < ∞;

• there exists ǫ > 0 such that,

E

[

(

c∗ + ǫ

c∗

)R1(T,c∗)
]

< ∞. (23)

Then

lim
c→c∗+

Ef(X(T, c))− Ef(X(T, c∗))

c− c∗
= E

[

f(X(T, c∗)) lim
c→c∗+

L(T, c) − L(T, c∗)

c− c∗

]

.

Proof. First we note that by Theorem 1, (23) implies the validity of the change of measure for
c ∈ I+c∗ .

Now we need to verify the limit using Theorem 6. Using the inequality 3abc ≤ a3 + b3 + c3, we
can separate the terms and provide the following sufficient conditions,

E[|f(X(T, c∗))|3] < ∞,

E[|M1(T, c
∗)|3] < ∞,

E

[

(

c∗ + ǫ

c∗

)3R1(T,c∗)
]

< ∞.

(24)

It is sufficient to show that the third condition implies the second condition. Since the quadratic
variation of the local martingale M1(t, c

∗) is R1(t, c
∗), by the Burkholder-Davis-Gundy (BDG)

inequality [12],
E(|M1(T, c

∗)|4) ≤ CE[R1(T, c
∗)2].

for some constant C. It is obvious that the right hand side is integrable given the second condition.
Since |M1(T, c

∗)|4 is integrable the result follows.

8



Similarly, for the left hand side sensitivity, we have

L(T, c) ≤ exp

(∫ T

0
(c∗ − c)b1(X(s, c∗)) ds

)

≤ exp

(∫ T

0
ǫb1(X(s, c∗)) ds

)

for c ∈ I−c∗. Hence, the Lipschitz constant is proportional to

|f(X(T, c∗))M1(T, c
∗)| exp

(
∫ T

0
ǫb1(X(s, c∗)) ds

)

.

It boils down to verifying the following three integrability conditions,

E[|f(X(T, c∗))|3] < ∞,

E[|M1(T, c
∗)|3] < ∞,

E

[

exp

(∫ T

0
3ǫb1(X(s, c∗)) ds

)]

< ∞.

(25)

We have the following result concerning the left hand side sensitivity.

Theorem 4. Assuming the product form (1) with c = c1, suppose further that

• E[|f(X(T, c∗))|3] < ∞;

• there exists ǫ > 0 such that,

E

[

exp

(∫ T

0
ǫb1(X(s, c∗)) ds

)]

< ∞. (26)

Then

lim
c→c∗−

Ef(X(T, c))− Ef(X(T, c∗))

c− c∗
= E

[

f(X(T, c∗)) lim
c→c∗−

L(T, c)− L(T, c∗)

c− c∗

]

.

Proof. We only need to show the second integrability condition in (25) holds. Note that M1(t, c
∗)

in the second term is a local martingale, we apply the (BDG) inequality such that

E{|M1(T, c
∗)|4} ≤ CE[R1(T, c

∗)2]

for some constant C. Hence, it is sufficient to verify that E[R1(T, c
∗)2] < ∞. Applying the BDG

inequality again to E[M1(T, c
∗)2], there exists some constant C̄ such that

E[M1(T, c
∗)2] ≤ C̄E[R1(T, c

∗)] = C̄E

[∫ T

0
a1(X(s, c∗), c∗) ds

]

< ∞.

Owing to the simple inequality (a+ b)2 ≤ 2(a2 + b2),

E[R1(T, c
∗)2] ≤ 2E

[

(
∫ T

0
a1(X(s, c∗), c∗) ds

)2
]

+ 2E[M1(T, c
∗)2] < ∞.

Remark 1. We note that the conditions of Theorem 3 guarantee the existence of the right hand
derivative (sensitivity) and that the GT method would provide an unbiased estimator of it. Like-
wise for Theorem 4. However, the conditions of these theorems include the restrictive exponential
integrability conditions (23) and (26). We do know from [7] that the existence of sensitivity can
be guaranteed under milder conditions. Thus, if we assume the existence of sensitivity at c∗, then
verification of either the conditions of Theorem 3 or those of Theorem 4 can guarantee the validity
of the GT method. This will be our focus in the next section.
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4 Sufficient conditions in terms of the network

The conditions of of Theorems 3 and 4 are not directly stated in terms of a chemical reaction
network. A chemical reaction network is characterized by the stoichiometric matrix ν (whose
columns are the vectors νj) and the propensity functions aj(x, c) which we assume to be of the
product form (1) and we take the parameter of interest to be c = c1 at a nominal value c∗ > 0.

We shall focus on the case that f : Zn
+ → R is of polynomial growth. This may be stated by

the condition that there exists C > 0 and r ∈ Z+ such that

|f(x)| ≤ C(1 + ‖x‖r) ∀x ∈ Z
n
+.

In this case, there exist multiple results in the literature that guarantee the condition that |f(X(T, c∗)|3

is integrable [14, 9, 4].
On the other hand, the exponential integrability conditions (23) or (26) are harder to satisfy.

When b1(x) is linear, the condition (21) is implied by the conditions for the uniform light-tailedness
property presented in [9], and since (21) implies (26), this provides a sufficient condition for the
validity of the GT method.

In this section, in Theorem 5, we present a condition that implies (23) and hence provides
another sufficient condition for the validity of the GT method.

Given a fixed initial state x0 ∈ Z
n
+ let Sx0

⊂ Z
n
+ denote the set of all states that can be reached

by the process starting at x0. Thus Sx0
is the effective state space of the process X(t, c) and it may

be finite or infinite.
We present a useful lemma that plays an important role in our result.

Lemma 3. Let J ⊂ {1, . . . ,m} be a subset of reaction channels and suppose there exists K > 0
such that the propensity aj(x, c) of any reaction j ∈ J satisfies

aj(x, c) ≤ K ∀x ∈ Sx0
.

Then E(eǫ
∑

j∈J Rj(t,c)) < ∞ for every ǫ > 0 and t ≥ 0.

Proof. By the random time change representation, for j ∈ J

Rj(t, c) = Yj

(
∫ t

0
aj(X(s, c), c)ds

)

≤ Yj(Kt).

Thus
∑

j∈J Rj(t, c) ≤
∑

j∈J Yj(Kt) and hence

E(eǫ
∑

j∈J Rj(t,c)) ≤
∏

j∈J

E(eǫYj(Kt)).

The result follows from the fact that E(eǫYj(Kt)) < ∞ for every ǫ > 0.

It is clear from this lemma that if reaction 1 has bounded propensity on Sx0
then the required

bound (23) follows at once.
Even if reaction 1 does not satisfy a propensity bound on Sx0

, it may be possible to bound
R1(t) above in terms of some other reactions which have bounded propensities. As a motivating
example, let us consider the chemical kinetics example with two species and four reactions. Let

ν1 = (−1, 1)T , ν2 = (−1,−1)T , ν3 = (1, 2)T , ν4 = (1, 0)T .
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We make explicit use of the fact that species population process X(t) remains nonnegative. The
process at any time t ≥ 0 satisfies (4)

X(t) = x0 + νR(t)

and since X(t) ≥ 0 we have that x0 + νR(t) ≥ 0. We readily see that

R1(t) ≤ R1(t) +R2(t) ≤ x0,1 +R3(t) +R4(t).

Suppose further that the reactions 3 and 4 have bounded propensities on Sx0
. That is, there exists

K > 0 such that
aj(x, c

∗) ≤ K j = 1, 2, ∀x ∈ Sx0
.

Now Lemma 3 readily implies that for all ǫ > 0 and t ≥ 0

E(eǫR1(t)) < ∞.

This example suggests the possibility that the relation x0 + νR(t) ≥ 0 may imply that R1(t) is
bounded above in terms of a positive affine combination of some other reactions which have bounded
propensities on Sx0

. In general, this determination could be made as follows.
Let B ⊂ {1, . . . ,m} denote the indices j of the reactions that have bounded propensities on Sx0

and suppose 1 /∈ B (otherwise the result follows immediately by Lemma 3). The fact that X(t) ≥ 0
can be expressed by

x0 +
∑

j /∈B

νjRj(t) +
∑

j∈B

νjRj(t) ≥ 0.

For j ∈ B let µj ∈ R
n be defined by (µj)i = max{0, νi,j}. Then X(t) ≥ 0 implies

x0 +
∑

j /∈B

νjRj(t) +
∑

j∈B

µjRj(t) ≥ 0.

Letting

y = x0 +
∑

j∈B

µjRj(t)

and noting that y ≥ x0, motivates the linear programming (feasibility) problem:

y +
∑

j /∈B

νjξj ≥ 0, ξ ≥ 0, (27)

where ξ ∈ R
n. The feasible region for ξ is given by a convex polytope Ry which may be unbounded.

If Ry is bounded in the ξ1 direction, then one can obtain an upper bound for R1(t) as an affine
combination of Rj(t) for j ∈ B. We note that whether Ry is bounded in the ξ1 direction or not
depends only on νj for j /∈ B and not on y.

Then Lemma 3 can be used to obtain (23). We summarize this discussion as a theorem.

Theorem 5. Given a non-explosive chemical reaction network with product form propensity func-
tions, suppose that either reaction 1 has bounded propensity on Sx0

or the feasible region of the
linear program (27) is bounded in the first coordinate ξ1. Then (23) holds for every ǫ > 0.

We remark that if Sx0
is finite, then the validity of the GT method follows trivially.
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5 Appendix

5.1 Differentiating Inside an Integral

Theorem 6. (Asmussen & Glynn) [2]) Suppose G(c, ω) is a random variable for each c in some
interval of the real line. Let cref be a specific value of c. Suppose the following hold:

1. For a set of ω with probability one, G(c, ω) is differentiable with respect to c at c = cref.

2. There exists an interval (cl, cu) containing cref (independent of ω) on which G(c, ω) is Lipschitz
(in c) for a set of ω with probability one, with constant K which may depend on ω. That is,
for any c1, c2 in the interval (cl, cu), the following holds:

|G(c1, ω)−G(c2, ω)| ≤ K(ω)|c1 − c2|.

3. E(K) is finite.

4. E(|G(c, ω)|) is finite for all c in (cl, cu).

Then the following holds:

d

dc

∣

∣

∣

∣

c=cref

E(G(c)) = E

(

d

dc

∣

∣

∣

∣

c=cref

G(c)

)

.
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