
Ensembles in Adversarial Classification for Spam

Deepak Chinavle
amazon.com

705 5th Avenue South
Suite 220

Seattle, WA 98104
deepchin@amazon.com

Pranam Kolari
Yahoo! Labs

2821 Mission College Blvd
Santa Clara, CA 95054

pranam@yahoo-inc.com

Tim Oates and Tim Finin
University of Maryland,

Baltimore County
1000 Hilltop Circle

Baltimore, MD 21250
{oates,finin}@umbc.edu

ABSTRACT
The standard method for combating spam, either in email
or on the web, is to train a classifier on manually labeled
instances. As the spammers change their tactics, the perfor-
mance of such classifiers tends to decrease over time. Gath-
ering and labeling more data to periodically retrain the clas-
sifier is expensive. We present a method based on an ensem-
ble of classifiers that can detect when its performance might
be degrading and retrain itself, all without manual interven-
tion. Experiments with a real-world dataset from the blog
domain show that our methods can significantly reduce the
number of times classifiers are retrained when compared to
a fixed retraining schedule, and they maintain classification
accuracy even in the absence of manually labeled examples.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.5.2 [Pattern
Recognition]: Design Methodology—classifier design and
evaluation; I.5.4 [Pattern Recognition]: Applications—
text processing

Keywords
Spam, Weblogs, Ensembles, Adversarial Classification, Non-
stationarity, Retraining

1. INTRODUCTION
As we build more robust classifiers to detect spam, the

methods used by spammers evolve so that they can continue
to get their messages through. This leads to changes in the
distribution of the data seen by classifiers used to weed out
spam. Such changes can also occur naturally, for example,
as topics change in a blog or one company is bought by an-
other and the internal email traffic changes in form and con-
tent. Unless this non-stationarity of the data is taken into
account, classifier performance will decrease over time. For
example, one common method used by spammers is to add
text from legitimate sources (e.g., emails, blogs, newswires,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

books) to their communications in an attempt to get past
the classifiers as false negatives [4]. When many of these
messages get through, classifiers are often updated, which
leads to an arms race of sorts.

Two natural questions arise. First, how does one deter-
mine when classifier performance has degraded? Second,
how are the classifiers retrained? The most common answers
to these questions involve a continual stream of labeled ex-
amples, such as current emails labeled according to whether
or not they are spam. These labeled examples can be used to
test the accuracy of the classifiers and to retrain them when
accuracy becomes too low. The problem with this approach
is that obtaining labeled examples is expensive.

In this paper we present a method based on an ensemble of
classifiers that automatically, without human intervention,
deals with the two questions above. First, we use mutual
agreement between classifiers in the ensemble to detect pos-
sible changes in classifier accuracy. The mutual agreement
between a pair of classifiers is the fraction of time they as-
sign an instance the same class label. Note that the true
label need not be known to compute mutual agreement. We
show, using real data from the blog domain, that changes
in mutual agreement are indicative of decreased classifica-
tion accuracy. Second, we use the output of the ensemble
as a proxy for the true label for new instances and retrain
individual classifiers identified as possibly weak via mutual
agreement. Again, empirical results show this to be highly
effective, maintaining classification accuracy with minimal
retraining.

There is significant work on using ensembles to tackle con-
cept drift. These approaches are motivated by the fact that
it is often useful to have multiple (weighted) opinions be-
fore making a decision. [6] presented an ensemble method
for concept drift by assigning weights to classifiers based
on their accuracies. [3] extended this work by dynami-
cally creating and removing weighted experts in response
to changes in performance. Both methods rely on a stream
of labeled examples, whereas ours does not. [5] presented
another ensemble-based method for concept drift, claiming
it to have low computational cost and still be comparable
with other ensemble methods. [1] presented a random deci-
sion tree ensemble-based engine to mine data streams. They
demonstrated the ability to detect concept drift on the fly
and discussed ways to combine old data with new data for
computing optimal models. All the data they used was syn-
thetic.

2. BACKGROUND

Spam blogs (splogs) are typically constructed automati-
cally by combining legitimate content taken from the web
with ads or links to other sites in an attempt to boost their
rank in search engines. Spam blogs are a tremendous prob-
lem for intermediate servers and blog search engines as dis-
cussed and studied in [2].

The empirical results reported in Section 4 are all based
on two blog datasets, called SPLOG2005 and SPLOG2006,
that we manually constructed. SPLOG2005 was obtained
by sampling the update ping streams at a blog search en-
gine (Technorati, http://technorati.com) in the year 2005.
700 positive examples (splogs) and 700 negative examples
(blogs) were identified and labeled by hand. SPLOG2006
was created by processing the update ping streams at a ping
server (http://weblogs.com) in the year 2006. 750 positive
and 750 negative examples were also manually labeled for
SPLOG2006. Training and testing on SPLOG2006 in gen-
eral resulted in better classifier performance given that it
was sampled at a ping server. SPLOG2005, which was sam-
pled through a blog search engine, contained splogs that had
already passed one set of filters and were thus possibly more
difficult to automatically identify as such.

The features extracted from data are crucial for the suc-
cess of machine learning methods. Features that work in
the email and web spam domains may not work in the blog
domain. Therefore, we used a variety of features, some of
which are novel, as described below.

• Bag of words: These features are simply counts of the
number of times each word occurs in a blog.

• Bag of 2 or 3 words, or word n-grams: These features
are simply counts of the number of times each pair and
triple of words occur consecutively in a blog.

• Character n-grams: This feature is similar to the above
two features but we instead consider 2 or 3 characters
at a time.

• Anchor text: This is the text appearing between “a
href” tags.

• Tokenized URLs or outlinks: In this feature both local
and outgoing links are tokenized using “/” and “.” as
delimiters.

• HTML tags: This feature looks at html tags, like “h1”
and “bold”.

• URL: This is one feature which is not dependent on the
content of the blog and hence is very fast to extract.

3. MUTUAL AGREEMENT TO TRACK
CONCEPT DRIFT

The utility of using an ensemble of classifiers is that the
ensemble can perform well even if some of its member classi-
fiers perform poorly. A good ensemble has classifiers that are
diverse, perhaps having disjoint feature sets. An adversary,
such as a spammer, is unlikely to change all the features
at the same time, so only the classifiers based on the fea-
tures that change will be affected, not the others. The other
classifiers can still keep the overall ensemble performance
high. Eventually, though, the underperforming classifiers
will have to be retrained to prevent further changes to the
features from reducing the accuracy of the ensemble.

Whenever two different classifiers give the same label to
an instance, we say they agree. By doing this test on a suffi-
ciently large number of instances, we can estimate their mu-
tual agreement. Let fi(xk) be the output of the ith classifer

on the kth instance. Let δ(p) evaluate to 1 if p, a predi-
cate, is true. Otherwise, it evaluates to 0. Then the mutual
agreement between classifiers i and j can be estimated as
follows:

MAi,j =
n

X

k=1

δ(fi(xk) = fj(xk))
n

Over a period of time, if the mutual agreement between
a pair of classifiers decreases, it may indicate that one or
both the classifiers are performing poorly. Using mutual
agreement as a potential indicator of performance, we were
able to do the following.

• Pairs of classifiers performing poorly: In an ensem-
ble setting, we can monitor the agreement between all
possible pairs of the classifiers. Periodically, all the
agreement values are checked. If the agreement values
have dropped below a fraction of the initial agreement,
both the classifiers of the pair are retrained.

• Weakest classifier: This approach is similar to the first
except for the way retraining is done. While checking
agreement values periodically, we check which classi-
fiers occur in most of the weak pairs and only retrain
those.

4. EXPERIMENTAL RESULTS
This section describes two experiments with our method.

The first shows the usefulness of mutual agreement in re-
ducing retraining time. The second experiment shows how
mutual agreement can be used to improve the accuracy of
an ensemble as compared to performing no retraining and
that it is as good as frequent retraining with significantly
less computation.

4.1 Usefulness of Mutual Agreement
The first experiment demonstrates how mutual agreement

can be used to reduce retraining time and track performance
of individual classifiers in an ensemble. The following cases
were considered in this experiment.

• Case 1: 10 fold cross validation on the SPLOG2005
dataset was performed, i.e, the classifiers were trained
and tested for agreement on the SPLOG2005 dataset.
The initial agreement between the classifiers based on
the text and tags features was found to be 76%. Let
this be the initial agreement between the two classi-
fiers.

• Case 2: The classifiers were trained on SPLOG2005
and tested on the SPLOG2006 dataset with no retrain-
ing. The agreement was 69.5%. This sets the baseline.

For the cases that follow, the classifiers were trained on
SPLOG2005, and then selectively retrained based on differ-
ent criteria.

• Case 3: In this experiment with retraining, agreement
between the classifiers was checked after every 100 in-
stances of the SPLOG2006 dataset. Only when the
agreement fell below 95% of the initial agreement, i.e,
95% of 76% which is around 72.2%, the classifiers were
retrained. There were 14 iterations, after which the
agreement value was checked and, if necessary, retrain-
ing was performed.

Case Mutual Agreement Retrainings

95% threshold 79.48 1.2
100% threshold 80.44 2
Always retrain 82.74 14

Table 1: Experiment 1a: Retraining to maintain mutual
agreement using ensemble labels

Case Mutual Agreement Retrainings

95% threshold 80.48 1
100% threshold 81.5 1.6
Always retrain 5 84.26 14

Table 2: Experiment 1b: Retraining to maintain mutual
agreement using true labels

• Case 4: Case 3 was repeated with a 100% threshold
instead of 95%. That is, classifiers were retrained if
their agreement dropped at all from that found on the
SPLOG2005 dataset.

• Case 5: The classifiers were retrained after every 100
instances, regardless of agreement values.

In addition, cases 3, 4, and 5 were performed in the set-
ting with true labels instead of ensemble labels. Also, these
cases were repeated 5 times with different random orders of
the SPLOG2006 dataset instances. The average results are
provided in Table 1. All of the agreement values are given
in percentages and the “%” sign has been dropped. “Re-
trainings” means the number of times the classifiers were
retrained. “Ensemble labels” means retraining was done us-
ing samples labeled by the ensemble. “True labels” stand for
the case of using true labels for retraining.

Clearly, with no retraining, the agreement value goes down.
Experimental results show that by using mutual agreement
for retraining we reduce retraining time drastically while
maintaining the initial agreement between classifiers. We
next show how mutual agreement can be used in an ensem-
ble setting for dynamic retraining of base classifiers.

4.2 Graph Agreement
To demonstrate how members of an ensemble can be trained

dynamically based on mutual agreement as a trigger, we
considered 5 classifiers in all possible pairs. Performance is
measured in terms of the accuracy of the ensemble. The 5
classifiers were based on the text, character, outlink, anchor,
and tag feature sets. Classifiers based on character-gram and
word-gram feature sets were left out as they are similar to
the classifier based on text features, and therefore contribute
little to ensemble diversity. All of the classifiers were trained
on SPLOG2005 and initial agreements were determined by
performing 10 fold cross-validation as in the earlier experi-
ment. This gave rise to a fully connected graph of 5 clas-
sifiers where the nodes are the classifiers and the arc labels
are the agreement values between the classifiers. The classi-
fiers were then exposed to the SPLOG2006 dataset and, as
in the earlier experiment, the agreement values for the clas-
sifiers were checked after every 100 instances. So with every
iteration we update the edges of the graphs with agreement
values for that iteration. Unlike the previous experiment, we
make definite claims about accuracy here. This experiment
was carried out in the following settings, mainly differing in
the retraining algorithm.

Case Accuracy Retraining

Case 2 95.04 17.6
Case 3 94.88 6.8
Case 4 95.14 65

Table 3: Experiment 2a: Impact on ensemble accuracy,
retraining using ensemble labels

Case Accuracy Retraining

Case 2 95.86 14.75
Case 3 95.08 7
Case 4 96.4 65

Table 4: Experiment 2b: Impact on ensemble accuracy,
retraining using true labels

• Case 1 - No retraining: There was no retraining at
all. This forms the baseline. The end accuracy of the
ensemble was 93%.

• Case 2 - Retraining all of the classifiers in weak pairs:
In this setting, all of the classifiers whose agreement
had fallen below a threshold of 95% of the initial agree-
ment were retrained.

• Case 3 - Retraining only the weakest: The classifier
that participated in the most weak pairs was the only
one retrained. Again, the threshold for retraining was
95% of the initial agreement.

• Case 4 - Retraining all of the classifiers: In this method,
all of the classifiers were retrained in every iteration.

Cases 2, 3, and 4 were also repeated with true labels in-
stead of ensemble labels. Each case was repeated 5 times
with different random orderings of the SPLOG2006 dataset
instances. Some of the experiments were also performed
with a 100% threshold but no significant improvement in
accuracy was observed. Therefore, we only report results
with a 95% threshold. All of the results are shown in Table
4 where the columns are the same as Table 1. The only dif-
ference is that, instead of agreement values, we report the
accuracies of the ensemble. The accuracy values are given
in percentages and the “%” sign is dropped.

Figure 1 shows a plot of accuracies for no retraining, and
for full retraining using both true and ensemble labels. This
plot shows lower and upper bounds on performance. Two
additional accuracy plots are shown - one for experiments
using true labels, Figure 3, and the other for experiments

(a) Accuracies

Retraining Ensemble Labels True Labels

None 90 -
Weak pairs 93 91
Weakest 97 97

All 96 97

(b) Classifiers to retrain

Retraining Ensemble Labels True Labels

Weak pairs None Tag,Anchor
Weakest Text Text

Table 5: Summary of agreement graph after two iterations

 92

 93

 94

 95

 96

 97

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

AC
CU

RA
CY

 (%
)

ITERATION NUMBER

No Retraining
Retraining(Ensemble Labels)

Retraining(True Labels)

Figure 1: Full retraining accuracy using ensemble vs. true
labels and no retraining

 92

 93

 94

 95

 96

 97

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

AC
CU

RA
CY

 (%
)

ITERATION NUMBER

No Retraining
Full Retraining

Weak Pair Retraining
Weakest Retraining

Figure 2: Accuracy with ensemble labels for retraining

 92

 93

 94

 95

 96

 97

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

AC
CU

RA
CY

 (%
)

ITERATION NUMBER

No Retraining
Full Retraining

Weak Pair Retraining
Weakest Retraining

Figure 3: Accuracy with true labels for retraining

using ensemble labels, Figure 2. Note that the data series
line for the “No Retraining” case has been added just for
comparison, it is the same for both cases. All these exper-
iments show how mutual agreement can be used to reduce
the retraining time, while maintaining the accuracy close to
that of frequent retraining.

5. DISCUSSION AND CONCLUSION
The experimental results in the previous section showed

how mutual agreement can be used for dynamic retraining
of base classifiers to handle adversarial classification. The
main idea is that decreasing mutual agreement is an indica-
tor that one or more classifiers are performing poorly. Said
differently, when mutual agreement is above threshold, we
assume that the classifiers are performing well. However,
it could very well happen that, though the classifiers agree,
they are both wrong. In short, the relation between mu-
tual agreement and accuracy of the classifiers is not perfect.
This can be more severe if we consider just two classifiers
at a time rather than a larger set of them. The probability
of both the classifiers succumbing to the spammers chang-
ing tactics in the same way cannot be neglected. But in an
ensemble setting where we have more then two classifiers,
the probability that most of the classifiers will be wrong at
a given time decreases. The more classifiers there are, the
lower the probability of them all going wrong at the same
time. But, for this statement to hold true, we need to keep
the classifiers diverse. So if the adversary changes some of
the features, only classifiers based on those features may be
affected. The rest should still perform well.

6. REFERENCES
[1] W. Fan. Streamminer: a classifier ensemble-based

engine to mine concept-drifting data streams. In VLDB
’04: Proceedings of the Thirtieth international
conference on Very large data bases, pages 1257–1260.
VLDB Endowment, 2004.

[2] P. Kolari, A. Java, and T. Finin. Characterizing the
splogosphere. In WWW 2006, 3rd Annual Workshop on
the Weblogging Ecosystem: Aggregation, Analysis and
Dynamics, 2006.

[3] J. Z. Kolter and M. A. Maloof. Dynamic weighted
majority: A new ensemble method for tracking concept
drift. In ICDM ’03: Proceedings of the Third IEEE
International Conference on Data Mining, page 123,
Washington, DC, USA, 2003. IEEE Computer Society.

[4] D. Lowd and C. Meek. Good word attacks on statistical
spam filters. In CEAS, 2005.

[5] M. Scholz and R. Klinkenberg. An ensemble classifier
for drifting concepts. In In Proceedings of the Second
International Workshop on Knowledge Discovery in
Data Streams, pages 53–64, 2005.

[6] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining
concept-drifting data streams using ensemble classifiers.
In KDD ’03: Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 226–235, New York, NY, USA,
2003. ACM.

