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We show that a superresolution process with 100% visibility is characterized by the formation of a point of
phase singularity in free space outside a metamaterial in the form of a saddle with topological charge equal to
−1. The saddle point is connected to two vortices at the end boundaries of the lens, and the two vortices are in
turn connected to another saddle point inside the lens. The structure saddle-vortices-saddle is topologically
stable. The formation of the saddle point in free space explains also the negative flux of energy present in a
certain region of space outside the lens. The circulation strength of the power flow can be controlled by varying
the position of the object plane with respect to the lens.
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Vortices are ubiquitous in nature from the macroscopic to
the microscopic world. Tornados and hurricanes �1� or whirl-
pools �2� are maybe the most common examples at macro-
scopic distances. At micrometer scales, vortices have been
observed in superfluid He II �3� and in a Bose-Einstein con-
densate of 87Rb atoms �4,5�. In optics, vortices have been
observed in the near field diffracted by an array of subwave-
length apertures �6–9�, in lasers �10�, in optical fibers or in
systems that create caustics or speckle fields �11�, with the
help of computer generated holograms �12� and spiral phase
plates �13�, and in nonlinear media �14,15� including qua-
dratic materials �16�. Their applications include free space
interconnection of electronic components �17�, optical trap-
ping of viruses and bacteria �18� as well as small particles
�19�, quantum information and quantum cryptography
�20,21�, fluorescence microscopy with nanoscale resolution
�22�, and extrasolar planet detection �23,24�. Optical vortices
are based on the appearance of phase singularities �also
called “phase dislocations”� whenever the field intensity van-
ishes, as pointed out in the seminal paper by Nye and Berry
�25�.

Let us consider for simplicity the expression of
the time-averaged Poynting vector for a monochromatic

field in a two-dimensional geometry: S��x ,z�
= �1 /2�Re�E� �x ,z��H� ��x ,z�� where E� �x ,z� and H� �x ,z� are
the complex amplitudes of the electric and magnetic fields,
respectively. The phase of the Poynting vector can be
extracted from its components through the following

equations: sin �S�x ,z�=Sz�x ,z� / �S��x ,z�� and cos �S�x ,z�
=Sx�x ,z� / �S��x ,z��. Now, if we assume that at some point in

space �S��x ,z��=0 �black spot�, then the phase of the Poynting
vector will be, of course, not defined �singular� at that point
and in its neighborhood there can be three possible situa-
tions: �a� a left-handed or right-handed circular power flow
�optical vortex�, �b� a power flow in the form of a source or

sink, or �c� a power flow in the form of a saddle �25,26�.
Obviously, in free space a power flow in the form of a source
or a sink is excluded. Due to the appearance of those phase
singularities, the branch of optics that studies vortices is usu-
ally referred to as “singular optics,” and singular optics is
emerging as a new and exciting chapter of modern optics
�27�. A quantity that is useful in the study of optical vortices
is the so-called topological charge which can be defined for

the Poynting vector as �28� s= �1 /2���C�� �S ·dr�, where the
path integral is taken counterclockwise along any closed line
C surrounding the point of phase singularity. The topological
charge is in general an integer number because the phase
varies by multiples of 2� around the singular point, and it
counts the algebraic number of phase jumps along the closed
line C associated with the helical structure of �S.

In the past few years, negative index materials �NIMs�,
i.e., materials that have simultaneously negative permittivity
��� and permeability ���, have been the subject of intense
theoretical and experimental investigations �29,30�. One of
the most important applications is the possibility of using
them to construct a “perfect” lens, i.e., a lens that can also
focus the evanescent near-field components of an object, as
pointed out by Pendry several years ago in his seminal paper
�29�. In 2005 the first NIMs operating in the visible regime
were reported �31,32� and shortly after a silver-based NIM
operating at telecommunication wavelengths was theoreti-
cally studied �33� and experimentally realized �34�. One se-
rious issue that is detrimental for achievement of a superre-
solving lens is the fact that in currently available
metamaterials the absorption or scattering losses are still
very high. A much simpler superresolving lens can be ob-
tained by using one-dimensional metallodielectric multilayer
structures �35–38� in which low-group-velocity surface plas-
mon modes are excited for TM polarization of the light.
Those metallodielectric lenses have only the permittivity ���
negative due to the presence of the metal layers, and there-
fore they mimic a NIM only for TM polarization of the light
�35–39�; nevertheless, they retain many salient characteris-
tics of a true NIM as regards superresolution purposes, and,
more important, they have the advantage of low losses in the
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visible range. We would like to point out that here we are in
a situation where the distance between the image plane and
the object plane is one wavelength or less, i.e., we are in the
near field; these distances are typical for the study of super-
resolution �29,35,36,39�. It is worth mentioning that a lens
that seems promising in achieving superresolution in the far
field has also been proposed �40�. Superresolution in the far
field is usually referred to as “hyperresolution” and the lens
that achieves it is called a hyperlens.

In a recent publication �39�, we have shown that broad-
band superresolution can be achieved in a metallodielectric
lens made of 5.5 periods of Ag/GaP �22 nm/35 nm� with
17-nm-thick GaP antireflection coatings on the entrance and
exit faces for a total length L=341 nm. The lens maintains a
good transparency ��60% of the input power is transmitted
by the lens� over the superresolving range 500–650 nm. For
an incident wavelength of 532 nm, the lens is able to resolve
two slits �40 nm wide with center to center distance of 140
nm� with 100% visibility at 50 nm beyond the end face of
the lens. The slits are placed at the entrance of the lens
�but in free space�. In Fig. 1�a� we show Sz�x ,z� during
the superresolution process and in Fig. 1�b� we show
Sz�x ,z�391 nm� where the visibility approaches 100%.
The black spot indicates the point of coordinates
�x=0,z�391 nm� where Sz=0. At points in the vicinity of
x=0, z�391 nm, Sz�0. Figure 2�a� shows that not only
Sz=0 but also Sx=0 at the point �x=0,z�391 nm� and
therefore we can expect the presence of a point of phase
singularity around this point �black spot�. In Fig. 2�b� we

show the phase �S around the black spot. In this case we
have just one phase jump of 2� along a closed line C sur-
rounding the black spot and therefore the topological charge
is s=−1 when C is oriented counterclockwise. In Fig. 3 we

show the vector field S� around the black spot. The black spot
is a saddle point and the power flow is characterized by four
perfectly symmetric regions of circulation. The energy is
flowing toward the black spot along the x direction, while it
is flowing away from the black spot along the z direction.
Note that the flux of energy is negative in the region of
free space delimited by the boundaries �zmin�341 nm,
zmax�391 nm, xmin�−18 nm, xmax�18 nm�. A negative
flux of energy in free space may appear counterintuitive, but
is instead perfectly explained by the formation of the saddle
point at �x=0, z�391 nm�. This negative flux of energy
has also been reported in Ref. �41�, although there it was
ascribed to the finite transverse dimension of the lens, while
it is clear now that it is due to the formation of a saddle
point. The strength of the circulation of the power flow in air
and the position of the saddle point can be controlled by
varying a, i.e., the distance of the object plane with respect to
the input face of the lens. In particular, the position of the
black spot becomes closer to the end of the lens and at the
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FIG. 1. �Color online� �a� Sz �arbitrary units� in the x-z plane.
The dashed �continuous� line indicates the position of the end of the
lens �the image plane�. �b� Section of Sz at the image plane �z
�391 nm� where 100% visibility is achieved. Superimposed
dashed lines indicate the positions of the two slits.
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FIG. 2. �Color online� �a� Three-dimensional plot of

�S� �=	Sx
2+Sz

2 in the x-z plane in a small region around the black
spot. �b� Structure of the phase of the Poynting vector ��S� around
the black spot.
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same time the strength of the circulation of the power flow
decreases when the distance between the object plane and the
beginning of the lens increases. We have also calculated the
diffraction from the two slits in free space �i.e., without the
metallodielectric lens in place�. In this case there is no saddle
point on the z axis at x=0 and no negative energy flux.
Therefore, the onset of the saddle point must be ascribed to
the presence of the superlens and to the fact that 100% vis-
ibility is achieved. In Fig. 4 we show the circulation of the

Poynting vector ��� �S��y �42� in free space at z�343 nm
�i.e., in free space immediately after the end of the lens� as a
function of a, by varying a in steps of 10 nm. As we will see
in a moment, the peaks and the valleys of the circulation are
related, respectively, to the presence of left-handed �LVs�
and right-handed �RVs� vortices at the boundary of the lens.

Usually the saddle must be connected to other disloca-
tions, and in fact in Fig. 5 we show that the saddle point �S1�
in our case is connected to two vortices, left-handed �LV1�
and right handed �RV1�, respectively, which are centered at
the last Ag/GaP interface in a symmetric position with

respect to the saddle point. The two vortices are in turn con-
nected to another saddle point �S2� inside the lens. The struc-
ture S1-LV1-RV1-S2 is a manifestation of the superresolu-
tion process with 100% visibility. In order to address the
issue of the topological stability of the structure, we calculate
the Poynting vector outside the lens in the case of two
slightly asymmetric slits. The first slit is now positioned be-
tween x1−=−100 nm and x1+=−50 nm �therefore the width
of the slit is now 50 nm instead of 40 nm� while the position
and the width of second slit remain unchanged. The calcula-
tions show that the structure S1-LV1-RV1-S2 remains prac-
tically unchanged with just a slight modification in its loca-
tion, proving therefore the topological stability. We would
like to underline that in this work we have focused our at-
tention only on the structure S1-LV1-RV1-S2, which charac-
terizes the superresolution with 100% visibility. As a matter
of fact, the structure of the phase dislocations inside the su-
perlens is much more complicated and far richer, although a
detailed mapping of all the phase dislocations is outside the
scope of the present work. The calculations presented here
have been performed using the angular spectrum representa-
tion technique �43� in conjunction with a matrix transfer
technique �44�. The method, given its intrinsic analytical na-
ture, avoids any numerical problems. The same technique
has also been successfully applied in Ref. �45� to study the
influence of losses on the superresolution capabilities of an
impedance-matched negative index material.

In conclusion, we have demonstrated that a superresolu-
tion process with 100% visibility is accompanied by the for-
mation of a structure S1-LV1-RV1-S2 which is topologically
stable. We expect that our findings may have important ap-
plications in the field of optical interconnections at the
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FIG. 3. �Color online� Vector field S� �little arrows� in a small
region around the saddle point �black spot�. The big arrows are
shown to help the eye. For a better view the magnitude of the
Poynting vector has been magnified ten times with respect to the
values reported in Figs. 1 and 2�a�.
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FIG. 4. �Color online� ��� �S��y �arbitrary units� vs x �microme-
ters� at z�343 nm for different distances a of the object plane
from the input surface of the lens.
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FIG. 5. �Color online� Arrow representation of the unit vector

S� / �S� �. The saddle point �S1� is connected to two vortices, right-
handed �RV1� and left-handed �LV1�, respectively, centered at the
last Ag/GaP interface. These vortices are in turn connected to a
second saddle point �S2� inside the lens centered at the penultimate
GaP/Ag interface. The big arrows sketch the flux of the energy.
Note in particular the negative flux of energy directed toward the
end of the lens.
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nanoscale level, optical trapping of viruses and bacteria, and
optical trapping of particles. We hope also that our results
may stimulate the finding of further connections between the
fascinating fields of singular optics and metamaterials.
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