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ABSTRACT

Title of Thesis: A Simple Model for the Degradation of Cross-Sectional Area of a

Skeletal Muscle Fiber Due to the Transcription Factor FOXO-1

BreAsia Deal, Master, 2018

Thesis directed by: Doctor Bradford Peercy, Associate Professor
Department of Mathematics and
Statistics

We are investigating, through mathematical modeling and analysis, the signaling path-

way of the FOXO-1 protein family transcription factors that involve the activation by In-

sulin Growth Factors (IGF) and Protein Kinase B (Akt). In doing so, it is important to

know how the phosphorylation state of the FOXO-1 proteins causes the degeneration of

muscular-skeletal fibers (Wimmer et al. 2014). In this paper, we will be modeling bio-

chemical behaviors involving the FOXO-1 protein family and its effects in muscle atrophy.

In studying muscle atrophy we consider how the nuclear to cytoplasm FOXO-1 ratio, the

total FOXO-1, and the nuclear FOXO-1 effect the amount of degradation protein produced

by FOXO-1 to breakdown the muscle volume, and the cross-sectional area of the muscle

over the course of several days.
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Chapter 1

BACKGROUND

We are investigating, through mathematical modeling and analysis, the signaling path-

way of the FOXO-1 protein family transcription factors that are post-transcriptionally mod-

ified by Protein Kinase B (Akt) and the upstream external regulators such as Insulin Growth

Factor (IGF). We focus on this system in skeletal muscle fibers. In doing so, it is impor-

tant to know how the phosphorylation of the FOXO-1 proteins causes the degeneration of

skeletal muscle fibers (Wimmer et al. 2014). In this paper, we will be modeling the behav-

ior of biochemical interactions involving the FOXO-1 protein family and their effects on

muscle atrophy. During muscle atrophy, FOXO-1 is phosphorylated in the cytoplasm and

nucleus. When the FOXO-1 protein is phosphorylated in the nucleus, it travels through a

nuclear pore, into the cytoplasm. This prevents the reduction of protein, which triggers the

degeneration of the skeletal muscle. Furthermore, when FOXO-1 is phosphorylated in the

cytoplasm it is prevented from entering the nucleus also preventing degeneration.

To connect phosphorylated FOXO-1 and unphosphorylated FOXO-1 protein to mus-

cle atrophy (muscular mass decrease), we study the breakdown of the skeletal muscle by

constructing two mathematical models for muscle atrophy as it relates to un/phosphorylated

FOXO-1 protein. In creating our basic model, we focus on (a) the ratio of FOXO-1 protein

1



2

within the nucleus to the cytoplasm, (b) a generic degradation protein regulated by FOXO-

1, and (c) the cross-sectional area of the skeletal muscle change over the course of several

days. In our second model, we consider feedback from total FOXO-1 changing over the

course of several days.

1.1 Nucleus to Cytoplasm FOXO-1 Ratio Calculations

For this paper, we consider a four state model and its two state reduction found in

(Wimmer et al. 2014). We begin with a four state model of the phosphorylated and unphos-

phorylated FOXO-1 protein in the nucleus and cytoplasm. The four states are represented

by (Uc) the unphosphorylated cytoplasmic FOXO-1, (Pc) the phosphorylated cytoplasmic

FOXO-1, (Un) the unphosphorylated nuclear FOXO-1, and (Pn) the phosphorylated nu-

clear FOXO-1. For the four state model uses rate constants: kPc , kUc , kPn , and kUc . We use

a rapid phosphorylation assumption to reduce the four state model to the two state model

shown below in equations (1.1-1.2). The two state model is presented here,

dN

dt
= I − E,(1.1)

dC

dt
= ε(E − I),(1.2)

where N = Un + Pn is the FOXO-1 in the nucleus, C = Uc + Pc is the FOXO-1 in the

cytoplasm, I is the rate of nuclear influx and E is the rate of nuclear efflux. In equation

(1.2), the nuclear to cytoplasmic volume ratio is ε = Vn
Vc

. We apply the nucleus to cytoplas-

mic volume ratio to our model of the cross-sectional area. When calculating the nucleus to

cytoplasm volume ratio we take into consideration the difference between the nucleus and

cytoplasm volume because the nuclear volume is small in comparison to the cytoplasmic

volume. The nucleus to cytoplasm volume ratio is the volume of the nucleus divided by the
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volume of the cytoplasm, this is taken into consideration because FOXO-1 is moving back

and forth from the nucleus and cytoplasm. In the two state model shown in equations (1.3-

1.4), there are new variables introduced from rapid phosporylation assumption in the four

state model; (Wimmer et al. 2014) introduces Uc =
(

kUc
kUc+kPc

)
C and Pn =

(
kPn

kPn+kUn

)
N

as the un/phosphorylated FOXO-1 in the cytoplasm and nucleus. Below, influx is propor-

tional to the unphosphorylated cytoplasmic FOXO-1 and the efflux is proportional to the

phosphorylated nuclear FOXO-1. We can rewrite the nuclear and cytoplasmic FOXO-1

equations as,

dN

dt
= kIUc − kEPn,(1.3)

dC

dt
= ε(kIPn − kEUc).(1.4)

Letting k
′
I = kI

(
kUc

kUc−kPc

)
and k

′
E = kE

(
kPn

kPn−kUn

)
where kU and kP are the

de/phosphorylation rates with the c or n subscript denoting whether the reaction is in the

cytoplasm or nucleus, respectively. With these assumptions we get the two state model,

dN

dt
= k

′

IC − k
′

EN,(1.5)

dC

dt
= ε(k

′

EN − k
′

IC).(1.6)

The presence of kPn and kPc is important because they depend on the level of Akt,
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thus allowing us to interpret changes in k
′
E and k

′
I in terms of Akt. By conservation,

CT = C + εN , where CT is the total constant FOXO-1 in relation to the cytoplasm’s

volume. This allows us to consider a single equation for the nuclear FOXO-1,

dN

dt
= k

′

ICT − (k
′

E − εk
′

I)N.(1.7)

Therefore the FOXO-1 concentration in the nucleus is represented as:

N = CT

[(
N0

CT
− k′I
k′E + εk′I

)
e−(k

′
E+εk

′
I)t +

k′I
k′E + εk′I

]
.(1.8)

In conclusion, the cytoplasm volume is much larger than the nuclear volume so we

take the nuclear to cytoplasm volume ratio limit to be small, so that ε → 0. Therefore,

CT = C and now we can divide equation (1.8) by C to get the nucleus to cytoplasm

FOXO-1 ratio. The nucleus to cytoplasm FOXO-1 ratio is

N

C
=

(
N0

CT
− k′I
k′E

)
e−(k

′
E)t +

k′I
k′E

(1.9)

.
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1.2 Calculating the rate of change of the nuclear to cytoplasm FOXO-1 ratio

In modeling the degradation of the cross sectional area of a skeletal muscle, we will

show the dynamics of the FOXO-1 proteins in the nucleus and the cross sectional area.

In doing so, we must understand the process happening within the nucleus to produce

degradation protein and degrade the muscle. Within the IGF pathway, the receptor of the

Insulin Growth Factor activates Protein Kinase B, Akt, which leads to the phosphorylation

of FOXO-1 protein. When a FOXO-1 protein is phosphorylated, it is unable to enter into

the nucleus but, when the IGF pathway is blocked FOXO-1 is unphosphorylated allowing

it to enter into the nucleus. This then leads to an increase in the degradation protein pro-

duction that causes muscle atrophy.

We begin by calculating the rate of nuclear to cytoplasm FOXO-1 ratio over time. We

represent the nuclear to cytoplasm ratio as r = (N
C
) and set ε = 0 from equation (1.9). The

rate of nuclear to cytoplasm FOXO-1 ratio is,

dr

dt
= k′I − k′Er.(1.10)

We can rewrite the above equation as,

dr

dt
=

k′I
k′E
− r
1
k′E

.(1.11)

let r∞ =
k′I
k′E

and τ = 1
k′E

, then

dr

dt
=

r∞ − r
τ

.(1.12)
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The solution compatible to equation (1.9) is:

r(t) = r∞ + (r0 − r∞)e
−t
τ .(1.13)

FIG. 1.1. The basic model of the IGF/Akt FOXO-1 pathway.



Chapter 2

METHODS

In this section, we develop our basic and dynamic FOXO-1 models. We go through

the methods we used to model muscle atrophy using two different models.

2.1 Basic Model

In this section, we model the production of the degradation proteins. The degrada-

tion proteins already exist inside the muscle cell, but the phosphorylation of the FOXO-1

protein activates the free floating degradation proteins. It is this protein production that

we model. The FOXO-1 proteins in the nucleus produces these degradation proteins. We

assume that these degradation proteins (such as ubiquitin ligase (Smith & Shanley 2010))

contribute to the degradation of the the cross sectional area of a skeletal muscle fiber. The

rate of the creation of the proteins connections over time is equivalent to the production

rate of the degradation protein minus the degradation rate of the protein:

dp

dt
= kr − δp.(2.1)

7
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Using equation (1.11), yields

p(t) =
k

δ
(r∞ + τ(r0 − r∞)e−

t
τ ) + Ae−δt.(2.2)

The initial condition of the degradation protein is the function p(0) = 1, yields the solution:

p(t) = e−δt +
k

δ
(1− e−δt) + k

δ
(τ(r0 − r∞))(−e−

t
τ + e−δt).(2.3)

We have established equations for nuclear to cytoplasm FOXO-1 ratio, equation (1.13), and

degradation protein, equation (2.1). We now establish rate equations for cross-sectional

area. The rate at which the cross-sectional area degrades over time we take to be either pro-

portional to degradation protein concentration or proportional to the product of degradation

protein and cross-sectional area.

In the model below, the rate of degradation of the cross-sectional area over time is

proportional to the concentration of degradation protein with rate constant, α, as seen by:

da
dt

= −αp(t).(2.4)

We solve for the cross-sectional area by using the solution from the degradation protein

equation (2.3) and get the solution

a(t) = −α[−1
δ
p0e
−δt +

k

δ
(r∞(t+

1

δ
e−δt)) +

k

δ
(τ(r0 − r∞))(2.5)

(τe−
t
τ − 1

δ
e−δt)] +B.

Since the initial condition of the cross-sectional area is: a(0) = 1, the solution is
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represented below by the cross-sectional area over time,

a(t) = 1 +
α

δ
p0(1 + e−δt) +

αk

δ
(r∞(

1

δ
− t− 1

δ
e−δt) +(2.6)

αk

δ
(τ(r0 − r∞))(τ −

−1
δ
− τe−

t
τ +

1

δ
e−δt).

The second mathematical model for the cross-sectional area when the rate of the cross-

sectional area is proportional to the cross-sectional area is

da

dt
= −αpa,(2.7)

with the general solution:

a(t) = Ce−α[
−1
δ
p0e−δt+

k
δ
(r∞(t+ 1

δ
e−δt)+ k

δ
(τ(r0−r∞))(τe−

t
τ − 1

δ
e−δt)].(2.8)

Since the initial condition of the cross-sectional area is: a(0) = 1, the solution for the

cross-sectional area,

B = =
1

e−α[
−1
δ
p0+

k
δ2

(r∞+ k
δ
(τ(r0−r∞))(τ− 1

δ
)]

a(t) = Be−α[
−1
δ
p0e−δt+

k
δ
(r∞(t+ 1

δ
e−δt)+ k

δ
(τ(r0−r∞))(τe−

t
τ − 1

δ
e−δt)].

After graphing the solutions to the two cases, for the cross sectional area, we have wit-

nessed very little difference between the two. We utilize equation (2.4).
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FIG. 2.1. The basic model of the IGF/Akt FOXO-1 pathway, the pathway of ubiquitin

ligase proteins produced by the FOXO-1 protein, and the cross-sectional area degradation

caused by the ubiquitin ligase.

Overall, the equations that were used to create the basic model of the nuclear to cyto-

plasmic FOXO-1 protein ratio, the degradation proteins produced by the FOXO-1 protein,

and the cross-sectional area are represented by,

dr

dt
=

(r∞ − r)
τ

,(2.9)

dp

dt
= kr − δp,

da

dt
= −αp(t).

We then alter the p and a equations (2.1 and 2.4). In the protein equation, to boost the

sensitivity of the ubiquitin ligase production in response to the addition of IGF we added

a Hill function to the ubiquitin ligase production equation (2.1). We represent IGF in the
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new equation (2.10) for degradation protein by the nuclear to cytoplasm ratio variable, r.

The degradation protein equation is,

dp

dt
=

krn

rn + (Kr)n
− δpp.(2.10)

To represent the small baseline area decay and production with ratio we added δaa and σ

to the cross-sectional area equation (2.4),

da

dt
= σ − δaa− αp(t).(2.11)

Below in Table 1.1 are the parameters for the model in equation (2.10)-(2.12).

2.2 Testing the Basic Model Against Data

In testing our models of muscle atrophy, we partnered with Sarah Russell, a PhD

student in Dr. Martin Schneider’s lab at UMB, and considered her preliminary work in the

regulation of FOXO-1 protein in skeletal muscle atrophy. From her research we estimated

the volume of a skeletal muscle treated with IGF (call this IGF experiment) and not treated

with IGF (call this Control experiment). The first data set, we identify as Data Set 1, has

two different skeletal muscle volume measurements, a control and IGF experiment treated

from day 0. The second set of data, we identify as Data Set 2, has two different skeletal

muscle volume measurements as well. In Data Set 2, we estimated the volume of the

control and the other was treated with IGF at day 5, instead of day 0. From the two data

sets we fit parameters, δp and k, and set values to the other set of parameters from Table

1.1. We do this to apply values to the parameters to our equations for the the nuclear to

cytoplasm FOXO-1 ratio, the degradation protein production, and the cross-sectional area

so that we can graph and compare the degradation of the cross-sectional area for our model
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Table 2.1. Table of parameters with aligned units.

Parameters Name Unit Values Definition
k′I min−1 0.119 without

IGF and 0.024
with IGF

represents the in-
flux of FOXO-1
proteins into the
nucleus

k′E min−1 0.014 without
IGF and 0.109
with IGF

represents the ef-
flux of FOXO-
1 proteins leaving
the nucleus into
the cytoplasm

k protein
day

3.233 production rate of
ubiquitin ligase
produced by
FOXO-1 proteins

δp day−1 2.330 decay rate of the
ubiquitin ligase
produced by
FOXO-1 proteins

α area
proteinday

0.0309 decay rate of
the cross sec-
tional area of the
present degrada-
tion proteins

n no units 4 hill coefficient
for N

C
dependent

ubiquitin ligase
production

Kr FOXO-1 0.2629 sensitivity of
ubiquitin ligase
production to
nuclear FOXO

σ area
day

0.001 source parameter
δa day−1 0.001 the growth rate

of existing cross
sectional area
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and the estimated data. To get values for k′I and k′E we used values from (Wimmer et al.

2014), for the Control experiment, k′I = 0.119 and k′E = 0.014, and for the IGF experiment

k′I = 0.024 and k′E = 0.109. We estimated parameters Kr and α by solving a two equation

and two variable system. We build the system of equations by using the k′I and k′E IGF and

control values to get a steady state low and high for nuclear FOXO-1 values. Then using

the same method to get a low and high for degradation protein values, and solved for αphi

and αplo for the two equations and two unknowns Kr and α. Then we set values for n to be

4, and δa = 0.01 and σ = 0.01 to be small baseline area decay and production with ratio of

1 for normalization. We use data set 1 to fit parameters δp and k using Matlab’s lsqcurvefit

program.



Chapter 3

RESULTS FOR MODELING CROSS-SECTIONAL

AREA

3.1 Fitting the Cross-Sectional Area of Skeletal Muscles In MATLAB Using Nuclear

to Cytoplasm FOXO-1 protein Ratio

We begin by finding the best fit parameters to Data Set 1. We use Data Set 1 to fit

parameters δp and k. In the process of finding the best technique for the model equation,

we use the two values for k′I and k′E for the IGF and control experiments. When k′I is

high and k′E is low, FOXO-1 is phosphorylated leading to nuclear FOXO-1 entry and to

muscle atrophy (this represents the Control) and when k′I is low and k′E is high then Akt

is activated and FOXO-1 is more phosphorylated (this represents the application of IGF).

Next in fitting the cross sectional area, we use the Data Set 1 and the k′I and k′E values to fit

K and δp parameters to the cross-sectional area for the control experiment. To mimic the

control experiment, we used k′I = 0.119 and k′E = 0.014, and for the IGF experiment we

used k′I = 0.024 and k′E = 0.109 (Wimmer et al. 2014). We apply the list of parameters

from Table 1 to the models that represent equations (2.9-2.11). After finding the the pa-

rameter values for δp and k,and applying the values for the other parameters for the model

we graph Data Set 1 Control and IGF Data with our model best fit of the Control and IGF.

14
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When graphing our model we set the initial conditions to p0 = 0, a0 = 1, and r0 = r∞.

Results for nucleus to cytoplasm FOXO-1 protein ratio (Figure 3.1), the degradation pro-

tein amount produced by FOXO-1 protein (Figure 3.2), and the two cross-sectional areas

(Figure 3.3) are shown below.

FIG. 3.1. The nuclear to cytoplasmic ratio over time for the control and IGF for Data Set

1. Model is sampled at every 0.5 days to compare with Data.
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FIG. 3.2. Degradation protein production over time for the control and IGF Data Set 1.

When the nuclear to cytoplasm FOXO-1 ratio increases the degradation protein follows suit

and the same occurs when the nuclear to cytoplasm FOXO-1 ratio decreases. This happens

because the production of degradation protein is controlled by the amount of FOXO-1 in

the nucleus.
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FIG. 3.3. The cross-sectional area of fiber over the span of seven days for Data Set 1.

The difference between the model control (red line) and IGF (blue line) is the choice of k′I

and k′E which are given in Table 1.1. Data Set 1 control is in red markers and IGF is in

blue markers. Since the length of the muscle fiber is unchanged volume is proportional to

cross-sectional area and also normalized to the initial area.

We now want to run the same procedures for Data Set 2, where the IGF is added at day

5 instead of day 0. Based on Data Set 2, we applied the set of parameter values we found

during the first best fit model. Using the same method as before we plot Data Set 2 Control

and IGF and then graph our model of best fit for the cross sectional area (Figure 3.4). When

graphing our model we set the initial conditions to p0 = 0, a0 = 1, and r0 = r∞. For the
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control fit we use the same k′I = 0.119 and k′E = 0.014 (Wimmer et al. 2014) and for the

IGF fit we use the same values from the control fit until day 5, at day 5 we used k′I = 0.024

and k′E = 0.109 (Wimmer et al. 2014). The results of the graphs for the two cross sectional

areas are shown in Figure 3.4.

FIG. 3.4. The cross-sectional area of fiber over the span of seven days for Data Set 2 still

using the same parameter values as Data Set 1.
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3.1.1 Normalizing the IGF Data for Fitting

From the two graphs of the cross sectional area, the slopes of the IGF model in Figure

3.3 seem similar to the the slope of the data at day 5 in Figure 3.4. To be able to better

compare the IGF slopes we normalize the data presented at day 5, of Data Set 2. In Figure

3.3 and 3.4 at day 0, the model of IGF and the control, all start at the same point. This is

not true in Figure 3.4 of the IGF and Control with the IGF starting at day 5. At day 5, the

Control, IGF, and the Data from Data Set 2 do not start at the same point. To normalize

Data Set 2, we used model data sets at day 5 normalized both the control and IGF Data to

this value. This allowed us to better compare the slope of the Data and model. It normal-

ized the IGF to start at the Control value from Data Set 2. Then using the parameters we

established earlier for the Control Data and IGF Data in Data Set 1, we graphed the model

for the best fit Control Data and IGF Data and normalized the points after day 5 by shifting

the Data to start at the same day 5 value as the control, this is shown in Figure 3.5. We see

from the graph that after normalizing the IGF data in Data Set 1 and Data Set 2 that the

slopes are similar.
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FIG. 3.5. The normalized cross-sectional area of fiber over the span of seven days for Data

Set 2. Keeping the parameters, normalize the IGF Data in the Day 5 Set to the control by

shifting the control and IGF Data points at day 5 by the difference between the control and

IGF Data so that the Data at day 5 in the model and the given Data Set are normalized to

the control point at day 5.

3.2 Modeling the Cross Sectional Area of Skeletal Muscles With the Total FOXO-1

Dynamically Changing

There is evidence for FOXO-1 changing on the order of days (Wimmer et al. 2014).

To account for this, we need to model the nuclear concentration of FOXO-1 protein, not

the nuclear to cytoplasm ratio that was done in prior sections. We do this because the nu-

clear FOXO-1 protein is what will be the factor in determining muscle atrophy, since it



21

is when FOXO-1 protein is in the nucleus that causes muscle atrophy. Nuclear FOXO-1

protein promotes the transcription of genes for Ubiquitin ligase, which promotes muscle

degradation. Since we are looking to model FOXO-1 protein in the nucleus, we look at the

rate of synthesis and of breakdown of FOXO-1 protein. When we calculated the nuclear to

cytoplasmic ratio, we are calculating the ratio between how much FOXO-1 protein is in the

nucleus and how much is in the cytoplasm, but now we take the total FOXO-1 protein to be

dynamic. The nuclear equation (1.7) is now, in the ε = 0 limit, dN
dt

= k
′
IF−k

′
EN . The ratio

equilibrates more quickly than other processes so we take dN
dt
≈ 0 and N ≈ k

′
I

k
′
E

F as shown

in equation (3.1). In the degradation protein equation (2.14) as the nuclear FOXO-1 be-

comes a function of total FOXO-1, the sensitivity parameter Kr must be converted, hence

we define kn = CTKr. This becomes equation (3.2). Thus, if the total amount of FOXO-1

protein is less, C will be less, and then even for the same ratio, r, there will be a lower rate

of muscle volume loss. Equation (3.2) represents the total amount of FOXO-1 protein in the

nucleus, so we model the the amount of FOXO-1 protein in the nucleus over seven days.

Then, FOXO-1 protein in the nucleus will determine the amount of degradation protein

being created to aid in breaking down the muscle volume, because of this we will also be

modeling degradation protein again, shown in equation 3.3. Then we are able to graph the

cross sectional area of the muscle from the degradation protein production over the span of

seven days, Figure 2.8. We took the equations for total FOXO-1 protein, nuclear FOXO-1

protein, degradation protein and the cross sectional area and solved them simultaneously

in MATLAB and graphed them. The equations for total FOXO-1 protein, nuclear FOXO-1

protein, degradation protein and the cross sectional area are presented below:
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N ≈ k
′
I

k
′
E

F = γF,(3.1)

dF
dt

= αf − δf − δfppF,(3.2)

dp
dt

=
kNn

Nn + (kn)n
− δpP ≈

k(γF )n

(γF )n + (kn)n
− δpP.(3.3)

where γ =
k
′
I

k
′
E

, αf , and δf to be small baseline FOXO-1 decay and production with ratio of

1 for normalization, and δfp to be the decay rate of the total FOXO-1. The cross-sectional

area equation remains the same as before:

da
dt

= σ − δa − αp(t).(3.4)

After solving the equations, we graph the results over the span of seven days time with

Data Set 2. These results are shown below in Figures 3.6-3.8.
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FIG. 3.6. The Total FOXO-1 over the span of seven days
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FIG. 3.7. Degradation protein over the span of seven days due to the total FOXO-1 in the

nucleus.
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FIG. 3.8. The cross-sectional area of fiber over the span of seven days.The growth and

decay is affected by the degradation protein production or decay. When degradation protein

production is high the cross-sectional area is decaying (FOXO-1 unphosphorylated) and

when the degradation protein production is decreasing the cross-sectional area decay rate

decreases at a slower rate (IGF pathway is activated, hence FOXO-1 phosphorylated).

From our equations and the graphs on total FOXO-1 protein found in Smith and Shan-

ley (Smith & Shanley 2010), we hypothesize that there is a negative feedback loop on the

nuclear FOXO-1 protein that causes ubiquitin ligase to be produced faster in the cyto-

plasm, causing for a faster degradation of FOXO-1 primarily protein in the cytoplasm.

When the nuclear FOXO-1 protein increases, there is an increase in the rate of ubiquitin

ligase synthesis in the cytoplasm, which then increases concentration of ubiquitin ligase in

the cytoplasm. From this process, the rate coefficient for degradation of FOXO-1 protein

increases in the cytoplasm, causing a decrease in cytoplasmic FOXO-1 protein, which de-
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creases nuclear FOXO-1 protein. This negative feedback is important for moving forward

in modeling the cross-sectional area because we will be observing the possibility of oscil-

lations in the degradation protein and cross-sectional area graphs.



Chapter 4

OSCILLATIONS IN CROSS-SECTIONAL AREA

4.1 Finding Eigenvalues for Oscillatory Conditions

There seems to be an oscillatory nature from the IGF and Control data from data set

2 with the order of two days that is also seen in Smith and Stanley’s total FOXO-1 protein

graphs. If this is true then under specific conditions our model may be able to also get oscil-

lations (or oscillatory decay) in our fitted models that would be able to better represent Data

Set 2. We need to find the parameters that would create oscillations in the cross sectional

area graph (Simone, Sandeep, & Jensen 2007). To test for oscillations, we use the equations

for the total amount of FOXO-1 protein and the amount of degradation protein produced

we create a Jacobian matrix (linear system) and linearize around the equilibrium point. We

are only using the degradation protein and total FOXO-1 equations to test linearity because

they create a feedback loop, both equations affect one another. From the matrix we are able

to test different values for the parameters for k and δp to get oscillations in the degradation

protein graph, this is important because if the total amount of degradation protein shows

oscillations then it may also show up in the cross sectional area graph because the degra-

dation protein feeds directly into the cross-sectional area equation. We used the Jacobian

matrix to output the complex eigenvalues with the largest imaginary number. We need the

parameters that would be able to produce complex eigenvalues with large imaginary parts

27
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because the imaginary part determines the frequency of the oscillations, we are looking for

oscillations that have a frequency of 3 days for Figure 3.8. We use these parameters to give

matching oscillations to the data, we also want to make sure the set of parameters gives a

good fit for the model and are biologically reasonable. Another way we test to make sure

we are getting reasonable parameters for oscillations is by taking the trace of the Jacobian

matrix versus the determinant of the matrix. We do this to test if the eigenvalues displaced

from the trace versus determinant graph lie in the region of complex eigenvalues. Based on

this graph we are able to graph where components of each eigenvalue lies on the graph and

this will determine if the eigenvalues of the Jacobian will allow for oscillations (meaning

they are complex eigenvalues). We use the k and δp values we found in the beginning to fit

the Data Set 2 and use it to get a set of eigenvalues. We want to see a range of values for

k and δp where there can be possible oscillations, so we start by applying a range of values

to δp, applying those values to the Jacobian matrix, and calculating the eigenvalues, shown

in Figure 4.2; we did the same for k this is shown in Figure 4.3. We use those results to

graph the eigenvalues on the trace versus determinant graph shown in Figure 4.2 and 4.3.

From the trace versus determinant graphs we have for k and δp values that would process

higher frequency oscillations (complex numbers with larger imaginary parts). We found a

percentage change using the higher frequency oscillatory values for k and δp and the de-

fault values for k and δp. Then add or subtract the percentage from the default values to get

increase or decrease value that we use as a new point and then plot. The graphical represen-

tation can be found below in Figure 4.2 and 4.3, where the green points are all the values

greater then the default value and the red points are all the points less than the default value.
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FIG. 4.1. Trace vs. Determinant graph: we look at three different eigenvalues, one is our

default values for k = 3.23 and δp = 2.33. The upper point is found from using five times

our default k and δp. The lower point is found from using one tenth of our default k and δp.
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FIG. 4.2. Trace vs. Determinant when only δp is changing and k is kept at the default

value 3.23. For δp > 2.33 (green) the determinant is increasing and for δp < 2.33 (red) the

determinant is decreasing.
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FIG. 4.3. Trace vs. Determinant when onlyk is changing and δp is kept at the default

value 2.33. For k > 3.23 (green) the determinant is increasing and for k < 3.23 (red) the

determinant is decreasing.

After finding stable complex eigenvalues and the parameters associated with the eigen-

values, we use those parameters in the total FOXO-1 protein, degradation FOXO-1 protein,

and cross sectional area equations to graph the cross sectional area model of IGF and the

control with Data Set 2. Then using the method we used before to normalize the data at

day 5 for Data Set 2, we do the same thing again to normalize this data. We are going to

apply three sets of k and δp values from the above graphs to the total FOXO-1, degrada-

tion protein, and cross sectional area models to get oscillations in the cross sectional area

graphs that resemble the data plotted from Data Set 2. The first set of k and δp values are a

default values, k = 3.23 and δp = 2.33, this is shown in Figures 4.1-4.3. To get the other

set of values for k and δp, we found the eigenvalue from our range of k and δp values that
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is complex and has the largest imaginary number. After finding the k and δp associated

with that specific eigenvalue, we took the default δp minus the new δp and divided by the

default, we then add or subtract that number from the default k and δp to get the new value

for k and δp with the percent change.The second set of k and δp values are, k = 3.23− .48

and δp = 2.33 − .48, the results of the solving the model degradation protein are shown

in figures 4.7-4.9. The last set of k and δp values are a default values, k = 3.23 + .48 and

δp = 2.33+ .48, the results of the solving the model degradation protein are shown Figures

4.9-4.11.
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FIG. 4.4. Total FOXO-1 verse time for three set of k and δp values, first k = 3.23 and

δp = 2.33 (red), second k = 3.23− .34 and δp = 2.33− .48 (blue), and third k = 3.23+ .34

and δp = 2.33 + .48 (green). Since the total amount of FOXO-1 is decreasing then the

nuclear FOXO-1 should be increasing, thus causing the degradation protein to increase to

its steady state value.
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FIG. 4.5. Degradation protein verse time for three set of k and δp values, first k = 3.23 and

δp = 2.33 (red), second k = 3.23− .34 and δp = 2.33− .48 (blue), and third k = 3.23+ .34

and δp = 2.33 + .48 (green). Since the degradation protein is increases to its steady state

value the, the cross sectional area is decreasing for large amount of degradation protein.

When there is a lot of degradation protein the cross sectional area is decreasing and a

decrease in degradation protein causes increase in the cross sectional area
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FIG. 4.6. Cross-sectional area verse time for three set of k and δp values, first k = 3.23 and

δp = 2.33 (red), second k = 3.23− .48 and δp = 2.33−4.8 (blue), and third k = 3.23+ .48

and δp = 2.33 + .48 (green). The blue lines represent the IGF and the red lines represent

the control.

After observing the above figures, even though the k and δp values we chose are

associated with complex eigenvalues, we are still not able to get oscillations in the cross

sectional area. This is probably due to the damping effect of α. We tested for oscillation

in another example, where we left k as the default value and found the complex eigenvalue

with the largest imaginary part when we allow δp to change. We found that for δp = 1.2 we

not only get a complex eigenvalue with the largest imaginary part but also oscillations with
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higher frequency in the degradation protein, Figure 4.8. In the cross-sectional area there is

a dip in the model around day 5 but nothing before then. This is because the degradation

protein does not drop until day 5 causing this a very small curve in the cross-sectional area

in Figure 4.9.

FIG. 4.7. Total FOXO-1 over a span of seven days for δp = 1.2 and k = 3.23
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FIG. 4.8. Degradation protein over a span of seven days for δp = 1.2 and k = 3.23. At day

5 the degradation protein show oscillatory behavior but is not able to build back enough

degradation protein again to continue to oscillate
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FIG. 4.9. Cross-sectional area over a span of seven days for δp = 1.2 and k = 3.23. The

cross-sectional area there is a dip in the model around day 5 but nothing before then, this is

because the degradation protein does not drop until day 5 causing this a very small curve

in the cross-sectional area..



Chapter 5

DISCUSSION

In this paper, we have used two different models to capture the degradation of a skele-

tal muscle due to FOXO-1. In our first instance, we used the nuclear to cytoplasm FOXO-1

ratio and in the other we used the total FOXO-1. Both of these models produced similar

results and show no substantial difference between the two models. We were able to show

a good fit to the data set 1 using the different control and IGF choices of k′I and k′E from

(Wimmer et al. 2014). When we applied those same parameters to data set 2 we where

not able to get the same goodness of fit because of natural variation. Further data will

likely be necessary to figure out if the data is oscillating or how much is due to noise in the

data measurements. We attempted to create oscillations in our model by finding complex

eigenvalues from the Jacobian matrix using the total FOXO-1 and degradation protein pro-

duction equations. Previous work coupling FOXO-1 to muscle atrophy has been limited.

Most research ties to the disease muscular dystrophy, but there is little about the flow of IGF

in connection to muscle atrophy. However, two articles show some examples of connecting

IGF and muscle atrophy. One example is by Smith and Shanley, where they modeled be-

haviors of FOXO-1 with and without Akt activation; they observed how FOXO-1 interacts

with other enzymes (Smith & Shanley 2010). Another example is by Zho et al., where they

create a model for muscle atrophy during long periods under spaceflight conditions, then

39
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they model what happens when exercise is added to these conditions (Kuo & Ehrlich 2015);

however, this model does not take into account the intracellular FOXO-1 movement.
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