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ABSTRACT

This thesis contains two research projects. The first thesis project investigates the
analytical methods for longitudinal interval reported binary recurrent event data.
This project is motivated by the post hip fracture infection project using Baltimore
Hip studies (BHS). The infection related outcomes were collected longitudinally us-
ing questionnaire items like “Since the last time we spoke in (Provide Month), have
you ever had fever?”. Even though a subject could miss a few scheduled visits,
such questionnaire design only captured the available longitudinal fever data across
available visiting months, where the missing visits were skipped and merged into
the reporting interval. Another feature is that the recurrent events of interest was
observed dichotomously - only the binary status of occurrence in the reporting inter-
val, without frequency counts information nor when they re-occur in this interval.
Even though the literature on longitudinal binary data are quite comprehensive,
the longitudinal models accounting for interval reported and binary recurrent event
features are quite limited. We proposed two longitudinal models in this project,
where discrete survival modeling technique and Poisson process are used to account
for interval censored reporting system between longitudinal visits and binary nature
of recurrent events outcomes. The intensity function follows Cox regression struc-
ture allowing for both subject’s baseline characteristics and time-varying covariates,
which leads to varying intensities over longitudinal visits but fixed intensity within
each reporting interval. Simulation studies are used to compare the proposed models
vs. standard longitudinal models with logit link to see how well they will capture the
significant cross-sectional and longitudinal effects, especially with or without consid-
ering interval reporting nature, with or without time-varying covariates, and some
other sensitivity analyses to model mis-specifications. Various simulation studies
confirm the great performance of the proposed GLMM model with comp(log-log)
link. Then, I implemented both the proposed and standard methods on the infection
project using BHS data. Out of all 4 models, only the proposed GLMM model with
comp(log-log) link detected the statistically significant monthly increasing trend of
hazard of infection re-occurrence during the first year hip fracture post-surgery re-



covery time. And, all models confirmed no sex difference in various measures of
infection re-occurrence risks on average over time during the first year follow ups.

The second research project is on the statistical model for subgroup identification in
enriched clinical trial design. Enrichment designs have been widely used in random-
ized clinical trials (RCT) for years across pharmaceutical industry and academia,
because such designs are often more efficient, such as smaller sample size, short-
ened development time, and reduced cost. The enrichment design strategies can
be summarized into three categories, which are well documented in the FDA guid-
ance as the prospective use of any patient’s characteristics to select a target study
sub-population (called “subgroup”) smartly, so that the drug effects (if one is in
fact present) are easier and clearer to be detected than the unselected population.
Based on the information from the phase II RCTs and prior scientific knowledge
from historical literature and other studies, the current popular practice of enrich-
ment design strategy is to use individual indicator variable as the criteria for sub-
group identification. However, this strategy becomes infeasible when the number
of associated variables or criteria increases. Thus, in this thesis project, we build a
subgroup selection model using many patients’ characteristics, which could be esti-
mated by outcome regression model, inverse probability weighted estimator (IPWE),
and doubly robust inverse probability weighted estimator (DRIPWE). The purpose
is to facilitate the subgroup identification and find the ideal target sub-population
for phase III participants, making phase III RCT more efficient. Simulation studies
are used to compare the three proposed methods on building the optimal subgroup
selection model and demonstrate the importance to include as many covariates as
possible into the model.
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Chapter 1

Introduction

1.1 Review Longitudinal Data Analysis and Survival Analysis

1.1.1 Longitudinal Data Analysis

Longitudinal data is defined as the repeated measurements over time on each study

subject. On the contrary, it is cross-sectional data where each subject has only

a single outcome. Even though both longitudinal and cross-sectional studies could

address the same scientific questions, the major advantage of the former is its capac-

ity to draw inferences on both cohort effects and longitudinal effects. Longitudinal

effect is often called “age effect” quantifying the outcome changes over time within

the individual, while cohort effect is often called “cross-sectional effect” quantify-

ing the outcome differences average over time across different groups of subjects

(Diggle et al., 2002). Longitudinal studies can be conducted either prospectively,

following subjects forward in time, or retrospectively, recalling historical information

multiple times per subject in surveys or extracting multiple measurements from a

subject’s historical records. Some important nationwide longitudinal studies, such

as National Health and Nutrition Examination Survey (NHANES) and Framingham

Heart Study, exemplify how important longitudinal studies play the role in public
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health study. With the wide popularity of longitudinal studies in the public health

and medical research, their study design can be complicated given its complexity of

dealing with human subjects and feasibility in medical practice. Resulting from this,

the longitudinal data can have complicated structures and missing data patterns,

which will be further discussed in Chapter 2.

Longitudinal data analysis is built upon the generalized linear models (GLMs)

framework, extending the inference and estimation framework from a single out-

come to the clusters of correlated outcomes per subject. For inference framework

of a single outcome, GLMs provide a unified class of regression models of indepen-

dent but diverse types of univariate responses on mixed types of covariates. The

natural exponential family of outcome distributions can accommodate various com-

mon types of outcome variables, such as continuous, binary, ordinal, and count

(Fitzmaurice et al., 2011). Based on the standard linear regression inference frame-

work, the GLM framework includes two components: (1) systematic component,

g[E(Y |X)] = β0 + β1X1 + β2X2 + . . . + βpXp; and (2) random component, prob-

ability distribution of fY |X (Agresti, 2002). The systematic component associates

the the mean responses of subjects to subjects’ characteristics captured by various

covariates through g function, the link function. The link function makes a trans-

formation to the mean responses and then links the covariates.

Depend on the types of outcomes, the link function can be very different. For

continuous outcomes, in particular the normally distributed outcomes, identify link
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is often used as the canonical link with nice large sample properties, leading to lin-

ear regression. For count data, in particular the Poisson type of outcomes, log link

is the most popular one as the canonical link, leading to Poisson log-linear model.

Depend on the complicity of count data, especially for the over dispersion problems,

zero-inflated Poisson model and negative binomial GLM are also popular models to

use. For binary outcomes, which is the focus in our Chapter 2, the most popular link

is logit as the canonical link. For medical data, binary variable are often generated

based on the dichotomization of an underlying continuous variable by a cutoff point.

Depending on the nature of how binary outcomes are generated, the legitimate non-

canonical links which are often used in practice are probit link, inverse CDF link

functions, complementary log-log link, and identity link, as explained in Agresti’s

book (Agresti, 2002). Our chapter 2 will focus on the complementary log-log link

as a gateway to model the complicated longitudinal interval reported binary recur-

rent event data. For ordinal and nominal categorical data, various types of models

using logit link have been proposed according to whether accounting for the natural

ordering structure of outcome or not, including multinomial logistic model (or, poly-

tomous logistic regression), proportional odds model (or, cumulative logit model),

and conditional odds model (Agresti, 2002).

If there are repeated measurements for each subject across time, generalized lin-

ear models need to be extended to account for dependency among repeated mea-

surements obtained from one subject. Let Yij be the response vairiable for the ith

subject at the jth longitudinal visit, and Xij be the p covariates associated with

3



the response Yij, i = 1, · · · , N, j = 1, · · · , ni, where ni indicates the ith subject’s

total number of repeated measurements within the study period. It is assumed

that Yi are independent of one another, but Yij is correlated with Yik on the same

subject i. Among the p covariates Xij, there may exist time-invariant (between-

subject) covariates that do not change within the study period, such as gender,

and time-varying (within-subject) covariates that change over time, such as age

(Fitzmaurice et al., 2011). To account for the within-subject association, the first

method marginal models (generalized linear models for longitudinal data) which has

been widely used in the biomedical and health sciences estimated by Generalized

Estimating Equations (GEEs) is used, with the only assumption of how the mean

response is related with covariates, and there is no assumption on distribution of

responses (Liang and Zeger, 1986). Because this method is for marginal model es-

timation and the inference is for the population, it is also called population-average

model estimation. The marginal models have three components, with two of them

are the same as GLM based on the standard generalized linear model formulation:

(1) the mean of each response is assumed to depend on the covariates through a

known link function g, g[E(Yij|Xij)] = β0 +β1Xij1 +β2Xij2 + . . .+βpXijp; (2) given

the covariates, the conditional variance of each response is assumed to depend on

the mean, Var(Yij|Xij) = φv(E(Yij|Xij)), where v(·) is a known variance function

of the mean and φ is a scale parameter; and (3) given the covariates, the conditional

within-subject association among repeated measurements is assumed to depend on

the mean and association parameters α, which leads to the “working” covariance

matrix (Fitzmaurice et al., 2011). Even if the within-subject association have been

4



incorrectly modeled, the GEE estimator β̂ is a consistent estimator of β under the

correctly specified model for the mean response with the “robust (empirical)” vari-

ance estimator (or “sandwich” estimator), which shows a very appealing robustness

property of the GEE estimator and the “sandwich” estimator. The second method

is via the introduction of random effects bi allowing for some regression coefficients

vary randomly from one subject to another and the inference is for the individual,

which result in generalized linear mixed effects models (GLMMs) or subject-specific

models estimated by maximum likelihood estimation (MLE) (Fitzmaurice et al.,

2011). The GLMMs also include three components: (1) the conditional mean of

each response is assumed to depend on fixed and random effects through a known

link function g, g[E(Yij|bi)] = β0 + β1Xij1 + β2Xij2 + . . . + βpXijp + b0i + b1itij;

(2) given random effects bi, the response Yij is assumed to be independent of one

another, and the conditional distribution of each response is assumed to belong to

the exponential family of distributions with the conditional variance depends on

the mean:Var(Yij|bi) = φv(E(Yij|bi)), where v(·) is a known variance function of

the mean and φ is a scale parameter; (3) the random effects bi are assumed to

follow a multivariate normal distribution and be independent of the covariates Xij

(Fitzmaurice et al., 2011). For example, if the response is binary, both marginal

model and generalized linear mixed effects model with logit link function are widely

used for the relationship between the response and a set of covariates, which can be

written as following:

log
Pr(Yij = 1|Xij)

Pr(Yij = 0|Xij)
= α0 + α1Xij1 + α2Xij2 + . . .+ αpXijp, (1.1)
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and

log
Pr(Yij = 1|Xij, b0i)

Pr(Yij = 0|Xij, b0i)
= β0 + β1Xij1 + β2Xij2 + . . .+ βpXijp + b0i. (1.2)

The equation (1.1) is for the marginal model with logit link and a “working” co-

variance matrix estimated by GEE, while the equation (1.2) is for the generalized

linear mixed effects model with logit link estimated by MLE. The interpretations

of parameters from the two equations are totally different, with the former have

population-average interpretation on changes in the transformed mean response in

the study population, and the latter have subject-specific interpretation on changes

in the transformed mean response for any individual (Fitzmaurice et al., 2011).

Thus, the parameter αk can be interpreted as the changes in the log odds of re-

sponse in the study population with one unit change in the corresponding covariate

Xijk after controlling for the other covariates. The parameter βk can be interpreted

as the changes in an individual’s log odds of response with one unit change in the

corresponding covariate Xijk after controlling for the other covariates and the ran-

dom effect.

Even though subjects are required to do measurements at each time of follow-up

for most longitudinal studies, it is very common to see missing data which results

in different missing patterns for different subjects. Because different subjects have

different number of repeated measurements at a common set of occasions, the lon-

gitudinal data is unbalanced over time (Fitzmaurice et al., 2011). There are three

different types of missing data mechanisms, missing completely at random (MCAR),
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missing at random (MAR), and not missing at random (NMAR) (Fitzmaurice et al.,

2011). Missing completely at random (MCAR) is defined as the missingness in re-

sponse is completely at random and is unrelated with the observed or unobserved

responses. Missing at random (MAR) is defined as the missingness in response is

only related with the observed response but not the unobserved responses. Not

missing at random (NMAR) is defined as the missingness in response is related

with the unobserved responses, which is also called nonignorable missingness or in-

formative missingness. When data are missing completely at random (MCAR) or

missing at random (MAR), GLMMs can yield valid estimates of regression parame-

ters; while the GEE methods can only provide valid estimates when data are MCAR

but not MAR, but the methods can be adapted for MAR data to provide valid es-

timates, which is known as the inverse probability weighted (IPW) GEE method.

However, when data are not missing at random (NMAR), both GEE methods and

GLMMs provide biased estimates without considering the missing data mechanism.

In Chapter 2, we will assume that the missing data mechanisms are MCAR.

1.1.2 Survival Analysis

Survival analysis is defined as a class of statistical methods for studying occurrence

and timing of events (Allison, 2010). The time to a specific event is the primary

outcome, and the event can be death, occurrence of a disease, marriage, divorce,

and so on. If the time to an event is known in fine detail, it is called continuous

time. If the time to an event is known within an interval, it is called grouped time or
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interval-censored time. Grouped survival data is a special case of interval-censored

data, where all subjects have all information available at the same visiting time

and have the same disjoint intervals (Giolo et al., 2009). If the time to an event is

not known except for the discrete number of time points, it is called discrete time.

However, the time to an event may not be observed for every subject, which is called

censoring (Allison, 2010). Right censoring is the most commonly one and we only

know that the time to an event is greater than some value. For example, some

subjects drop out of a study before the event occurred, or some subjects did not

experience the event by the end of the study. Compared to ordinary regression mod-

els, survival analysis can handle censored data to have valid estimates. The survivor

and hazard functions are the two important functions in survival analysis (Allison,

2010). The survivor function gives the probability of the variable survival time T

being greater than a specified time t, which can be written as, S(t) = P (T > t).

The hazard function gives the instantaneous rate of change of the event probability

at a specified time t, conditional on the subject survived to that specified time t,

which can be written as, h(t) = d(− logS(t))
dt

= lim∆t→0

[
Pr{t≤T<t+∆t}

∆t

]
.

If the survival times follow certain distributions, such as exponential distribution

(with constant hazard over the time), Weibull distribution, lognormal distribution,

and so on, fully parametric methods are used. If the distributions are unknown,

nonparametric methods are used. The method developed by Kaplan and Meier

(1958) is widely used to estimate and graph survival probabilities as a function of

time. To better describe the relationship between survival times and covariates,
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Cox regression model was proposed by Cox (1972). It is usually referred to as the

proportional hazards model. But it can be generalized to allow for non-proportional

hazards. Because the Cox regression model makes no assumption about the baseline

hazard function, it is also called semiparametric model. The model focuses on the

relationship between the hazard function and the covariates, and it assumes that

the log hazards is linearly associated with covariates. If the hazard ratio comparing

any two observations are constant over time, the proportional hazards assumption

is made.

1.1.2.1 Cox Proportional Hazards Model

The Cox proportional hazards model (Cox, 1972) describes the relationship between

the hazard function and the covariates x, which can be written as

log hi(t,x) = log λ0(t) + β1xi1 + · · ·+ βkxik,

or,

hi(t,x) = λ0(t) exp (β1xi1 + · · ·+ βkxik),

where λ0(t) is the baseline hazard function.

Regression coefficients from the above model are log-hazard ratios. By exponentiat-

ing a regression coefficient, it means the relative change in the hazard of occurrence

of event of interest which is associated with one unit increase in the corresponding

predictor (Austin, 2017).
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1.1.2.2 Discrete Time Models

Suppose T is a discrete random variable indicating the time of occurrence of an

event, and let tij be the jth discrete time point for the ith subject, where 0 < ti1 <

ti2 < · · · < tiJi , with Ji indicating the total number of time points (i = 1, · · · , n; j =

1, · · · , Ji) (Vermunt, 2009).

The probability of experiencing an event at T = tij for the ith subject is given

as f(tij) = P (T = tij).

The survival function is S(tij) = P (T > tij) = 1− P (T ≤ tij) = 1−
∑j

k=1 f(tik).

The conditional probability, which cannot be called hazard rate, that the event

occurs at T = tij, given that the event did not occur prior to T = tij is defined as

λ(tij) = P (T = tij | T ≥ tij) =
P (T = tij)

P (T ≥ tij)
=
S(ti(j−1))− S(tij)

S(ti(j−1))
= 1− S(tij)

S(ti(j−1))
.

If time T is a continuous variable which is measured discretely, the conditional

probability of experiencing an event at tij can be expressed as

λ(tij) = 1− exp

(
−
∫ tij

ti(j−1)

h(u)du

)
.

If the hazard rate is constant (h(u) = h) in time interval (ti(j−1), tij], this expression

can be simplified to λ(tij) = 1− exp
(
−h(tij − ti(j−1))

)
.
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1.2 Review Clinical Trials and Advanced Clinical Trial Designs

1.2.1 Clinical Trials

A clinical trial is the evaluation of intervention (treatment) on disease in a controlled

experimental setting (Friedman et al., 2010). After the preliminary tests conducted

on animals showing promising results for humans, a clinical trial is done on humans,

which includes four phases (Friedman et al., 2010). Phase I explores a tolerated

dose and the pharmacology of the drug. It is known that the therapeutic effect

increases with dose, but the toxic effects increases as well. Doses are increasing on

a small number of subjects to determine the maximum dose that can be tolerated

by most patients with the disease. And the possible side effects of the drug are

also documented during this phase. Phase II conducts initial assessment for ther-

apeutic effects and further assesses toxicities. A small study is conducted before

the costly large study to assess whether the efficacy of the drug is sufficient. After

showing sufficient efficacy in phase II, it moves to phase III. Phase III compares the

intervention to the standard treatment with respect to efficacy and toxicity. The

study is large enough to detect any significant difference if there is one and obtain

unbiased estimates using reasonable statistical methods during this phase. After a

drug is approved by FDA and on the market, a large number of patients can take

it. Some adverse events occur after a long time use of the drug. A monitoring sys-

tem is needed to detect those adverse events. Phase IV is a post marketing study,

which studies adverse effects using observational data. The previous description is a

general idea about clinical trials, and the way how to select patients into the study
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will be discussed in the next paragraph.

Starting from a target population - a general population with certain disease of

interest, this population are screened for enrollment, which is called screened popu-

lation after excluding some subjects from the target population considering specific

characteristics. They are excluded according to age, geographical settings, severity

of the disease, and so on. The screened population is further screened using inclu-

sion and exclusion criteria, and the informed consent is distributed at the same time.

Inclusion criteria are certain standards that participants must meet to stay in the

clinical trial. Exclusion criteria are factors that exclude subjects from the clinical

trial. For those satisfying eligibility criteria and signing informed consent, they are

called study population, which will be randomized into two or more treatments to

estimate treatment efficacy and safety.

1.2.2 Advanced Clinical Trial Designs

1.2.2.1 Enrichment Design

In randomized controlled trials, patients are randomized into two or more groups.

However, the population in clinical trials is not selected randomly from the general

population considering the costs, treatment effects and ethical issues. There are

some inclusion and exclusion criteria for those entering clinical trials. They are cho-

sen because they have good compliance with treatment, or they do not have placebo
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responses, or they have certain disease, or they have certain biomarkers suggesting

good responses to the treatment, and so on. The above ways choosing the study

population can be also called enrichment design (targeted design).

The enrichment design was originally defined as the additional screening processes

with the active treatments evaluated in the study by Temple (1994). The addi-

tional screening processes with the active treatments were performed after either

the screening period or the placebo run-in (or, placebo lead-in, placebo washout,

placebo baseline) period to identify potential patients who are likely to benefit the

test drug in the early phase of the trial (Liu, 2003). A classic example of this type

can be found in the area of arrhythmia such as the Cardiac Arrhythmia Suppression

Trial (CAST), which randomly assigned patients to a long-term study of encainide,

flecainide, or morcizine compared with placebo only if they had ejection fraction of

at least 30% (Echt et al., 1991; Liu, 2003; Temple, 2005). This type of study de-

sign can be also called randomized withdrawal design or randomized discontinuation

design. Freidlin and Simon (2005) concluded that the randomized discontinuation

designs can be useful in some settings in the early development of targeted agents

where a reliable assay to select patients expressing the target is not available. They

developed a study design for cytostatic agents, which is similar with CAST; that is,

patients who responded to the treatment continued on the drug, while those whose

disease progressed were taken off the study, and patients with stable disease were

randomly assigned between the continued drug and placebo (Freidlin and Simon,

2005). Temple (2005) mentioned that the randomized withdrawal design is con-
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siderably more efficient if there is a responder subpopulation, especially when the

responder population is relatively low (30%).

Then, the FDA (2012) issued a draft about the enrichment strategies for clinical

trials to support approval of human drugs and biological products. The guidance

defined the enrichment as the prospective use of any patient characteristic to select

a study population in which detection of a drug effect (if one is in fact present) is

more likely than it would be in an unselected population. There are three broad

categories for the enrichment strategies - strategies to decrease heterogeneity, prog-

nostic enrichment strategies, and predictive enrichment strategies - in this guidance.

Strategies to decrease heterogeneity include selecting patients with decreased inter-

patient variability (e.g., include those whose baseline measurements are in a narrow

range) and decreased intra-patient variability (e.g., exclude those whose disease or

symptoms improve spontaneously); prognostic enrichment strategies choose patients

with a greater likelihood of having a disease-related endpoint event or a substan-

tial worsening in condition; predictive enrichment strategies choose patients more

likely to respond to the drug treatment than other patients with the condition being

treated. The enrichment strategies can give us efficient and powerful results with

smaller sample size, shortened development time, and reduced cost, especially for

pharmaceutical companies. But how to generalize and how to apply the results are

the two challenges. In the following, prognostic enrichment strategies and predictive

enrichment strategies are fully explained.
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Prognostic enrichment strategies are widely used in cardiovascular outcome trials.

This guidance describes that the severity of the illness, a history of recent myocardial

infarction or stroke, the presence of concomitant illness such as diabetes, hyperten-

sion, or hyperlipidemia, and certain blood markers, such as high LDL (low-density

lipoprotein) cholesterol, low HDL (high-density lipoprotein) cholesterol and high

C-reactive protein, have been used to identify high risk patients for cardiovascular

events. In the enalapril trials (CONSENSUS Trial Study Group, 1987), mortality

reduction and decreases in morbid events (such as hospitalization) were first assessed

in a very ill CHF (congestive heart failure) population of NYHA (New York Heart

Association) Class IV patients. Later trials by Yusuf et al. (1991) in less ill patients

were much longer and with much larger sample size because of the lower mortality

rate. In the JUPITER study (Ridker et al., 2008), the rosuvastatin was effective

reducing the incidence of major CV events in patients with normal LDL cholesterol

levels of less than 130 mg per deciliter but with elevated high-sensitivity C-reactive

protein levels of greater than or equal to 2.0 mg per liter.

Predictive enrichment strategies are not commonly used in cardiovascular studies

but in heart failure and hypertrophic cardiomyopathy studies, where the systolic and

diastolic subtypes would be expected to respond differently to different treatments

for heart failure, and where patients with obstructive and nonobstructive phys-

iologies could respond differently for hypertrophic cardiomyopathy (Blaus et al.,

2015). For example, the combination of isosorbide dinitrate and hydralazine showed

significant reduction for heart failure among black patients (Taylor et al., 2004).
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Predictive enrichment strategies are also popular in oncology studies because of ge-

netic characteristics of tumors. In 2001, trastuzumab showed the clinical benefit of

first-line chemotherapy in metastatic breast cancer that overexpressed HER2 in a

targeted randomized phase III trial (Slamon et al., 2001). In Iressa Pan-Asia Study

(IPASS), gefitinib had better outcome for patients with EGFR (epidermal growth

factor receptor) mutations on tumors (Mok et al., 2009). For the drug erlotinib,

there was a highly significant survival difference for EGFR-positive patients, while

only little effects seen among the EGFR-negative patients (Temple, 2005). In 2013,

tarceva (erlotinib) was approved by FDA for the first-line treatment of patients with

metastatic non-small cell lung cancer (NSCLC) whose tumors have EGFR exon 19

deletions or exon 21 (L858R) substitution mutations.

In the guidance issued by the FDA, it is important to include a reasonable sam-

ple of marker-negative patients if there exists uncertainty about the marker cut-off

and responsiveness of marker-negative patients. The marker-negative patients are

for those not satisfying the enrichment criteria, while marker-positive patients are

for those selected subpopulation in the study. Yang et al. (2015) raised a novel

design strategy by augmenting biomarker-negative patients into biomarker-positive

patients. To assess the overall treatment effect, the biomarker-negative patients

were enrolled after the biomarker-positive subpopulation was sufficiently powered.

They combined the two estimates from biomarker-positive patients and biomarker-

negative patients using weighted statistic which was determined from the screening

information.
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1.2.2.2 Sequential Parallel Comparison Design

The sequential parallel comparison design (SPCD), also called sequential parallel de-

sign (SPD), is a clinical trial methodology developed by Fava et al. (2003) to reduce

both the overall placebo response rate and the sample size for double-blind, placebo-

controlled trials in psychiatric disorders, while the widely used design strategy -

implement a placebo lead-in phase prior to randomization - only reduces placebo

rate. The placebo response represents an apparent improvement for those randomly

assigned to the placebo group in a clinical trial (e.g., a pre-posttreatment change

within the placebo group) (Schatzberg and Kraemer, 2000; Fava et al., 2003). With

the novel study design, it can reduce the cost and time remarkably for the eval-

uation of new drugs. The sequential parallel comparison design has two different

formats. Both Formats include two double-blind treatment phases of equal duration.

For Format 1, the first phase is an unbalanced randomization with more patients

randomized to placebo compared with active treatment. For those placebo non-

responders, they are randomized to either placebo or active treatment in the second

phase to reduce placebo rate. Data from the two phases are pooled to maximize

power and reduce required sample size. In Format 2, Fava et al. (2003) combined

the two phases into three treatment groups: drug alone (DP), placebo then drug

(PD), and placebo then placebo (PP). Then eligible subjects are randomized to one

of the above three groups in an unbalanced ratio by 1− 2a, a, and a. Only placebo

non-responders from the first phase are continued on placebo or drug in the second

phase and drug non-responders are switched to placebo, while responders from the
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first phase will enter open continuation therapy, or discontinue the study. Except

for the data from phase 2 in the DP group, all of the data from the two phases

are used for estimating weighted average treatment effect based on response rate

which is only for binary endpoint - response or not. This novel study design was

applied in smoking cessation trial and major depressive disorder (MDD) trial with

the permission of Massachusetts General Hospital.

Although the novel design developed by Fava et al. (2003) could obtain considerable

efficiency, it did not account for dropouts among placebo non-responders and did not

mention any continuous endpoints that could use this design. Tamura and Huang

(2007) looked more closely on this novel design and examined the efficiency of the

design with the comparison of conventional two arm clinical trial considering both

binary and continuous endpoints. Before any analysis, Tamura and Huang (2007)

made two modifications of the design proposed by Fava et al. (2003). Instead of en-

tering open continuation therapy for those responders from the first phase, Tamura

and Huang (2007) suggested all patients should remain on blinded throughout both

phases. The second modification is that all patients in the drug group in the first

phase should remain on drug during the second phase to see the efficacy and safety

of the drug over a longer period of time. To assess the efficacy of the drug, all data

from the first phase and only placebo non-responders data from the second phase

are used. With the consideration of drop out rates among placebo non-responders

from phase 1 to phase 2, Tamura and Huang (2007) confirmed the results from Fava

et al. (2003) for binary endpoints. For continuous endpoints, Tamura and Huang
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(2007) used seemingly unrelated regression (SUR) (Zellner, 1962) to account for the

within-subject correlation between phase 1 and phase 2 for placebo non-responders,

and showed the efficiency of SPD for continuous endpoints without missing data.

Based on sequential parallel design, Chen et al. (2011) proposed sequential paral-

lel design with re-randomization (SPD ReR) to measure continuous endpoints with

the presence of missing data. The SPD ReR is the same design as Format 1 from

SPD with randomization to either placebo or drug in phase 2 for those placebo non-

responders. However, those drug non-responders in phase 1 will still be remained

in drug group in phase 2, and responders in phase 1 will be blinded throughout

the two phases. Chen et al. (2011) only focus on continuous endpoints, which is

a complementary of Fava et al. (2003)’s estimates on binary endpoints. With the

SPD ReR design, the simple weighted ordinary least square (OLS) test statistic

ZOLS was used instead of the weighted test statistic based on seemingly unrelated

regression (SUR) ZSUR proposed by Tamura and Huang (2007). Both weighted test

statistics are presented as following.

Let θ(1) be the treatment effect for the endpoint at phase 1, θ(2) be the treatment

effect for the endpoint at phase 2. To test the null hypothesis for continuous end-

points, H0 : θ(1) = θ(2) = 0, the weighted test statistic based on SUR can be written

as (Tamura and Huang, 2007):

ZSUR =
wθ̂(1) + (1− w)θ̂(2)√

w2V ar
(
θ̂(1)
)

+ 2w(1− w)Cov
(
θ̂(1), θ̂(2)

)
+ (1− w)2V ar

(
θ̂(2)
) ,
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where θ̂(1) and θ̂(2) are the estimates of treatment effects θ(1) and θ(2) respectively,

and w is the prespecified weight on θ(1) for weighted average treatment effect.

Based on the ordinary least square (OLS) estimates θ̂(1) and θ̂(2) for θ(1) and θ(2)

respectively, the weighted test statistic can be written as (Chen et al., 2011):

ZOLS =
wθ̂(1) + (1− w)θ̂(2)√

w2V ar
(
θ̂(1)
)

+ (1− w)2V ar
(
θ̂(2)
) ,

which can be used an alternative method for testing the above null hypothesis.

When data are missing at random (MAR) and the dropout rate is moderate, both

SUR and OLS weighted test statistic can be used with missing data imputed by

last observation carried forward (LOCF) or multiple imputation (MI), and weighted

test statistic based on mixed-effect model for repeated measures (MMRM) esti-

mates on observed data. MMRM was shown to have the most robust test statistic

for SPD ReR design with large power and accurate estimation while controlling for

the type I error rate.

1.2.2.3 Adaptive Enrichment Design

The standard designs always enroll a broad range of subjects to decide a subset of

subjects that may benefit from the treatment because the evidence is not strong

enough when subjects enter into the phase III trial, which can expose many sub-

jects to unnecessary side effects and decrease the treatment efficiency especially
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when there is only a small subset of subjects benefit. To exclude those cannot ben-

efit from the treatment, Simon and Simon (2013) introduced a class of adaptive

enrichment designs that allow the enrollment criteria to change adaptively during

the trial. With the inadequate information about the candidate predictive biomark-

ers from early phase clinical trials, the adaptive enrichment designs proposed by

Simon and Simon (2013) for phase III trial start without any restrictions based on

those candidate predictive biomarkers and restrict the enrollment sequentially in an

adaptive manner using biomarkers. Such designs do not need to choose a subset of

patients at the beginning of phase III trial but they will end to a subset of subjects

who will benefit from the treatment after changing the enrollment criteria during the

study, and eventually improve the treatment efficiency. Compared to the standard

designs which enroll a large number of subjects and use post-hoc subgroup analy-

sis to identify those who may benefit from the treatment, the adaptive enrichment

designs expose fewer subjects to experience side effects and increase the efficiency.

This class of designs not only preserve the type I error but also increase the power

without increasing sample size especially when a small subset of subjects benefit

from the treatment.

Simon and Simon (2013) applied the adaptive enrichment design to a setting where

there is only a single candidate predictive biomarker x but the cutpoint is unknown.

To find the true cutpoint x∗, there is a set of discrete candidate cutpoints which

are denoted by ξ1, . . . , ξK . Let pT (x) and pC(x) be the probabilities of response for

a patient with the single biomarker x under treatment and control by some mod-
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els. Assume that the treatment effect pT (x) − pC(x) is either 0 or δ; that is, it

is monotone non-decreasing with a jump only at one of the candidate cutpoints.

With two unknown constants, p0 ≤ p1, pC(x) = p0 for all x, while pT (x) = p0

when x ≤ ξk and pT (x) = p1 when x > ξk with the maximized log-likelihood l(ξk).

Thus, the cutpoint ξk is chosen as the estimate of the true cutpoint x∗, and the en-

rollment criterion is updated to enroll those whose biomarker value is greater than

ξk. A general procedure for the adaptive enrichment design is described as following.

Let zi be the treatment assignment for subject i where zi = 1 for treatment group

and zi = 0 for control group, xi be a vector of covariates, and yi be the outcome

where yi = 1 for response and yi = 0 for non-response.

f(xi) = I{pT (xi) > pC(xi)},

where f(xi) is an indicator function indicates whether the ith subject with covari-

ates xi will perform better on treatment than control. Let f̂m(xi) be the estimate of

fm(xi) after enrollingm subjects, where f̂m(xi) are based on x1, . . . ,xm−1, z1, . . . , zm−1,

and y1, . . . , ym−1.

Firstly, m0 subjects are randomly assigned to the treatment or placebo group with-

out any restrictions on the enrollment to get the initial estimate f̂m0(xi) after mod-

eling the response as a function of covariates in both treatment and control groups.

Based on the estimated response models, a new subject’s response can be estimated

given his/her covariates, and lead to the decision whether or not enroll this sub-
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ject. Secondly, f̂m(xi) is estimated with updating models from the previous (m− 1)

subjects after enrolling m subjects, where m > m0. With the updated models, the

enrolling criteria are restricted to enroll those with f̂m(xi) = 1. Thirdly, the previ-

ous step is repeated until the total number of subjects n have been enrolled.

However, Simon and Simon (2013) did not discuss how to best estimate f(x) but

only focus on how to preserve the type I error. To preserve the type I error, they

introduced two methods for binary responses with a single interim analysis time at

which the enrollment criteria can be modified. The first test statistic is presented

as following:

S1 =
n∑
i=1

[ziyi + (1− zi)(1− yi)],

where S1 is the number of responses in the treatment group and the number of non-

responses in the control group. Then, under the null hypothesis that both treatment

and control group have the same probability of responses, H0 : pT (x) = pC(x) for

all x,

S1 ∼ binomial(n, 0.5).

If subjects are randomized in pairs, one goes to the treatment group and the other

one goes to the control group. Let yi,T and yi,C be the outcome under treatment and

control group respectively for the pair i. Then, the second test statistic is presented

as following:

S2 =
n∑
i=1

[I{yi,T > yi,C} − I{yi,T < yi,C}] ,
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where S2 is the number of pairs favoring treatment minus the number of pairs

favoring control. Then, under the null hypothesis that each pair has the same

favoring for treatment and control,

S2 + u

2
∼ binomial(n, 0.5),

where u is the pre-specified number of pairs that we need in total. The test is also

called McNemar’s test.

The above two test statistics can protect the type I error for binary outcomes no

matter what methods are used for changing the enrollment criteria adaptively.

When interim analysis is more than one time, or the adaptiveness is in a group

sequential manner, Simon and Simon (2013) proposed other methods to preserve

the type I err.

For continuous outcomes, Simon and Simon (2013) proposed the following statistic:

1√
n

∑
k≤K

√
nk

 ȳ(T,k) − ȳ(C,k)√
σ̂2

(T,k)/(nT,k − 1) + σ̂2
(C,k)/(nC,k − 1)

 ,

where nT,k, nC,k, ȳ(T,k), ȳ(C,k), σ̂
2
(T,k), and σ̂2

(C,k) are sample sizes, sample means and

variances for treatment and control group respectively in the kth block, nk is the

total sample size in the kth block, and n is the total sample size across all blocks.
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For binary outcomes, Simon and Simon (2013) proposed the following statistic:

1√
n/2

∑
k≤K

√
nk/2

(
p̂(T,k) − p̂(C,k)

2
√
p̂(pool,k)(1− p̂(pool,k))/nk

)
,

where p̂(T,k) and p̂(C,k) are sample success proportions in treatment and control group

respectively in the kth block, and p̂(pool,k) = (p̂(T,k) + p̂(C,k))/2.

Simon (2015) discussed three scenarios for the adaptive enrichment design that are

more effective than standard designs. The intent for standard designs is to develop a

treatment that can treat the entire population with a specific disease. However, the

standard designs have been unsuccessful for many cases because causal mechanisms

for the same disease may be different among subjects and there is only a small subset

of the population that benefit from the treatment. Therefore, targeted treatments

that only treat a subset of the diseased population are created, and approaches for

the three scenarios showing how to select the subset are presented as following. The

first scenario is “single categorical biomarker”, which defines strata for patients. It

runs a group sequential trial and drops strata at interim analyses; that is, if the

treatment shows ineffective in some strata, patients from these strata will not be

enrolled again in the trial. The second scenario is “single continuous biomarker with

unknown cut point”. If this biomarker is broken into several predetermined discrete

categories, the method used in the first scenario can be adopted here. Otherwise,

the Simon block-sequential approach (Simon design, or model-based adaptive enrich-

ment design) can be applied, which builds two models separately under treatment

and control groups using response as the dependent variable and covariates as the
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independent variables, and updates the models sequentially by blocks with the first

block enrolled without restriction. If the number of subjects in the first block is

too small, instead of enrolling those might benefit, Simon (2015) suggested to enroll

all subjects except those do not benefit with strong evidence. The third scenario

is “multidimensional biomarkers / combining multiple candidate biomarkers”. The

Simon designs can be also used under this scenario by modeling the response as a

function of multiple biomarkers in both treatment and control groups.

However, because the null hypothesis for the Simon design is “there exists no sub-

group for which treatment is more effective than control”, it is impossible to know

which subgroup shows significance if the null hypothesis is rejected, so Simon (2015)

recommended using the characteristics of population from the final stage as the en-

rollment criteria. Also, there exist difficulties estimating the treatment effect in the

target population because of the selection bias. With updating enrollment criteria

sequentially, the whole process can become very complicated and time consuming.

Therefore, an improvement of the Simon design is needed to address the above

concerns.

1.2.2.4 SMART Design

Sequential Multiple Assignment Randomized Trials (SMARTs) involve multiple

intervention stages or multi-stage randomized trial, and each participant moves

through the multiple stages; each stage corresponds to one of the critical decisions
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involved in the adaptive intervention; each participant is randomly (re)assigned to

one of intervention options at each stage (Lei et al., 2012). This design was developed

for building optimal adaptive interventions (Lavori and Dawson, 2000, 2004; Mur-

phy, 2005). Adaptive interventions can be also called dynamic treatment regimes or

adaptive/multi-stage treatment strategies. An adaptive intervention is a sequence

of individually tailored decision rules which are based on patients’ characteristics or

clinical presentation to alter the type or the dosage of the intervention offered to pa-

tients at critical decision points in the course of care, and then repeatedly adjusted

over time in response to their ongoing performance (Almirall et al., 2011; Lei et al.,

2012). Lei et al. (2012) also provided four elements for an adaptive intervention: (I)

a sequence of critical decisions in a patient’s care; (II) a set of possible intervention

options at each critical decision point; (III) a set of tailoring variables for indicating

when the intervention should be altered and identifying which intervention option

is the best; (IV) a sequence of decision rules, one rule per critical decision. By

making sequential decisions according to patients’ characteristics and intermediate

factors during the intervention such as a patient’s response and adherence, this ap-

proach can be helpful to improve clinical practice because it solves the problem that

patients’ different response to an intervention, or the changing effectiveness of an

intervention to a patient. Although SMART is an innovative name developed in

recent years, a lot of SMART designs have been conducted. Four selected exam-

ples of SMART studies which are completed were discussed by Lei et al. (2012):

(I) the Adaptive “Characterizing Cognition in Nonverbal Individuals with Autism”

(CCNIA) Developmental and Augmented Intervention (Kasari, 2009) for school age,
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nonverbal, children with autism-spectrum disorders; (II) the Adaptive Pharmaco-

logical and Behavioral Treatments for children with attention-deficit hyperactivity

disorder (ADHD) (Nahum-Shani et al., 2012); (III) the Adaptive Reinforcement-

Based Treatment for Pregnant Drug Abusers (RBT) (Jone, 2010); (IV) the Extend-

ing Treatment Effectivceness of Naltrexone (ExTENd) study for alcohol dependent

individuals (Oslin, 2005).

1.2.3 Subgroup Identification

Because subjects with the same disease may have different causal mechanisms, there

is only a subset of the population that benefit from the treatment. This subset can

be determined based on subjects’ gender, age, geographical settings, genomics, and

other covariates which can be also called biomarkers. Therefore, subgroup identi-

fication is defined as identify subsets of a population by rules based on subjects’

biomarkers (Lipkovich et al., 2017). The subgroup can be also defined as any subset

of the recruited patient population that falls into the same category with regard to

one or more biomarkers (Alemayehu et al., 2017). Pocock et al. (2002) mentioned

that there are about 70 % of 50 trial reports in four major journals containing some

results of subgroup analyses in late-stage clinical trials. However, identifying a sub-

group that benefits from the treatment based on a selection model before the phase

III clinical trial according to the information from the phase II and prior scientific

knowledge is our main interest. How to identify a subgroup that maximize bene-

fits from a treatment and how to select biomarkers becomes an important step for
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personalized/precision medicine which is based on subjects’ biomarkers in clinical

trials. Therefore, the selection model and corresponding biomarkers used for select-

ing patients into the phase III trial should be pre-specified in phase III protocol,

which is called confirmatory subgroup analysis. Confirmatory subgroup analyses

and exploratory subgroup analyses are the two classifications commonly used for

subgroup identification. For confirmatory subgroup analyses which are guidance-

driven, subgroups are pre-specified in the protocol based on biomarkers and type I

error rate needs to be controlled for multiple hypothesis tests problem (Lipkovich

et al., 2017). In the following, we will only focus on exploratory subgroup analy-

ses which are data-driven without pre-specifying the subgroups and are commonly

used in phase III clinical trials to fully understand statistical methods on subgroup

identification for building selection model in Chapter 3.

1.2.3.1 Univariate Regression Model

Let X, Y, Z be random variables on covariates, outcome, and treatment assign-

ment for an arbitrary patient. For the ith (i = 1, . . . , n) patient in a clinical trial

comparing a treatment and a control, let zi be the treatment actually received,

where zi = 1 indicates receiving treatment while zi = 0 indicates receiving control;

xi = (xi1, . . . , xip) be a vector of p observed baseline biomarkers; yi be the observed

continuous response variable; s(xi) be selection option, where s(xi) = 0 or 1 based

on xi. For example, s(X) = I{X1 > c1} indicates that only patients with biomarker

X1 greater than c1 are selected. Then, the estimated subgroup can be obtained by

29



ŝ(X) = I{xi1 > c1, i = 1, . . . , n} (Lipkovich et al., 2017).

Let f(x, z) = E(Y |X = x, Z = z) be the expected outcome for a patient with

information x that were to receive treatment z. The expected outcome can be

written as (Lipkovich et al., 2017),

f(x, z) = f(x, 0) + (f(x, 1)− f(x, 0)) z.

The above equation includes two parts, the main effect plus an interaction term of

treatment effect and treatment assignment.

In general, the outcome function can be written as,

f(x, z) = l{g(x) +m[h(x)z]},

where g(·) is a prognostic effect function, h(·) is a predictive effect function, and m(·)

is a monotone function. Prognostic effect evaluates a patient’s outcome no matter

what the treatment is, while predictive effect evaluates treatment effects (treatment-

modifying covariates, or treatment-moderators) of biomarkers (Ondra et al., 2016).

The univariate regression model using t-test is the simplest selection method which

is only based on a single biomarker in each model. First, a series of univariate

regression models with terms of a single biomarker, treatment, and biomarker-by-

treatment interaction are fitted. For example, a univariate regression model on

biomarker X1 for the ith patient can be written as, yi = β0 + β1xi1 + I{xi1 > c}zi,

where I{xi1 > c} = E(Y |X = xi1, Z = 1)−E(Y |X = xi1, Z = 0) is treatment effect.
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Second, the interaction term is tested based on the significance level of 0.1. Third,

biomarkers with significant interaction term are chosen for defining subgroups. For

binary biomarkers, subgroups can be defined according to the model. For continuous

or ordinal biomarkers, dichotomization should be considered based on appropriately

defined ‘optimal’ cutoff values or clinically relevant cutoffs before subgroups are de-

fined (Lipkovich et al., 2017). However, if there exist interactions among biomarkers,

the performance of this method is poor.

1.2.3.2 Tree Based Regression Model

Tree based regression models are one of the best and mostly used supervised learning

methods which can be completely nonparametric (Analytics Vidhya Content Team,

2016). Popular used methods are decision trees, random forest, and gradient boost-

ing. The decision trees, which can be applied to both classification and regression

problems, is also called Classification and Regression Tree (CART). It is one of the

simplest methods introduced by Breiman et al. (1984). If the outcome is a cate-

gorical variable, it is classification tree; otherwise, it is regression tree. With a set

of candidate biomarkers and binary treatment indicator, the tree based regression

models have high-order interaction effects and subgroups can be defined by multiple

biomarkers (Lipkovich et al., 2017). Also, cutoffs do not need to be pre-specified

for continuous or ordinal biomarkers, which can be estimated in the process of par-

titioning the data (Lipkovich et al., 2017). By partitioning the data recursively,

tree based models can obtain increasingly homogenous groups by minimizing resid-
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ual sums of squares (RSS) for regression tree and Gini index or cross-entropy for

classification tree. Finally, this process partitions biomarkers into non-overlapping

regions with no region contains more than five patients, which are known as terminal

nodes. With the ‘overgrown’ tree, cross-validation is used to prune the tree to get

the optimal subtree. Any patient can fall into only one region according to his/her

biomarkers, and the outcome can be predicted by the mean of the outcome values

within this region (Lipkovich et al., 2017). Decision trees are easy to explain by

displaying the tree graphically, but the prediction accuracy may be poor. Although

the prediction accuracy can be improved dramatically with complicated methods,

the results become hard to interpret and the cost on computation is high. Most

importantly, the generalizability of tree based models is poor with small datasets

from phase II clinical trials, which results in choosing patients who may not benefit

from treatment into the phase III clinical trial.

1.2.3.3 Optimal Treatment Regimes

A patient’s treatment option is made by the patient’s characteristics. Decisions

based on synthesizing all information of a patient can lead to the best outcome

for the patient. For example, Gail and Simon (1985) used the data from a trial

conducted by the National Surgical Adjuvant Breast and Bowel Project comparing

L-Phenylalanine mustard, 5-Fluorouracil, Tamoxifen (PFT) and L-Phenylalanine

mustard, 5-Fluorouracil (PF) in patients with primary operable breast cancer and

positive nodes (Fisher et al., 1983). Investigators from this project found “evidence
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for a heterogeneity in response to PFT therapy that is both age and progesterone

receptor dependent”. Gail and Simon (1985) developed a likelihood ratio test for

qualitative interaction by partitioning the data into four subgroups defined by age

and progesterone receptor levels. The results showed that patients less than 50 years

old with progesterone receptor levels less than 10 fmole have better results on the

treatment PF while the others have better results on PFT. In other words, if age

< 50 years and progesterone < 10 fmole for a patient, give this patient treatment

z1 (PF); otherwise, give z0 (PFT). This example is the case of single decision point.

We will focus on single decision point in the following (Tstiatis and Davidian, 2016).

Let x be all available information on a patient; z0 and z1 be the two treatment

options, {z0, z1} = {0, 1}; d(x) be the treatment regime, which can be 0 or 1 based

on x.

For example, if x = {Age,WBC,Gender}, then d(x) = I{Age < 50,WBC <

10, and Gender = Female}, which involves cut-offs, or d(x) = I{Age + 8WBC +

0.5Gender− 60 > 0}, which involves a linear combination.

Let D be the class of all possible treatment regimes. The optimal regime is denoted

as dopt ∈ D. If a patient received the optimal treatment, the patient’s expected

outcome would be as large as possible given his/her available information. If all

patients received the optimal treatment, the expected outcome for the population
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would be as large as possible. It can be written as

E{Y ∗(d)|X = x} ≤ E{Y ∗(dopt)|X = x};E{Y ∗(d)} ≤ E{Y ∗(dopt)},

where Y ∗(d) is the potential outcome for a patient with baseline information X

that were to receive the treatment d developed by Rubin (1974). Splawa-Neyman

(1923) started the Neyman-Rubin framework that each subject has two potential

outcomes, but the observed outcome can be only under treatment or control group

on randomized studies. Rubin (1974) developed the model into a general framework

for observational studies. Thus, Y ∗(1) is the outcome that would be achieved if a

patient were to receive the treatment 1; Y ∗(0) is the outcome that would be achieved

if a patient were to receive the treatment 0. With the combination of Y ∗(1) and

Y ∗(0), Y ∗(d) can be written as Y ∗(d) = Y ∗(1)d(X) +Y ∗(0)(1− d(X)). E{Y ∗(1)} is

the expected outcome if all patients in the population were to receive the treatment

1; E{Y ∗(0)} is the expected outcome if all patients in the population were to receive

the treatment 0. E{Y ∗(d)|X = x} is the expected outcome for a patient with infor-

mation x that were to receive the treatment d. E{Y ∗(d)} = E [E{Y ∗(d)|X}] is the

expected outcome for the population if all patients were to receive the treatment d.

Therefore, dopt can make E{Y ∗(d)} have the largest value among d ∈ D.

E{Y ∗(d)} can be also called as the value of treatment d, which is written as
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V (d) = E{Y ∗(d)}. Thus,

V (d) = E{Y ∗(d)} = E [E{Y ∗(d)|X}]

= E [E{Y ∗(1)d(X) + Y ∗(0)(1− d(X))|X}]

= E [E{Y ∗(1)|X}d(X) + E{Y ∗(0)|X}(1− d(X))] .

Then, the optimal regime can be written as,

dopt(x) = I [E{Y ∗(1)|X = x} > E{Y ∗(0)|X = x}] ;

that is, the optimal regime assigns the treatment to a patient that his/her expected

outcome would be larger conditional on x.

For observational studies, let X be the baseline covariates, Z be the treatment

actually received (0 or 1), Y be the observed outcome. Since the mechanism of

treatment assignment is unknown, two assumptions are considered in the following

(Rubin, 1986; Rosenbaum and Rubin, 1983):

a. Consistency assumption: Y = Y ∗(1)Z + Y ∗(0)(1− Z);

b. No unmeasured confounders assumption: Y ∗(0), Y ∗(1)⊥Z|X.

The first assumption shows that the potential outcomes for a subject will be the

same irrespective of the mechanism used to assign the treatment to that subject and

irrespective of which treatments the other subjects receive. The second assumption

shows that the potential outcomes are conditionally independent of treatment as-

signments given measured covariates.
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With the two assumptions, we have:

E{Y ∗(1)} = E[E{Y ∗(1)|X}] = E[E{Y ∗(1)|X, Z = 1}]

= E[E{Y ∗(1)Z + Y ∗(0)(1− Z)|X, Z = 1}] = E[E{Y |X, Z = 1}],

E{Y ∗(0)} = E[E{Y ∗(0)|X}] = E[E{Y ∗(0)|X, Z = 0}]

= E[E{Y ∗(1)Z + Y ∗(0)(1− Z)|X, Z = 0}] = E[E{Y |X, Z = 0}],

V (d) = E{Y ∗(d)} = E [E{Y ∗(d)|X}]

= E[E{Y ∗(1)d(X) + Y ∗(0)(1− d(X))|X}]

= E[E{Y ∗(1)|X}d(X) + E{Y ∗(0)|X}(1− d(X))]

= E[E{Y |X, Z = 1}d(X) + E{Y |X, Z = 0}(1− d(X))],

dopt(x) = I [E{Y |X = x, Z = 1} > E{Y |X = x, Z = 0}] .

Let Q(x, z) = E{Y |X = x, Z = z}, then Q(x, 1) = E{Y |X = x, Z = 1} and

Q(x, 0) = E{Y |X = x, Z = 0}; so dopt(x) and V (d) can be also written as

dopt(x) = I [Q(x, 1) > Q(x, 0)], and V (d) = E[Q(x, 1)d(x) +Q(x, 0)(1− d(x))].

Q(x, z) is not known, but it can be modeled as a linear or logistic regression

Q(x, z;β), and β can be estimated by least squares, maximum likelihood, or other

appropriate methods. For example, Q(x, z;β) = β0 + β1x + β2z + β3zx.
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With the known modelQ(x, z; β̂) = β̂0+β̂1x1+β̂2x2+β̂3x3+z(β̂4+β̂5x1+β̂6x2+β̂7x3),

V (d) can be written as

V̂ (d) = n−1

n∑
i=1

[
Q(Xi, 1; β̂)d(Xi) +Q(Xi, 0; β̂)(1− d(Xi))

]
.

Then, dopt(x) and V (dopt) can be estimated as d̂optQ (x) = I
[
Q(x, 1; β̂) > Q(x, 0; β̂)

]
and

V̂ (d̂opt) = n−1

n∑
i=1

[
Q(Xi, 1; β̂)d̂opt(Xi) +Q(Xi, 0; β̂)(1− d̂opt(Xi))

]
.

Also, the estimated optimal regime can be simplified as d̂optβ (x) = I[β̂4 + β̂5x1 +

β̂6x2 + β̂7x3 > 0] with a subset of elements of x. It can be rewritten as I[x1 >

η̂0 + η̂1x2 + η̂2x3] if β̂5 is positive, or I[x1 < η̂0 + η̂1x2 + η̂3x3] if β̂5 is negative, with

η̂0 = −β̂4/β̂5, η̂1 = −β̂6/β̂5 and η̂2 = −β̂7/β̂5 (Zhang et al., 2012). In general, η is

a function of β, which can be written as, η = η(β). Therefore, with the correct

fitted outcome regression model Q(x, z;β), doptη (x) = d(x,ηopt) can be estimated

for dopt to make E{Y ∗(dη)} have the largest value among dη ∈ Dη. If the outcome

regression model is incorrectly fitted, dopt may not be in Dη and d̂optη (x) may be far

away from dopt. It also happens when outcome regression models are too complex,

so Zhang et al. (2012) proposed an alternative method using only a key subset of

elements of X based on interpretability, cost, and feasibility in practice to define a

class of regimes by η. For example, dη(x) = d(x,η) = I{x1 < η0, x2 < η1, x3 < η2}

without using a regression model. Therefore, the optimal regime doptη based on the

mis-specified outcome regression model with parameter estimators β̂ can lead to

poor performance on E{Y ∗(doptη )}.
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1.2.3.4 Optimal Treatment Regimes Based on IPWE

From the previous section, ηopt should be estimated to obtain the maximum value

of E{Y ∗(dη)}. With the estimator η̂opt, the optimal regime doptη is estimated by

d̂optη (X) = d(X, η̂opt). With fixed η, let Cη = Zd(X,η) + (1 − Z)(1 − d(X,η)), Cη

can be 1 or 0. For subjects with Cη = 1, they receive treatment 0 or 1 following

the regime dη, which means their outcomes are observed with Y ∗(dη) = Y . For the

others with Cη = 0, their outcomes Y ∗(dη) following the regime dη are unknown,

which means they are missing. Only observed subjects are used for estimating

E{Y ∗(dη)}. Since Cη is a function of {Z,X}, and Y ∗(dη) = Y ∗(1)d(X,η)+Y ∗(0)(1−

d(X,η)) is a function of {Y ∗(0), Y ∗(1),X} with the fixed η, Cη is independent of

Y ∗(dη) given X under the second assumption from the last section, which means

that the missing mechanism on Y ∗(dη) is missing at random (MAR) (Cao et al.,

2009; Zhang et al., 2012). Therefore, the probability of being observed given X can

be written as

P (Cη = 1|X) = P (Zd(X,η) + (1− Z)(1− d(X,η)) = 1|X)

= d(X,η)P (Z = 1|X) + (1− d(X,η))P (Z = 0|X)

= d(X,η)e(X) + (1− d(X,η))(1− e(X)),

where e(X) = P (Z = 1|X) is the propensity score for treatment 1 group. Therefore,

P (Cη = 1|X) = ec(X;η) = d(X,η)e(X)+(1−d(X,η))(1−e(X)). For clinical trials,

the propensity score e(X) is known as a constant. For observational studies, the

propensity score e(X) is not known and need to be estimated through a parametric

model e(X;γ). With the estimated propensity score e(X; γ̂) and the fixed η, the
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inverse probability weighted estimator (IPWE) can be written as (Lunceford and

Davidian, 2004; Cao et al., 2009; Zhang et al., 2012)

V̂IPW (dη) = n−1

n∑
i=1

Cη,iYi
ec(Xi;η, γ̂)

= n−1

n∑
i=1

Cη,iYi
d(Xi,η)e(Xi; γ̂) + (1− d(Xi,η))(1− e(Xi; γ̂))

= n−1

n∑
i=1

Cη,iYi
e(Xi; γ̂)Zi [1− e(Xi; γ̂)]1−Zi

.

By maximizing the above IPW estimator V̂IPW (dη), the optimal regime doptη can be

estimated. If the propensity score model e(X; γ̂) is correctly specified with e(X; γ̂) =

e0(X), the IPW estimator is consistent with E[V̂IPW (dη)] = E(Y ∗(dη)). The proof

is given as following (Lunceford and Davidian, 2004).

E[V̂IPW (dη)] = E

[
CηY

ec0(X;η)

]
= E

{
E

[
CηY

ec0(X;η)
|Y ∗(dη),X

]}

= E

{
E

[
CηY

∗(dη)

ec0(X;η)
|Y ∗(dη),X

]}
= E

{
E

[
I{Cη = 1}Y ∗(dη)

ec0(X;η)
|Y ∗(dη),X

]}

= E

{
E

[
I{Zd(X,η) + (1− Z)(1− d(X,η)) = 1}Y ∗(dη)

ec0(X;η)
|Y ∗(dη),X

]}

= E

{
Y ∗(dη)

ec0(X;η)
E [I{Zd(X,η) + (1− Z)(1− d(X,η)) = 1}|Y ∗(dη),X]

}

= E

{
Y ∗(dη)

ec0(X;η)
[d(X,η)E(Z|Y ∗(dη),X) + (1− d(X,η))(1− E(Z|Y ∗(dη),X))]

}

= E

{
Y ∗(dη)

ec0(X;η)
[d(X,η)e0(X) + (1− d(X,η))(1− e0(X))]

}
= E(Y ∗(dη)),

where ec0(X;η) = d(X,η)e0(X) + (1− d(X,η))(1− e0(X)).

The IPW estimator is always consistent for randomized clinical trials with con-

stant true propensity scores. However, for observational studies, the IPW estimator
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is not consistent if the propensity score model is misspecified. With the misspecified

propensity score model, an augmentation term including outcome regression model

is added to the IPW estimator to improve efficiency and provide another protection,

which will be presented in the following section.

1.2.3.5 Optimal Treatment Regimes Based on Doubly Robust IPWE

To provide protection against the misspecification of propensity score model leading

to the inconsistent IPW estimator from the last section and improve efficiency, an

augmentation term including outcome regression model is added. If the outcome

regression model is correctly specified, the new estimator is consistent no matter

the propensity score model is right or wrong, and vice versa. Therefore, either the

propensity score model or the outcome regression model is right, the new estimator

is consistent, which is called doubly robust inverse probability weighted estimator

(DRIPWE) with double protections. Based on the IPWE, the DRIPWE is written

as following (Robins et al., 1994; Cao et al., 2009; Zhang et al., 2012),

V̂DRIPW (dη) = n−1

n∑
i=1

{
Cη,iYi

ec(Xi;η, γ̂)
− Cη,i − ec(Xi;η, γ̂)

ec(Xi;η, γ̂)
m(Xi;η, β̂)

}
,

where ec(X;η, γ̂) = d(X,η)e(X, γ̂) + (1 − d(X,η))(1 − e(X, γ̂)), m(Xi;η, β̂) =

E[Y ∗(d̂η)|X] = Q(X, 1; β̂)d(X,η) +Q(X, 0; β̂)(1− d(X,η)).

By maximizing the above DRIPW estimator V̂DRIPW (dη), the optimal regime doptη

can be estimated. If the propensity score model e(X; γ̂) is correctly specified and the

outcome regression model may be misspecified, the DRIPW estimator is consistent
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with E[V̂DRIPW (dη)] = E(Y ∗(dη)). The proof is given as following.

E[V̂DRIPW (dη)] = E

[
CηY

ec0(X;η)

]
− E

[
Cη − ec0(X;η)

ec0(X;η)
m(X;η, β̂)

]
= E1 − E2;

E1 = E(Y ∗(dη)), which has been proved in the last section.

E2 = E

[
Cη − ec0(X;η)

ec0(X;η)
m(X;η, β̂)

]

= E

{
E

[
Cη − ec0(X;η)

ec0(X;η)
m(X;η, β̂)|X

]}

= E

{
E

[
I{Zd(X,η) + (1− Z)(1− d(X,η)) = 1} − ec0(X;η)

ec0(X;η)
m(X;η, β̂)|X

]}

= E

{
m(X;η, β̂)

ec0(X;η)
E[I{Zd(X,η) + (1− Z)(1− d(X,η)) = 1} − ec0(X;η)|X]

}

= E

{
m(X;η, β̂)

ec0(X;η)
[d(X,η)E(Z|X) + (1− d(X,η))(1− E(Z|X))− ec0(X;η)]

}

= E

{
m(X;η, β̂)

ec0(X;η)
[d(X,η)e0(X) + (1− d(X,η))(1− e0(X))− ec0(X;η)]

}

= E

{
m(X;η, β̂)

ec0(X;η)
[ec0(X;η)− ec0(X;η)]

}

= 0;

thus,

E[V̂DRIPW (dη)] = E(Y ∗(dη))− 0 = E(Y ∗(dη)),

where ec0(X;η) = d(X,η)e0(X) + (1− d(X,η))(1− e0(X)).

If the outcome regression model m(X;η, β̂) is correctly specified with m(X;η, β̂) =

m0(X;η) and the propensity score model may be misspecified, the DRIPW estima-
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tor is consistent with E[V̂DRIPW (dη)] = E(Y ∗(dη)). The proof is given as following.

E[V̂DRIPW (dη)] = E{E[V̂DRIPW (dη)|Y ∗(dη),X]}

= E

{
E

[
CηY

ec(X;η, γ̂)
|Y ∗(dη),X

]}
− E

{
E

[
Cηm0(X;η)

ec(X;η, γ̂)
|Y ∗(dη),X

]}

+ E {E[m0(X;η)|Y ∗(dη),X]}

= E1 − E2 + E3;

E1 = E

{
E

[
CηY

ec(X;η, γ̂)
|Y ∗(dη),X

]}

= E

{
E

[
CηY

∗(dη)

ec(X;η, γ̂)
|Y ∗(dη),X

]}
,

E2 = E

{
E

[
Cηm0(X;η)

ec(X;η, γ̂)
|Y ∗(dη),X

]}

= E

{
E

[
CηE(Y ∗(dη)|X)

ec(X;η, γ̂)
|Y ∗(dη),X

]}

= E

{
E

[
CηY

∗(dη)

ec(X;η, γ̂)
|Y ∗(dη),X

]}
,

E3 = E {E[m0(X;η)|Y ∗(dη),X]} = E{E[E(Y ∗(dη)|X)|Y ∗(dη),X]} = E(Y ∗(dη));

thus,

E[V̂DRIPW (dη)] = E

{
E

[
CηY

∗(dη)

ec(X;η, γ̂)
|Y ∗(dη),X

]}
− E

{
E

[
CηY

∗(dη)

ec(X;η, γ̂)
|Y ∗(dη),X

]}

+ E(Y ∗(dη))

= E(Y ∗(dη)).
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Chapter 2

Analysis of Longitudinal Interval Reported Binary Recurrent Event

Data

2.1 Introduction

Longitudinal interval reported binary recurrent events data are fairly common in

medical studies, including clinical trials or observational studies where subjects/

patients are assessed periodically based on fixed follow-up schedule. Even though

patients are asked to visit or call the medical center at fixed follow-up time, many

patients may miss a few visits throughout the study period, and report whether

there is any onset of disease symptoms since last visit rather than in this specific

scheduled interval (Thall and Lachin, 1988). Those symptoms are recurrent and can

happen anytime, but the exact occurrence time and total count of recurrence during

this reporting interval between two visits are not available. For example, females

more than 20 years of age are interviewed every two years for ten years, and the

event of interest is whether they have ever been pregnant (including miscarriages)

since last interview. If someone miss some interviews, their reporting intervals would

be longer than two years (Allison, 1982). When a recurrent event occurs on sub-

jects who are observed only at discrete time points in clinical trials or longitudinal
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observational studies, it is called panel-count data (Zhu et al., 2017). For this type

of interval reported data, even though the time to recurrence is unknown due to

interval censoring, the recurrent event counts in each reported interval are observed

(Sun and Zhao, 2013; Zhu et al., 2017). However, for this paper, we only observe

the binary status of whether or not the event of interest happens in the reporting

interval, without information on the frequency counts nor on when they re-occur in

this interval. And, we call this type of data, longitudinal interval reported binary

recurrent event data.

The outcomes we observed, in post hip fracture infection project using Baltimore

Hip studies (BHS), are longitudinal interval reported binary recurrent event data.

During in-person and phone interviews, subjects were asked about status change

since last interview and they might miss a few interviews. For example, “Since the

last time we spoke in (Provide Month) have you ever had fever” is one of the typical

questionnaire items measuring the outcome infection longitudinally. Even though

infection is recurrent, we only know that at least one infection occurred at some

reporting interval, with the exact time and the number of recurrent infections in

the reporting interval are unknown. It is common to see this type of questionnaire

in clinical trials or observational studies. The aim of this project is to investigate

how the post-surgery infection developed over the first year follow-ups in hip frac-

ture patients, and whether the infection trend differed between men and women.

Considering interval reporting issue and accounting for missing interviews by the

varying interval lengths between two visits across subjects are very important for
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the validity of model inference.

Even though there are many statistical methods dealing with longitudinal binary

data or interval censored discrete survival data, there are not many methods dealing

with longitudinal interval reported binary recurrent event data. For those interval-

censored discrete survival data without considering the nature of recurrent events

in a longitudinal study, several statistical models are available. A discrete model

developed from the Cox proportional hazards model has been used when non-

recurrent failure time data (data are either exact or right-censored observations) are

broadly grouped, with failure times grouped into fixed intervals Ai for all patients

(Kalbfleisch and Prentice, 1973; Prentice and Gloeckler, 1978). In 1986, Finkelstein

developed a methodology for applying a proportional hazards model on nonrecur-

rent interval-censored failure time data (i.e., the exact response time is unknown,

but is known within some time interval) which may be censored into overlapping and

non-disjoint intervals (Finkelstein, 1986). In 2017, Austin illustrated two models on

multilevel survival analysis with non-recurrent events, a “piecewise exponential sur-

vival model” assuming constant hazard within each interval and taking the length

of interval into account after dividing the follow-up time into mutually exclusive

intervals (Allison, 2010); and a “complementary log-log generalized linear model”

(Rodriguez, 2008) for discrete survival time focusing on whether or not an event oc-

curred within an interval without considering the length of interval (Austin, 2017).

Without considering interval reported binary recurrent event nature of the data,
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only focusing on the longitudinal binary outcomes, the marginal model under GLM

framework estimated by Generalized Estimating Equations (GEEs) can be used

(Liang and Zeger, 1986), in particular the logistic regression model. Also, generalized

linear mixed effect models are very popular for taking the population heterogeneity

into account. With considering recurrent events and longitudinal nature, the hier-

archical linear model (or multilevel model) developed by Snijders (1996) considered

varying number of repeated measures across subjects (e.g., income, physiological

measurements, et al.) due to design or missing and varying reporting intervals due

to different measurement time points or missing data across subjects of longitudinal

data (Snijders, 1996). Sutradhar et al. (2011) constructed a multistate model for

interval-censored longitudinal data showing changes in a patient’s health condition

over time. With the intermittent assessment on cancer patients, the transition,

which is the progression of performance status over time representing a patient’s

health condition, is only known within an interval, so information on transition

time (the time when changes occur) is incomplete. Thus, different subjects may

have different number and timing of assessments, but the outcomes are not binary

reported nor recurrent. Also, the multistate methods developed under interval cen-

soring do not consider covariates in the model which may change the transition rates

(Sutradhar et al., 2011). However, for our study, we should notice that the recur-

rent events reported in each visit are dichotomized due to questionnaire design, also

the reporting intervals between visits within subject change over time, and visiting/

interviewing schedules change across subjects too due to various missing patterns.

The literature on methods dealing with this type of data are very limited.
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In this paper, we developed a relatively simple and flexible longitudinal model frame-

work to deal with this type of data, where discrete survival modeling technique and

Poisson process are used to account for interval censored reporting system between

longitudinal visits/interviews and binary nature of recurrent events reporting within

each interval. Specifically, the probability of observing an event in an interval is

based on the Poisson process of the events with the intensity follows a Cox propor-

tional hazards model. The hazard function follows the Cox proportional hazards

model allowing both baseline covariates and time-varying covariates. In another

words, our hazard function is flexible enough to incorporate a subject’s charac-

teristics and time-varying nature across the longitudinal visits, and the subject’s

hazard function within each reporting interval stays fixed over time. This model

setting simplified the joint likelihood into a generalized linear mixed effects model

framework with binary responses and complementary log-log link, leading to widely

available software for estimation. This method was applied to our post hip fracture

infection project using Baltimore Hip studies (BHS). Section 2.2 describes the data

from Baltimore Hip studies (BHS) and the infection project which motivated our

work. Section 2.3 shows the theoretical development of our longitudinal model us-

ing discrete survival technique and Poisson process to deal with interval censoring

problem and our longitudinal binary recurrent data. Section 2.4 shows the results

of a simulation study. Section 2.5 presents an application of the proposed method

to the post hip fracture infection data.
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2.2 Data

The project motivated our study came from the seventh cohort of Baltimore Hip

Studies (BHS-7), a longitudinal study investigating consequences of hip fracture

with metabolic, physiologic, neuromuscular, functional, and clinical outcomes and

differences between men and women in the first year of post hip fracture recov-

ery period (Resnick et al., 2011; Magaziner, 2012; Orwig et al., 2018). Our study

aimed to investigate how the post-surgery infection developed over the first-year

follow-ups in hip fracture patients, and whether the infection trend differed be-

tween men and women. The BHS-7 study collected baseline health information and

comprehensive assessment of psychosocial, physical, and physiological outcomes of

community-dwelling patients with surgical repair of a non-pathological hip fracture

from eight hospitals during 2006 and 2011. Patients were eligible if they were at age

65 or older and admitted to one of the eight study hospitals during the study period

with a diagnosis of hip fracture (ICD9 code 820) (Magaziner, 2012; Orwig et al.,

2018). There were 339 hip fracture patients enrolled within 15 days of admission,

and women enrollment was frequency-matched to men in each hospital (Resnick

et al., 2011; Orwig et al., 2018).

The outcome considered in our analysis was infection status post hip fracture surgery.

Infection was defined by having at least one of the following symptoms: fever, an-

tibiotic use, cough with green or bloody phlegm or sputum, burning with urination,

cloudy urine, foul-smelling urine, bloody urine, chills, and discharge or swelling at
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the surgical site. Comprehensive assessments of psychosocial, physical, and physi-

ological outcomes, including infection outcomes, are available at baseline and at 2,

6, and 12 months post-fracture through in-person interviews. Additionally, phone

interviews were conducted monthly between in-person interviews asking questions

about status change since the last time spoken. This longitudinal design leads to

11 scheduled infection outcomes per patient to be measured in this study. Since

monthly interviews asked questions about status change since the last time spoken

and subjects might miss some interviews, this interval censored reporting system

and design lead to varying lengths of intervals between repeated measures. Another

nature of this data is that infection events are reported dichotomizely, i.e., we only

know whether at least one infection occurred during some reporting intervals, but

the exact time and number of infections are unknown.

The primary predictors considered in the model were gender, time, age, education,

race (white vs. non-white), Charlson comorbidity index, body mass index, elevated

white blood cell, and combined urinary tract infection. The sample size for this

study was 288 with available measurements on outcome and covariates, excluding

those subjects who did not have any post-discharge follow-up outcome data among

11 scheduled interviews or with missing covariates’ values.
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2.3 Methods

There are multiple effect measures for quantifying the longitudinal infection trends

and cross-sectional gender differences in our longitudinal interval reported binary

recurrent event data. Since the longitudinal binary outcome results from dichotomiz-

ing the process of recurrent infection events with interval censoring problem, we focus

on the two popular measures log odds ratio and log hazard ratio for comparison in

this paper. Following typical longitudinal model notation, let tij be the discrete

time for the jth longitudinal visit of the ith patient, and 0 < ti1 < ti2 < · · · < tiJi ,

i = 1, · · · , n, j = 1, · · · , Ji, where Ji indicates the ith patient’s total number of vis-

its within the study period. Y ∗ij is the unobserved total count of recurrent infection

events during the reporting interval (ti(j−1), tij], and Yij is the observed reported

binary infection status at jth visit of ith patient.


Yij = 1, if Y ∗ij ≥ 1

Yij = 0, if Y ∗ij = 0

, (2.1)

Y ∗ij ∼ Poisson
(
λ(Xij)(tij − ti(j−1))

)
or,

P (Y ∗ij = y∗ij) = e−λ(Xij)(tij−ti(j−1))
[
λ(Xij)(tij − ti(j−1))

]y∗ij /y∗ij!. (2.2)

Yij = 1 means infection occurred at least once during the interval (ti(j−1), tij], even

though we don’t know when and how many times it happened; while, Yij = 0 means

no infection occurrence during the reporting interval (ti(j−1), tij]. Assuming the oc-

currences of infection follows a Poisson process with intensity λ(Xij) in (ti(j−1), tij]

is a fairly common and flexible assumption, allowing the intensity vary across indi-
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vidual reporting intervals defined by their available visits within patient and vary

across patients. Since our recurrent infection events are binary and interval cen-

sored, λ(Xij) is not a function of continuous time t, but a function of (Xi,Xij) only.

As a result, the average counts of recurrent infections in the interval (ti(j−1), tij] is

λ(Xij)(tij− ti(j−1)). Based on (2.1) and (2.2), the probability density function of Yij

in interval (ti(j−1), tij] is:

P (Yij = 0) = P (Y ∗ij = 0) = exp{−λ(Xij)(tij − ti(j−1))}, and

P (Yij = 1) = P (Y ∗ij ≥ 1) = 1− P (Yij = 0) = 1− exp{−λ(Xij)(tij − ti(j−1))}. (2.3)

To capture how the intensity λ(Xij) vary with (Xi,Xij), we choose the widely

popular Cox proportional hazards model to model λ(Xij), i.e.,

λ(Xij) = λ0iexp{β1Xi + β2Xij} = exp{β0i + β1Xi + β2Xij} (2.4)

in each interval (ti(j−1), tij], i = 1, · · · , n, j = 1, · · · , Ji. And, λ0i = exp{β0i} is

the individual baseline hazard function, Xi are baseline covariates, while Xij are

time-varying covariates across visits, j = 1, · · · , Ji. The coefficients, βs, can be in-

terpreted as individual log hazard ratios and/or individual log intensity ratios, after

conditioning on individual baseline hazard and other confounders. After plugging

the model (2.4) into the probability density function (2.3), it turns into:

E(Yij|X, β0i) = P (Yij = 1|X, β0i) = 1− exp
{
−exp{β0i + β1Xi + β2Xij}(tij − ti(j−1))

}
,

i.e.,

log {−log[1− E(Yij|X, β0i)]} = β0i + β1Xi + β2Xij + log(tij − ti(j−1)), (2.5)
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where β0i ∼ N(β0, σ
2).

Given the random effects β0i, it is assumed that Yij are independent of one an-

other. Then, the probability density function of ith patient’s longitudinal interval

reported binary recurrent event Yi can be written as

f(Yi|X, β0i) =

∫ Ji∏
j=1

{P (Yij = 1|X, β0i)}Yij{1− P (Yij = 1|X, β0i)}1−Yijf(β0i)dβ0i.

Thus, the likelihood function is

L(β) =
n∏
i=1

∫ Ji∏
j=1

{P (Yij = 1|X, β0i)}Yij{1− P (Yij = 1|X, β0i)}1−Yijf(β0i)dβ0i.

This likelihood function turns into a typical random effect longitudinal likelihood

with complementary log-log link. The parameter estimates can be obtained from

standard statistical packages of generalized linear mixed effects model of binary

outcome with a complementary log-log link. And, the varying reporting interval

can be taken into account by the offset log(tij − ti(j−1)). Remark that the inter-

pretations of regression parameters are individual log hazard ratios of the infection

occurrence across covariates’ values to quantify the longitudinal infection trends and

cross-sectional gender effect.

Using similar idea but ignoring the heterogeneity of individual baseline hazard,

we could specify a marginal longitudinal model to estimate the longitudinal and

cross-sectional effects with a complementary log-log link, offset log(tij − ti(j−1)) as

below, and a working correlation matrix, estimated by GEE with “robust” variance
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estimator:

log {−log[1− E(Yij|X)]} = α0 + α1Xi + α2Xij + log(tij − ti(j−1)) (2.6)

Remark that the interpretations of α are log hazard ratios of the infection occurrence

across two stratums of patients with different covariates’ values, after adjusting for

all the other confounders. The estimates of regression coefficients in the marginal

models (α) are not expected to be similar as random effect models (β), due to

different modeling frameworks and the non-linearity of these effect measures. One

exception is that when individual baseline hazard heterogeneity σ2, var(β0i), is small,

and those estimates could be close. However, a large heterogeneity σ2 can make in-

dividual effects and marginal effects far apart. For complementary log-log link and

logit link, the individual effects are often larger in effect sizes than the marginal

effects with increasing σ2.

Dealing with such longitudinal study, it is quite intuitive to ignore the interval

reported binary recurrent event data nature of this infection outcome, just consider

it as a standard binary longitudinal outcome. Then, a marginal model with logit

link and a working correlation matrix estimated by GEE with “robust” variance

estimator as well as a generalized linear mixed effects model with logit link are

common methods to use, as below:
cov(Yi|X) ∼Working correlation matrix

logit[E(Yij|X)] = α∗0 + α∗1Xi + α∗2Xij

(2.7)
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logit[E(Yij|X), β∗0i] = β∗0i + β∗1Xi + β∗2Xij

β∗0i ∼ N(β∗0 , σ
2)

(2.8)

Remark that the log odds ratios (α∗,β∗) are used to quantify the longitudinal and

cross-sectional effects. Interpretations of α∗ are log odds ratios of the infection

occurrence across two stratums of patients with different covariates’ values, after

adjusting for all the confounders, while interpretations of β∗ are individual log odds

ratios of the infection occurrence.

In summary, for analyzing longitudinal interval reported binary recurrent event

data, we developed a generalized linear mixed effects model (2.5) which allowing

population heterogeneity in baseline hazards, as well as a marginal model estimated

by GEE (2.6) without considering such heterogeneity, to quantify their longitudinal

and cross-sectional effects. Specifically, the probability of observing an event in an

interval is based on the Poisson process of the events with the intensity follows a

Cox proportional hazards model. Based on the Cox proportional hazards model, our

hazard function is flexible enough to capture the variability caused by a subject’s

baseline characteristics and time-varying covariates across the longitudinal visits,

while the subject’s hazard function within each reporting interval stays fixed over

time. As a result, complementary log-log link and offset log(tij − ti(j−1)) in general-

ized linear model framework were used to account for the interval censored reporting

system between longitudinal visits/ interviews and binary nature of recurrent events

reporting in intervals, leading to widely available software for estimation, such as the
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geepack and glmmML package in R and corresponding models in SAS. To evaluate

the numerical performances of the proposed models, simulation studies were carried

out to compare them with the standard generalized linear models with logit link

(2.7) (2.8). Even though those models use different effect measures to quantify the

longitudinal and cross-sectional effects, we want to see which model performs bet-

ter in capturing significant effects when dealing with longitudinal interval reported

binary recurrent event data, whether standard longitudinal models ignoring these

features of outcomes could reach good results. Simulation studies were done using

R 3.4.2, while the real data application was analyzed using SAS 9.4.

2.4 Simulation Study

We generate data to mimic the real infection data structure listed in section 2.2,

which has 11 months in total from month 2 to month 12 with missing values existing

in some of the months. The simulation process was provided as following:

1. The total number of longitudinal visits per subject was generated randomly

with the range from 1 to 11. Then, we randomly selected months of assessment

for each subject consistent with the chosen total visits of this subject, called

“month”, ranging from month 2 to month 12. For example, subject i can be

observed at month 3, 5, 6, 9, and 12 if his/her total number of visits is 5.

Based on monthij(or tij) = {3, 5, 6, 9, 12}, the ith subject’s reporting intervals

are {3, 2, 1, 3, 3} months.
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2. We generated two baseline variables - age and gender (x1, x2), x1 ∼ N(80, 82),

and x2 ∼ Bin(n, 0.5), as a simple representation of the mixture of continuous

and categorical covariates in typical longitudinal studies.

3. We generated seven rationales of intensity based on Cox proportional hazards

model for the ith subject in the following:

λk1(Xij) = exp{α0k + b0i + α1kx1i + α2kx2i}

λk2(Xij) = exp{α0k + b0i + α1kx1i + α2kx2i + α3ktij}

λk3(Xij) = exp{α0k + b0i + α1kx1i + α2kx2i + α3ktij + α4kx2itij}

λ3(Xij) = exp{α01 + b0i + α11x1i}

, (2.9)

where i = 1, . . . , n, j = 1, · · · , Ji, k = 1, 2, and b0i ∼ N(0, σ2) accounting

for heterogeneity of the baseline hazard in the study population. Sensitivity

studies to σ = {0.5, 1, 2} are carried out, addressing how well the model per-

formance will be under small, moderate and large heterogeneity respectively.



λ11(Xij) = exp{−1 + b0i + 0.005x1i − 1.5x2i}

λ12(Xij) = exp{−1 + b0i + 0.005x1i − 1.5x2i − 0.1tij}

λ13(Xij) = exp{−1 + b0i + 0.005x1i − 1.5x2i − 0.1tij − 0.2x2itij}

(2.10)



λ21(Xij) = exp{−0.3 + b0i − 0.02x1i − 0.5x2i}

λ22(Xij) = exp{−0.3 + b0i − 0.02x1i − 0.5x2i + 0.05tij}

λ23(Xij) = exp{−0.3 + b0i − 0.02x1i − 0.5x2i + 0.05tij − 0.03x2itij}
(2.11)
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λ3(Xij) = exp{−1 + b0i + 0.005x1i} (2.12)

Under large covariates’ effect of gender and month (k = 1) on the frequency

of recurrent event outcomes, {λ11(Xij), λ12(Xij), λ13(Xij)} (2.10) are gener-

ated, representing three rationales of time-fixed intensity λ11(Xij) and two

time-varying intensities {λ12(Xij), λ13(Xij)} during the first year of follow-up.

Under moderate covariates’ effect of gender and month (k = 2) on outcomes,

{λ21(Xij), λ22(Xij), λ23(Xij)} (2.11) are generated respectively. In addition,

λ3(Xij) (2.12) is generated only based on age.

4. We generated the underlying unobservable counts (Y ∗ij) of recurrent events in

the interval (ti(j−1), tij] using Poisson models, then dichotomized them to get

the observed interval reported binary recurrent event outcome:
Yij = I(Y ∗ij > 0)

P (Y ∗ij = y∗ij) = e−λkm(Xij)(tij−ti(j−1))
[
λkm(Xij)(tij − ti(j−1))

]y∗ij /y∗ij!, (2.13)

where m = 1, 2, 3, accounting for one time-fixed intensity and two time-varying

intensities, and km = 3, accounting for the time-fixed intensity only based on

age.

The simulation was done in statistical software R 3.4.2, and the geepack and glm-

mML library were utilized for parameter estimates. 500 simulations per scenario was

carried, and sample size was usually set at 200. Sensitivity of model performance to

small sample size is carried out too, where sample size is set at 50. After obtaining

four types of outcomes - longitudinal binary recurrent event data - under the four
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different Poisson processes (time-fixed vs. time-varying ones), we did the analysis

using models in (2.5 - 2.8) with logistic or complementary-log-log link. With or

without time covariate in the model, there were 3 models for each approach. There-

fore, there were 12 models in total, and 12 different parameter estimations for the

time-fixed covariate “gender” and time-varying covariate “month” were presented

correspondingly. To compare the performances of the 12 models, eight scenarios

were provided, with the first three without model mis-specifications and the last

five with model mis-specifications: (1) All models were “correctly” specified with

sample size 200 using three types of outcomes based on large covariates’ effect; (2)

All models were “correctly” specified with sample size 200 using three types of out-

comes based on moderate covariates’ effect; (3) All models were “correctly” specified

with small sample size 50 using three types of outcomes based on large covariates’ ef-

fect; (4) All models were fitted on the same outcomes which were generated through

the Poisson distribution with time-varying intensity λ13(Xij) with sample size 200;

(5) All models were fitted on the same outcomes which were generated through the

Poisson distribution with time-varying intensity λ23(Xij) with sample size 200; (6)

All models were fitted on the same outcomes which were generated through the

Poisson distribution with time-varying intensity λ12(Xij) with sample size 200; (7)

All models were fitted on the same outcomes which were generated through the Pois-

son distribution with time-varying intensity λ22(Xij) with sample size 200; (8) All

models were fitted on the same outcomes which were generated through the Poisson

distribution with time-fixed intensity λ3(Xij) with sample size 200. To measure the

performance of the 12 models among the seven scenarios, estimates on “gender” and
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“month”, bias, standard errors, percentages on significant effects (power), coverage

probability of confidence intervals, AIC, and BIC were calculated.

2.4.1 Simulation Results - Part I

In Part I, we want to see how different types of models behave under small to large

population heterogeneity in baseline hazard, large or moderate covariates’ effect,

small or large sample sizes, without model mis-specification problems under various

outcome generating mechanisms (Table 2.1 - Table 2.3).

First scenario is when all marginal models and generalized linear mixed effects mod-

els were “correctly” specified with large covariates’ effect and sample size 200 on

three types of outcomes, generated based on {λ11(Xij), λ12(Xij), λ13(Xij)} (2.10),

and results are shown in Table 2.1. Among all of the models, the proposed GLMMs

with complementary log-log link have the best performance under various popula-

tion heterogeneity of the baseline hazards. Under small population heterogeneity,

GEEs with both logit link and complementary log-log link also have similar effect es-

timates as the proposed GLMMs, with “sex” effects close to −1.5 and “time” effects

close to −0.1, small standard errors, and high percentages on power. However, as

population heterogeneity increases, all models except for the proposed GLMMs with

complementary log-log link become unstable, where both “sex” and “time” effects

increase for the GLMMs with logit link, while “sex” and “time” effects decrease for

GEEs. GLMMs with logit link have the largest standard errors compared with the
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Figure 2.1: Boxplots on sex and time effect estimates using “correctly” specified models under large covariates’

effect and various study population heterogeneity (n = 200)
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Table 2.1: Covariates’ effect estimates using “correctly” specified models under large covariates’ effect and various
study population heterogeneity (n = 200)

Random effects model estimated by MLE, with complementary log-log link
(True Sex effect = -1.5, True Time effect = -0.1)

GLMM1 GLMM2 GLMM3

σ2 (heterogeneity) 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -1.5028 -1.4916 -1.5216 -1.4883 -1.4857 -1.5296 -1.4957 -1.4878 -1.4864
SE 0.1301 0.1918 0.3361 0.1576 0.2038 0.3529 0.4566 0.4255 0.5273
Power (%) 1 1 0.994 1 1 0.992 0.926 0.946 0.844

Time - - - -0.0994 -0.0998 -0.0994 -0.1000 -0.1001 -0.1004
SE - - - 0.0192 0.0200 0.0217 0.0224 0.0246 0.0298
Power (%) - - - 1 1 0.988 0.998 0.986 0.938

AIC 1303.45 1290.69 1139.41 1109.32 1137.88 1074.98 901.88 921.10 913.74
BIC 1323.81 1311.06 1159.78 1134.76 1163.34 1100.44 932.42 951.66 944.29

Marginal model estimated by GEE, with complementary log-log link

GEE1 GEE2 GEE3

σ2 (heterogeneity) 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -1.4185 -1.2049 -0.8549 -1.4257 -1.2322 -0.8404 -1.3970 -1.1074 -0.5567
SE 0.1238 0.1546 0.2202 0.1486 0.1729 0.2174 0.4491 0.3746 0.3192
Power (%) 1 1 0.990 1 1 0.986 0.896 0.848 0.428

Time - - - -0.0951 -0.0834 -0.0562 -0.0945 -0.0802 -0.0509
SE - - - 0.0182 0.0169 0.0136 0.0209 0.0201 0.0180
Power (%) - - - 1 1 0.974 0.998 0.980 0.812

Random effects model estimated by MLE, with logit link

GLMM1 GLMM2 GLMM3

σ2 (heterogeneity) 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -1.7894 -1.8636 -1.9946 -1.6887 -1.7686 -1.9459 -1.8920 -1.9906 -2.0174
SE 0.1746 0.2582 0.4524 0.1956 0.2571 0.4607 0.5325 0.5316 0.6967
Power (%) 1 1 0.994 1 1 0.988 0.954 0.970 0.876

Time - - - -0.1316 -0.1403 -0.1521 -0.1412 -0.1493 -0.1570
SE - - - 0.0237 0.0257 0.0299 0.0287 0.0327 0.0415
Power (%) - - - 1 1 1 1 0.996 0.982

AIC 1411.39 1375.73 1195.06 1192.25 1208.05 1125.62 967.74 976.08 954.73
BIC 1431.75 1396.09 1215.42 1217.70 1233.52 1151.08 998.27 1006.64 985.28

Marginal model estimated by GEE, with logit link

GEE1 GEE2 GEE3

σ2 (heterogeneity) 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -1.6179 -1.4112 -1.0096 -1.5534 -1.3900 -1.0209 -1.6800 -1.4381 -0.9494
SE 0.1538 0.1890 0.2224 0.1719 0.2016 0.2437 0.5025 0.4248 0.3594
Power (%) 1 1 0.994 1 1 0.986 0.944 0.932 0.766

Time - - - -0.1211 -0.1093 -0.0792 -0.1281 -0.1127 -0.0795
SE - - - 0.0217 0.0202 0.0158 0.0264 0.0253 0.0212
Power (%) - - - 1 1 0.998 1 0.994 0.986

1 Outcomes generated by λ11(Xij) without time-dependent covariates in the model; 2 Outcomes generated by λ12(Xij) with

time-dependent covariates in the model; 3 Outcomes generated by λ13(Xij) with time-dependent covariates and time interaction
term in the model
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other models. The results can be seen clearly in Figure 2.1 displaying the median

for each boxplot with the dashed red line shows the true “sex” and “time” effects.

Power in Table 2.1 is defined as the percentage of significant effect with p-value less

than 0.05 among the 500 simulations. Our proposed GLMMs provide stable and

unbiased “sex” and “time” effect estimates and inference regardless the population

baseline hazard heterogeneity is large or small, with effects close to the true effects

−1.5 and −0.1 respectively. When there are true “time” and/ or “sex” effect in the

data, this model is very likely to capture those signals, based on high power. Also,

those GLMMs have smaller AIC and BIC values, comparing to GLMMs with logit

link.

To see the influence of covariates’ effect size on the proposed models and other

models, the second scenario, all models with moderate covariates’ effect on three

types of outcomes, generated based on {λ21(Xij), λ22(Xij), λ23(Xij)} (2.11), results

are shown in Table 2.2 with similar settings as the first scenario, and boxplots

are shown in Figure 2.2. When the size of covariates’ effect were changed from

large to moderate, summaries of Table 2.2 are very similar as Table 2.1, and an

additional conclusion from Table 2.2 is that GLMMs with complementary log-log

link can mostly capture the significance of “sex” and “time” effect with the highest

percentage on power, especially for “time” effect. For “sex” effect, the power are

similar between the proposed GLMMs and the other models; while for “time” effect,

the power are higher for models using complementary log-log link compared with

those using logit link.
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Figure 2.2: Boxplots on sex and time effect estimates using “correctly” specified models under moderate covariates’

effect and various study population heterogeneity (n = 200)
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Table 2.2: Sensitivity of model performance (“correct” model specification) under moderate covariates’ effect and
various study population heterogeneity (n = 200)

Random effects model estimated by MLE, with complementary log-log link
(True Sex effect = -0.5, True Time effect = 0.05)

GLMM1 GLMM2 GLMM3

σ2 (heterogeneity) 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -0.4931 -0.4825 -0.4902 -0.4920 -0.4935 -0.4985 -0.4836 -0.5001 -0.4943
SE 0.1504 0.1998 0.3554 0.1346 0.1896 0.3500 0.3269 0.3285 0.4704
Power (%) 0.910 0.660 0.294 0.944 0.718 0.296 0.356 0.298 0.194

Time - - - 0.0503 0.0503 0.0521 0.0502 0.0496 0.0507
SE - - - 0.0195 0.0195 0.0210 0.0249 0.0247 0.0271
Power (%) - - - 0.770 0.766 0.718 0.548 0.500 0.442

AIC 1095.97 1146.92 1093.62 1249.36 1269.26 1139.14 1202.53 1230.45 1124.37
BIC 1116.33 1167.28 1113.99 1274.80 1294.70 1164.59 1233.06 1260.98 1154.91

Marginal model estimated by GEE, with complementary log-log link

GEE1 GEE2 GEE3

σ2 (heterogeneity) 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -0.4759 -0.4078 -0.2904 -0.4712 -0.4111 -0.2778 -0.4683 -0.4169 -0.2661
SE 0.1460 0.1732 0.2332 0.1295 0.1629 0.2267 0.3162 0.2820 0.2948
Power (%) 0.904 0.636 0.294 0.940 0.686 0.312 0.344 0.254 0.142

Time - - - 0.0475 0.0416 0.0350 0.0470 0.0406 0.0338
SE - - - 0.0187 0.0167 0.0136 0.0239 0.0207 0.0164
Power (%) - - - 0.748 0.710 0.702 0.540 0.488 0.402

Random effects model estimated by MLE, with logit link

GLMM1 GLMM2 GLMM3

σ2 (heterogeneity) 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -0.5360 -0.5591 -0.6083 -0.5482 -0.5849 -0.6298 -0.5585 -0.6049 -0.6185
SE 0.1780 0.2429 0.4481 0.1683 0.2356 0.4492 0.3918 0.4110 0.6182
Power (%) 0.856 0.632 0.268 0.888 0.670 0.286 0.340 0.286 0.186

Time - - - 0.0451 0.0428 0.0435 0.0439 0.0414 0.0415
SE - - - 0.0232 0.0248 0.0287 0.0311 0.0326 0.0369
Power (%) - - - 0.542 0.452 0.356 0.326 0.258 0.172

AIC 1173.00 1214.93 1144.35 1345.88 1346.94 1193.12 1292.28 1305.22 1176.64
BIC 1193.35 1235.28 1164.72 1371.33 1372.39 1218.58 1322.81 1335.75 1207.18

Marginal model estimated by GEE, with logit link

GEE1 GEE2 GEE3

σ2 (heterogeneity) 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -0.4964 -0.4447 -0.3234 -0.5018 -0.4548 -0.3224 -0.5123 -0.4742 -0.3233
SE 0.1641 0.1931 0.2397 0.1536 0.1833 0.2333 0.3620 0.3190 0.3241
Power (%) 0.856 0.610 0.268 0.886 0.666 0.292 0.356 0.284 0.208

Time - - - 0.0417 0.0334 0.0224 0.0407 0.0322 0.0213
SE - - - 0.0213 0.0194 0.0149 0.0284 0.0249 0.0188
Power (%) - - - 0.546 0.470 0.374 0.346 0.280 0.190

1 Outcomes generated by λ21(Xij) without time-dependent covariates in the model; 2 Outcomes generated by λ22(Xij) with

time-dependent covariates in the model; 3 Outcomes generated by λ23(Xij) with time-dependent covariates and time interaction
term in the model
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Table 2.3: Sensitivity of model performance under small sample size (n = 50, with “correct” model specification)
under various study population heterogeneity

Random effects model estimated by MLE, with complementary log-log link
(True Sex effect = -1.5, True Time effect = -0.1)

GLMM1 GLMM2 GLMM3

σ2 (heterogeneity) 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -1.4940 -1.5592 -1.5997 -1.5476 -1.5453 -1.6169 -1.4383 -1.4112 -1.6134
SE 0.2907 0.3832 0.6990 0.3460 0.4512 0.7315 1.0540 1.0430 1.1451
Power (%) 1 0.986 0.558 1 0.968 0.582 0.357 0.330 0.292

Time - - - -0.1030 -0.1030 -0.1035 -0.1004 -0.0986 -0.1047
SE - - - 0.0398 0.0420 0.0466 0.0484 0.0471 0.0595
Power (%) - - - 0.746 0.724 0.656 0.575 0.514 0.416

Marginal model estimated by GEE, with complementary log-log link

GEE1 GEE2 GEE3

σ2 (heterogeneity) 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -1.4125 -1.2817∗ -0.6333∗ -1.4806 -1.2885 -0.9145∗ -1.3454 -1.0569 -0.6529∗

SE 0.2677 0.3270∗ 6.2330∗ 0.3248 0.3846 0.4942∗ 1.0282 0.9150 0.7225∗

Power (%) 1 0.984 0.548 1 0.948 0.500 0.378 0.290 0.148

Time - - - -0.0983 -0.0857 -0.0597∗ -0.0949 -0.0785 -0.0542∗

SE - - - 0.0374 0.0360 0.0298∗ 0.0455 0.0389 0.0361∗

Power (%) - - - 0.748 0.726 0.530 0.602 0.486 0.288

1 Outcomes generated by λ11(Xij) without time-dependent covariates in the model; 2 Outcomes generated by λ12(Xij) with

time-dependent covariates in the model; 3 Outcomes generated by λ13(Xij) with time-dependent covariates and time interaction

term in the model; ∗ Trim the unstable values which are too big (> 1000) or too small (< −1000)
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Figure 2.3: Boxplots on sex and time effect estimates using “correctly” specified models under small sample size

and various study population heterogeneity (n = 50)
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To investigate whether the inference and estimation of the proposed models sensitive

to small sample size, the third scenario, GLMMs and GEEs with complementary

log-log link under small sample size 50 on three types of outcomes, generated based

on {λ11(Xij), λ12(Xij), λ13(Xij)} (2.10), results are shown in Table 2.3 with similar

settings as the first scenario, and boxplots are shown in Figure 2.3. Comparing

Table 2.1 and Table 2.3, with small sample size, the proposed GLMMs and GEEs

with complementary log-log link provide unbiased and stable “sex” and “time” ef-

fect estimates under various population heterogeneity, just with increased standard

error estimates. Regarding outcomes generated based on {λ11(Xij), λ12(Xij)}, as

long as the population heterogeneity is not too large, i.e., σ2 = (0.52, 1.02), the pro-

posed GLMMs and GEEs perform reasonable well. Even though the SE estimates

increased dramatically at small sample size, the proposed GLMMs still capture the

significant cross-sectional and longitudinal effects well. However, when heterogene-

ity is very large, σ2 = 22, SE estimates increase dramatically, leading to decreased

power. Regarding outcomes generated based on λ13(Xij), both GLMM and GEE

still produce good effect estimates under various population heterogeneity, but with

large SE estimates. As a result, the power of GLMM3 and GEE3 dramatically re-

duce from > 90% in Table 2.1 with sample size 200 to < 38% for “sex” effects and

< 61% for “time” effects.
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2.4.2 Simulation Results - Part II

In Part II, we want to see how sensitive are the proposed models and standard models

to various model mis-specifications, under small to large population heterogeneity,

large or moderate covariates’ effect. Table 2.4 and Table 2.5 are the two scenarios

with missing a large “sex” and “time” interaction term, under large covariates’ effect

on outcomes Y13 and moderate covariates’ effect on outcomes Y23 respectively; while

Table 2.6 and Table 2.7 are the two scenarios with missing a large “time” effect

term, or over-fitting model with correct model nested, under large covariates’ effect

on outcomes Y12 and moderate covariates’ effect on outcomes Y22 respectively. Table

2.8 is the eighth scenario with missing a large “sex” and “time” effect terms.

Table 2.4 shows results from the fourth scenario, where all marginal models and

generalized linear mixed effects models were mis-specified with large covariates’ ef-

fect and sample size 200 on outcomes generated through the Poisson distribution

with time-varying intensity λ13(Xij), and Figure 2.4 lists boxplots displaying clearer

results on the distribution of “sex” and “time” effect estimates. All models’ infer-

ences are sensitive to model mis-specification with bias close to −1 for “sex” effect

and −0.02 for “time” effect under various population heterogeneity. Also, the small

coverages show poor coverage probability of 95% confidence intervals of covariates’

effect throughout all models. For “time” effect, the inference is better behaved in

the proposed GLMMs and GEEs with complementary log-log link than the standard

longitudinal models with logit link. As model selection criteria, AIC and BIC values
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Figure 2.4: Boxplots on sex and time effect estimates using incorrectly specified models missing a large sex and

time interaction term, under various study population heterogeneity and large covariates’ effect on outcomes based

on λ13(Xij) (n = 200)
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Figure 2.5: Boxplots on sex and time effect estimates using incorrectly specified models missing a large sex and time

interaction term, under various study population heterogeneity and moderate covariates’ effect on outcomes based

on λ23(Xij) (n = 200)
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Table 2.4: Sensitivity of model inferences to missing a large sex and time interaction term, under various study

population heterogeneity and large covariates’ effect on outcomes based on λ13(Xij) (n = 200)

Random effects model, with complementary log-log link Marginal model, with complementary log-log link

(True Sex effect = -1.5, True Time effect = -0.1) (Sex effect = (-1.3854, -1.0773, -0.5509)∗,

Time effect = (-0.0937, -0.0805, -0.0524)∗)

GLMM1 GLMM2 GEE1 GEE2

σ2 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -2.5304 -2.5271 -2.5013 -2.5607 -2.5935 -2.6489 -2.4664 -2.2391 -1.5858 -2.4566 -2.1676 -1.3670

Bias -1.0304 -1.0271 -1.0013 -1.0607 -1.0935 -1.1489 -1.0810 -1.1618 -1.0349 -1.0712 -1.0903 -0.8161

SE 0.2284 0.2708 0.3465 0.2286 0.2764 0.3690 0.2227 0.2407 0.2426 0.2229 0.2462 0.2813

Cov. 0 0.006 0.166 0 0.002 0.126 0 0 0.01 0 0.004 0.09

Time - - - -0.1190 -0.1286 -0.1544 - - - -0.1126 -0.1051 -0.0882

Bias - - - -0.0190 -0.0286 -0.0544 - - - -0.0189 -0.0246 -0.0358

SE - - - 0.0216 0.0246 0.0276 - - - 0.0201 0.0200 0.0167

Cov. - - - 0.868 0.752 0.422 - - - 0.872 0.746 0.488

AIC 939.88 960.28 962.40 909.29 927.08 921.83 - - - - - -

BIC 960.24 980.64 982.76 934.74 952.53 947.28 - - - - - -

Random effects model, with logit link Marginal model, with logit link

(Sex effect = (-1.8849, -1.9500, -2.0099)∗, (Sex effect = (-1.6685, -1.4058, -0.9387)∗,

Time effect = (-0.1403, -0.1486, -0.1608)∗) Time effect = (-0.1268, -0.1123, -0.0812)∗)

GLMM1 GLMM2 GEE1 GEE2

σ2 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -2.7493 -2.8884 -3.0490 -2.8901 -3.0810 -3.3487 -2.5954 -2.4128 -1.8211 -2.6471 -2.4068 -1.7244

Bias -0.8644 -0.9384 -1.0391 -1.0052 -1.1310 -1.3388 -0.9269 -1.0070 -0.8824 -0.9786 -1.0010 -0.7857

SE 0.2535 0.3256 0.4418 0.2631 0.3446 0.4861 0.2326 0.2544 0.2525 0.2344 0.2570 0.2575

Time - - - -0.1653 -0.1847 -0.2280 - - - -0.1502 -0.1424 -0.1203

Bias - - - -0.0250 -0.0361 -0.0672 - - - -0.0234 -0.0301 -0.0391

SE - - - 0.0277 0.0313 0.0369 - - - 0.0245 0.0235 0.0186

AIC 1011.48 1020.05 1010.93 974.25 978.77 961.01 - - - - - -

BIC 1031.84 1040.41 1031.29 999.70 1004.22 986.46 - - - - - -

1 Without time-dependent covariates in the model; 2 With time-dependent covariates in the model; ∗ True sex and time effects

come from Table 2.1
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Table 2.5: Sensitivity of model inferences to missing a large sex and time interaction term, under various study

population heterogeneity and moderate covariates’ effect on outcomes based on λ23(Xij) (n = 200)

Random effects model, with complementary log-log link Marginal model, with complementary log-log link

(True Sex effect = -0.5, True Time effect = 0.05) (Sex effect = (-0.4811, -0.4244, -0.2740)∗,

Time effect = (0.0476, 0.0400, 0.0330)∗)

GLMM1 GLMM2 GEE1 GEE2

σ2 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -0.7072 -0.7022 -0.7263 -0.7143 -0.7081 -0.7307 -0.6786 -0.5840 -0.3976 -0.6863 -0.5933 -0.4137

Bias -0.2072 -0.2022 -0.2263 -0.2143 -0.2081 -0.2307 -0.1975 -0.1596 -0.1236 -0.2052 -0.1689 -0.1397

SE 0.1469 0.1867 0.3468 0.1484 0.1876 0.3479 0.1437 0.1577 0.2222 0.1454 0.1589 0.2227

Cov. 0.674 0.858 0.888 0.660 0.850 0.888 0.696 0.872 0.888 0.682 0.866 0.874

Time - - - 0.0393 0.0376 0.0352 - - - 0.0369 0.0307 0.0247

Bias - - - -0.0107 -0.0124 -0.0148 - - - -0.0107 -0.0093 -0.0083

SE - - - 0.0179 0.0190 0.0223 - - - 0.0173 0.0166 0.0142

Cov. - - - 0.930 0.892 0.876 - - - 0.924 0.910 0.908

AIC 1206.27 1230.42 1128.42 1203.11 1227.45 1126.25 - - - - - -

BIC 1226.63 1250.78 1148.78 1228.56 1252.90 1151.70 - - - - - -

Random effects model, with logit link Marginal model, with logit link

(Sex effect = (-0.5836, -0.6137, -0.6333)∗, (Sex effect = (-0.5347, -0.4823, -0.3338)∗,

Time effect = (0.0444, 0.0413, 0.0410)∗) Time effect = (0.0410, 0.0321, 0.0211)∗)

GLMM1 GLMM2 GEE1 GEE2

σ2 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -0.7983 -0.8357 -0.9196 -0.8003 -0.8375 -0.9213 -0.7321 -0.6533 -0.4813 -0.7352 -0.6564 -0.4833

Bias -0.2147 -0.2220 -0.2863 -0.2167 -0.2238 -0.2880 -0.1974 -0.1710 -0.1475 -0.2005 -0.1741 -0.1495

SE 0.1762 0.2345 0.4523 0.1764 0.2349 0.4532 0.1600 0.1824 0.2402 0.1604 0.1826 0.2402

Time - - - 0.0315 0.0272 0.0214 - - - 0.0293 0.0214 0.0113

Bias - - - -0.0129 -0.0141 -0.0196 - - - -0.0117 -0.0107 -0.0098

SE - - - 0.0213 0.0231 0.0294 - - - 0.0197 0.0180 0.0155

AIC 1294.93 1303.51 1178.89 1294.12 1303.26 1179.16 - - - - - -

BIC 1315.29 1323.86 1199.25 1319.57 1328.71 1204.61 - - - - - -

1 Without time-dependent covariates in the model; 2 With time-dependent covariates in the model; ∗ True sex and time effects

come from Table 2.2
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indicate that the proposed GLMMs are better than the standard GLMMs with logit

link. To see the influence of covariates’ effect size on different mis-specified models,

the fifth scenario, all models with moderate covariates’ effect on outcomes which

were based on the time-varying intensity λ23(Xij) are shown in Table 2.5 with simi-

lar settings as the fourth scenario in Table 2.4, and boxplots are shown in Figure 2.5.

With the size of covariates’ effect changed from large to moderate, the performances

of all models are better with smaller bias and higher coverage for “sex” and “time”

effect under various population heterogeneity.

Table 2.6 shows results from the sixth scenario, where all marginal models and gen-

eralized linear mixed effects models were mis-specified with large covariates’ effect

and sample size 200 on outcomes generated through the Poisson distribution with

time-varying intensity λ12(Xij), and boxplots are shown in Figure 2.6. The perfor-

mances of all models are much better compared with Table 2.4 with smaller bias

and higher coverages under various population heterogeneity. For “sex” effect, the

inference is better behaved in the over-fitting GLMM3 with complementary log-log

link than the GLMM1. As model selection criteria, AIC and BIC values indicate

that the proposed GLMMs are better than the standard GLMMs with logit link. To

see the influence of covariates’ effect size on different mis-specified models, the sev-

enth scenario, all models with moderate covariates’ effect on outcomes which were

based on the time-varying intensity λ22(Xij) are shown in Table 2.7 with similar

settings as the sixth scenario in Table 2.6, and boxplots are shown in Figure 2.7.

Comparing the results in Table 2.7 and Table 2.6, all models’ inferences are similar
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Figure 2.6: Boxplots on sex and time effect estimates using incorrectly specified models missing a large time effect

term, or over-fitting model with correct model nested, under various study population heterogeneity and large

covariates’ effect on outcomes based on λ12(Xij) (n = 200)
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Figure 2.7: Boxplots on sex and time effect estimates using incorrectly specified models missing a large time effect

term, or over-fitting model with correct model nested, under various study population heterogeneity and moderate

covariates’ effect on outcomes based on λ22(Xij) (n = 200)
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Table 2.6: Sensitivity of model inferences to missing a large time effect term, or over-fitting model with correct model

nested, under various study population heterogeneity and large covariates’ effect on outcomes based on λ12(Xij)

(n = 200)

Random effects model, with complementary log-log link Marginal model, with complementary log-log link

(True Sex effect = -1.5, True Time effect = -0.1) (Sex effect = (-1.4342, -1.2428, -0.8455)∗,

Time effect = (-0.0947, -0.0841, -0.0570)∗)

GLMM1 GLMM3 GEE1 GEE3

σ2 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -1.4760 -1.4619 -1.4692 -1.4953 -1.4883 -1.5305 -1.4243 -1.2428 -0.8666 -1.4071 -1.1632 -0.7634

Bias 0.0240 0.0381 0.0308 0.0047 0.0117 -0.0305 0.0099 0 -0.0211 0.0271 0.0796 0.0821

SE 0.1641 0.2039 0.3480 0.3184 0.3483 0.4752 0.1603 0.1758 0.2312 0.3080 0.2950 0.2889

Cov. 0.930 0.946 0.944 0.950 0.954 0.948 0.946 0.960 0.930 0.946 0.934 0.918

Time - - - -0.0991 -0.1004 -0.1004 - - - -0.0937 -0.0804 -0.0516

Bias - - - 0.0009 -0.0004 -0.0004 - - - 0.0010 0.0037 0.0054

SE - - - 0.0216 0.0256 0.0286 - - - 0.0202 0.0207 0.0174

Cov. - - - 0.952 0.934 0.954 - - - 0.952 0.936 0.956

AIC 1135.94 1160.46 1096.18 1111.57 1136.24 1076.45 - - - - - -

BIC 1156.31 1180.82 1116.54 1142.11 1166.78 1106.99 - - - - - -

Random effects model, with logit link Marginal model, with logit link

(Sex effect = (-1.7090, -1.7843, -1.9296)∗, (Sex effect = (-1.5682, -1.4030, -1.0196)∗,

Time effect = (-0.1318, -0.1410, -0.1524)∗) Time effect = (-0.1209, -0.1098, -0.0799)∗)

GLMM1 GLMM3 GEE1 GEE3

σ2 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -1.6433 -1.7095 -1.8401 -1.8690 -1.9073 -2.0003 -1.5282 -1.3721 -1.0079 -1.6864 -1.4478 -1.0156

Bias 0.0657 0.0748 0.0895 -0.1600 -0.1230 -0.0707 0.0400 0.0309 0.0117 -0.1182 -0.0448 0.0040

SE 0.1921 0.2502 0.4508 0.3821 0.4406 0.6333 0.1761 0.1968 0.2470 0.3505 0.3388 0.3257

Time - - - -0.1399 -0.1481 -0.1570 - - - -0.1268 -0.1124 -0.0797

Bias - - - -0.0081 -0.0071 -0.0046 - - - -0.0059 -0.0026 0.0002

SE - - - 0.0281 0.0331 0.0388 - - - 0.0253 0.0248 0.0199

AIC 1223.46 1234.99 1151.87 1194.71 1205.35 1126.08 - - - - - -

BIC 1243.83 1255.35 1172.23 1225.25 1235.89 1156.62 - - - - - -

1 Without time-dependent covariates in the model; 3 With time-dependent covariates and time interaction term in the model; ∗

True sex and time effects come from Table 2.1
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Table 2.7: Sensitivity of model inferences to missing a large time effect term, or over-fitting model with correct

model nested, under various study population heterogeneity and moderate covariates’ effect on outcomes based on

λ22(Xij) (n = 200)

Random effects model, with complementary log-log link Marginal model, with complementary log-log link

(True Sex effect = -0.5, True Time effect = 0.05) (Sex effect = (-0.4770, -0.4014, -0.2762)∗,

Time effect = (0.0479, 0.0407, 0.0334)∗)

GLMM1 GLMM3 GEE1 GEE3

σ2 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -0.4930 -0.4788 -0.4871 -0.5050 -0.4660 -0.5050 -0.4723 -0.3967 -0.2737 -0.4852 -0.3893 -0.2921

Bias 0.0070 0.0212 0.0129 -0.0050 0.0340 -0.0050 0.0047 0.0047 0.0025 -0.0082 0.0121 -0.0159

SE 0.1410 0.1773 0.3409 0.2986 0.3200 0.4415 0.1373 0.1486 0.2139 0.2886 0.2749 0.2762

Cov. 0.956 0.972 0.946 0.972 0.966 0.940 0.940 0.964 0.928 0.968 0.966 0.962

Time - - - 0.0507 0.0505 0.0488 - - - 0.0476 0.0415 0.0324

Bias - - - 0.0007 0.0005 -0.0012 - - - -0.0003 0.0008 -0.0010

SE - - - 0.0233 0.0252 0.0293 - - - 0.0223 0.0209 0.0180

Cov. - - - 0.960 0.942 0.940 - - - 0.934 0.948 0.968

AIC 1258.36 1278.35 1152.99 1252.85 1273.06 1148.94 - - - - - -

BIC 1278.72 1298.71 1173.36 1283.39 1303.60 1179.49 - - - - - -

Random effects model, with logit link Marginal model, with logit link

(Sex effect = (-0.5633, -0.5716, -0.6210)∗, (Sex effect = (-0.5160, -0.4432, -0.3226)∗,

Time effect = (0.0454, 0.0420, 0.0409)∗) Time effect = (0.0420, 0.0326, 0.0212)∗)

GLMM1 GLMM3 GEE1 GEE3

σ2 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -0.5604 -0.5691 -0.6177 -0.5852 -0.5622 -0.6300 -0.5132 -0.4414 -0.3216 -0.5379 -0.4392 -0.3285

Bias 0.0029 0.0025 0.0033 -0.0219 0.0094 -0.0090 0.0028 0.0018 0.0010 -0.0219 0.0040 -0.0059

SE 0.1701 0.2275 0.4457 0.3555 0.4025 0.5821 0.1552 0.1755 0.2336 0.3266 0.3115 0.3031

Time - - - 0.0444 0.0426 0.0405 - - - 0.0409 0.0329 0.0208

Bias - - - -0.0010 0.0006 -0.0004 - - - -0.0011 0.0003 -0.0004

SE - - - 0.0289 0.0326 0.0396 - - - 0.0264 0.0248 0.0201

AIC 1351.44 1352.33 1202.40 1349.32 1351.06 1202.26 - - - - - -

BIC 1371.80 1372.69 1222.77 1379.87 1381.59 1232.81 - - - - - -

1 Without time-dependent covariates in the model; 3 With time-dependent covariates and time interaction term in the model; ∗

True sex and time effects come from Table 2.2

76



under various population heterogeneity.

Table 2.8: Sensitivity of model inferences to missing a large sex and time effect terms, under various study population
heterogeneity on outcomes based on λ3(Xij) (n = 200)

Random effects model estimated by MLE, with complementary log-log link
(No Sex and Time effect in the true model)

GLMM1 GLMM2 GLMM3

σ2 (heterogeneity) 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -0.0050 0.0028 -0.0054 -0.0048 0.0029 -0.0054 0.0096 0.0004 -0.0131
SE 0.1212 0.1735 0.3272 0.1214 0.1737 0.3280 0.2188 0.2747 0.3968
Power (%) 0.050 0.036 0.042 0.050 0.036 0.042 0.052 0.040 0.042

Time - - - -0.0003 0.0008 -0.0013 0.0007 0.0007 -0.0020
SE - - - 0.0134 0.0146 0.0183 0.0188 0.0217 0.0266
Power (%) - - - 0.046 0.044 0.040 0.056 0.058 0.042

Marginal model estimated by GEE, with complementary log-log link

GEE1 GEE2 GEE3

σ2 (heterogeneity) 0.52 1.02 22 0.52 1.02 22 0.52 1.02 22

Sex -0.0045 -0.0011 -0.0057∗ -0.0043 -0.0011 -0.0018∗ 0.0101 -0.0024 -0.0060∗

SE 0.1132 0.1442 0.2183∗ 0.1133 0.1445 0.2369∗ 0.2030 0.2140 0.2436∗

Power (%) 0.046 0.058 0.100 0.046 0.062 0.104 0.058 0.064 0.062

Time - - - 0.0008 0.0041 0.0063∗ 0.0019 0.0041 0.0061∗

SE - - - 0.0124 0.0113 0.0102∗ 0.0173 0.0169 0.0148∗

Power (%) - - - 0.042 0.046 0.086 0.058 0.050 0.060

1 Without time-dependent covariates in the model; 2 With time-dependent covariates in the model; 3 With time-dependent
covariates and time interaction term in the model; ∗ Trim the unstable values which are too big (> 1000) or too small (< −1000)

Table 2.8 shows results from the eighth scenario, where all marginal models and gen-

eralized linear mixed effects models were mis-specified with sample size 200 on out-

comes generated through the Poisson distribution with time-fixed intensity λ3(Xij).

When there are no true “sex” and/ or “time” effect in the data, the proposed

GLMM and marginal models with complementary log-log link cannot capture those

significant signals, based on low power.
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2.5 Case Study

After excluding subjects with missing values at baseline, the total sample size of

BHS-7 study was 296 with 144 men and 152 women. Table 2.9 shows demographic

and clinical characteristics of hip fracture patients by gender at baseline. Regarding

the three continuous characteristics of patients, men patients have a significantly

higher Charlson comorbidity index than women with p-value 0.0002. And, men and

women have similar age and body mass index in this study sample. Regarding the

categorical characteristics of patients, women have a marginally significant higher

percentage on education (completed high school), and elevated white blood cell

count on admission (greater than or equal to 13.6 K/mcL) than men.

Table 2.9: Demographic and clinical characteristics of hip fracture patients at baseline, by gender

Characteristics All (n = 296) Men (n = 144) Women (n = 152)

Mean (SD) Mean (SD) Mean (SD) P-value

Age, years 80.70 (7.86) 80.26 (7.77) 81.12 (7.95) 0.3509
Body mass index 25.29 (5.14) 25.51 (4.51) 25.09 (5.67) 0.4753
Charlson comorbidity index 2.01 (1.77) 2.40 (1.88) 1.64 (1.59) 0.0002

% % % P-value

Completed high school 79.4 75.0 83.4 0.0753
White race 91.1 89.4 92.7 0.3327
Elevated white blood cell count on admission 21.0 16.7 25.2 0.0733
(≥ 13.6 vs. < 13.6)
Urinary tract infection during hospital stay 19.3 16.0 22.4 0.1631

Figure 2.8 explores longitudinal trajectories of monthly infection by gender during

the first-year post-hip fracture recovery period. Prevalence of infection between men

and women do not have big differences across the time except for the month 2, 6,

and 12 after hip fracture. For month 2, 6, and 12, the prevalence of infection is

much higher for men compared with women. Because the prevalence of infection
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Figure 2.8: Longitudinal trajectories of monthly infection by gender during the first-year post-hip fracture recovery

period

for men is higher at some time points but lower at the other time points, it is

very difficult to tell the difference between men and women from the figure. Also,

the trajectories between men and women are very similar across time, showing no

difference of infectious pattern between men and women across time.

To quantify the “sex” effect and capture the “time” trajectory trend of post surgery

infection over the first year of recovery period, we fit all 12 marginal models and gen-

eralized linear mixed effects models with both complementary log-log link and logit

link (2.5 - 2.8), with controlling for all confounding factors. Results are summarized

in Table 2.10. With moderate and significant population heterogeneity (σ̂2 = 1, P

< 0.0001), moderate covariates’ effect, and insignificant time interaction term, Table

2.10 shows that GLMM2 estimated by MLE with complementary log-log link should

be the chosen model, which has the smallest AIC and BIC. All of the models show,

on average over time, insignificant “sex” differences on infection. Only GLMMs with
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Table 2.10: Comparisons of model performances quantifying risk factors’ effects on infectious outcomes, after con-
trolling for confounders, including education, race, CCI, BMI, admission WBC count, and in-hospital UTI

Random effects model estimated by MLE, Marginal model estimated by GEE,
with complementary log-log link with complementary log-log link

GLMM1 GLMM2 GLMM3 GEE1 GEE2 GEE3

σ̂2 (heterogeneity) 0.99 1.00 1.00 - - -

Sex -0.0035 -0.0115 0.1142 0.0050 -0.0018 0.0806
SE 0.1591 0.1598 0.2337 0.1325 0.1332 0.2134
P-value 0.9827 0.9426 0.6252 0.9701 0.9892 0.7057

Age -0.0212 -0.0214 -0.0217 -0.0171 -0.0168 -0.0167
SE 0.0105 0.0105 0.0105 0.0088 0.0088 0.0088
P-value 0.0432 0.0425 0.0392 0.0514 0.0571 0.0574

Time - 0.0298 0.0399 - 0.0264 0.0331
SE - 0.0136 0.0194 - 0.0136 0.0198
P-value - 0.0284 0.0396 - 0.0524 0.0937

Time×Sex - - -0.0205 - - -0.0131
SE - - 0.0271 - - 0.0271
P-value - - 0.4501 - - 0.6276

AIC 2372.23 2369.54 2370.89 - - -
BIC 2408.86 2409.83 2414.85 - - -

Random effects model estimated by MLE, Marginal model estimated by GEE,
with logit link with logit link

GLMM1 GLMM2 GLMM3 GEE1 GEE2 GEE3

σ̂2 (heterogeneity) 1.62 1.62 1.63 - - -

Sex -0.0438 -0.0333 0.0991 -0.0241 -0.0240 0.0763
SE 0.1998 0.1998 0.2983 0.1562 0.1562 0.2649
P-value 0.8265 0.8678 0.7399 0.8775 0.8780 0.7732

Age -0.0283 -0.0265 -0.0269 -0.0221 -0.0221 -0.0221
SE 0.0132 0.0132 0.0132 0.0108 0.0108 0.0108
P-value 0.0319 0.0442 0.0419 0.0408 0.0407 0.0402

Time - 0.0007 0.0120 - -0.0005 0.0077
SE - 0.0174 0.0251 - 0.0168 0.0237
P-value - 0.9665 0.6342 - 0.9752 0.7441

Time×Sex - - -0.0217 - - -0.0159
SE - - 0.0348 - - 0.0335
P-value - - 0.5337 - - 0.6353

AIC 2449.64 2451.67 2453.31 - - -
BIC 2486.27 2491.96 2497.26 - - -

1 Without time-dependent covariates in the model; 2 With time-dependent covariates in the model; 3 With time-dependent
covariates and time interaction term in the model
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complementary log-log link show significant “time” effect, which is consistent with

the simulation results that the proposed GLMM with complementary log-log link

can mostly capture the significance of longitudinal effect. The significant “time”

effect from the final model (P = 0.0284) can be explained as the hazard of infection

re-occurrence increases by 1.0302 (e0.0298) time with one month increase on time for

an individual after controlling for the other covariates and the random effect. All

GLMM and GEE models with logit link and complementary log-log link show con-

sistent and significant “age” effect on infection re-occurrence. In Aging study, age

is the natural biological risk factor contributing to outcome, which is a commonly

expected result. The significant “age” effect (P = 0.0425) on infection re-occurrence

from the final model shows that one year increase on age for an individual is asso-

ciated with a 0.0212 (1− e−0.0214) decrease in the hazard of infection re-occurrence

after controlling for the other covariates and the random effect, while the decrease

is 0.0219 (1− e−0.0221) in the odds of infection re-occurrence for the population ac-

cording to the GEE2 with logit link. With the consistent results as the simulation,

GLMMs with logit link also have the largest standard errors compared with the

other models, and higher AIC, BIC, showing poor performance of the GLMMs with

logit link. Therefore, even though the GEE with logit link can have similar effects

on time-fixed covariates as the GLMM with complementary log-log link when the

random effect is moderate, the explanations are totally different from the two mod-

els.

After comparing different models in Table 2.10, Table 2.11 shows the results for
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all risk factors using the final model GLMM2. In addition to the significant “time”

and “age” effect discussed in the last paragraph, only the risk factor “Charlson co-

morbidity index” shows significant effect, which means that the hazard of infection

re-occurrence increases by 1.2269 (e0.2045) time with one unit increase on Charlson

comorbidity index for an individual after controlling for the other covariates and the

random effect.

Table 2.11: Longitudinal analysis quantifying risk factors’ effect on infectious outcomes using the final model
GLMM2 with com(log-log) link

Risk Factors Estimate 95% CI P-value

Sex -0.0115 (-0.3249, 0.3019) 0.9426
Time 0.0298 (0.0032, 0.0564) 0.0284
Age -0.0214 (-0.0420, -0.0007) 0.0425
Education -0.0140 (-0.0605, 0.0326) 0.5564
Race 0.1890 (-0.3990, 0.7771) 0.5285
Charlson comorbidity index 0.2045 (0.1169, 0.2921) <.0001
Body mass index -0.0080 (-0.0380, 0.0219) 0.5984
Elevated white blood cell count on admission 0.0336 (-0.3438, 0.4111) 0.8613
Urinary tract infection during hospital stay 0.2080 (-0.1860, 0.6020) 0.3006

2.6 Discussion

Even though interval reported binary recurrent event data are commonly seen in

longitudinal studies, marginal models or generalized linear mixed effects models

with logit link without considering interval reporting are usually used. To consider

interval reporting, we developed a relatively simple and flexible longitudinal model

framework, using discrete survival modeling technique accounting for interval cen-

sored reporting system between longitudinal visits and Poisson process accounting

for binary nature of recurrent events reporting within each interval. The intensity

in the Poisson process follows a Cox proportional hazards model allowing for both
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time-fixed and time-varying covariates, which leads to varying intensities across the

longitudinal visits but the intensity stays fixed within each reporting interval. This

model setting simplified the joint likelihood into a generalized linear mixed effects

model with binary responses and complementary log-log link, which can be esti-

mated by widely available software.

Without considering interval reporting, the standard marginal models or general-

ized linear mixed effects models with logit link are usually used, measuring log odds

ratios of the event of interest. With considering interval reporting, the proposed

generalized linear mixed effects models with complementary log-log link allowing

for population heterogeneity in baseline hazards, as well as marginal models with

complementary log-log link are used for measuring log hazard ratios of the event

of interest. To evaluate the numerical performances of the proposed models, sim-

ulation studies were carried out to compare them with the standard longitudinal

models with logit link, which have the following conclusions dealing with longitu-

dinal interval reported binary recurrent event data. First, the proposed GLMMs

with complimentary log-log link have the best performance with stable and unbi-

ased “sex” and “time” effect estimates, high power, and small AIC & BIC values,

regardless of the population heterogeneity, covariates’ effect size, and sample size;

while the standard GLMMs with logit link have poor performance all the time.

Second, with the size of covariates’ effect changed from large to moderate, the pro-

posed GLMMs with complementary log-log can mostly capture the significance of

“sex” and “time” effect with the highest percentage on power compared with the
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other models, especially for longitudinal effect “time”. Third, GEEs with both logit

link and complementary log-log link can also have similar effect estimates as the

proposed GLMMs under small population heterogeneity and moderate covariates’

effect size regardless of sample size, especially for time-fixed covariates. Fourth,

when a true model includes time-dependent covariates but without time interac-

tion terms, all models are not sensitive to model mis-specification with small bias

and high coverages with or without time-dependent covariates, especially for models

with moderate covariates’ effect. For “sex” effect, the inference is better behaved in

the over-fitting GLMM with complementary log-log link than the GLMM without

considering the time effect term. Fifth, when a true model includes time-dependent

covariates and time interaction terms, all models’ inferences are sensitive to model

mis-specification with large bias and small coverages, especially for models with

large covariates’ effect. Therefore, when random effects are small, both GLMMs

with complimentary log-log link and GEEs with logit link or complementary log-

log can be used for longitudinal interval reported binary recurrent event data, but

GEEs are not as good as GLMMs capturing the significant effects on time-varying

covariates. Overall, the proposed GLMMs with complimentary log-log link have the

best performance.

Regarding the BHS-7 study, whether considering interval reporting or not, the re-

sults from all models show that there is no significant difference between men and

women hip fracture patients on infection re-occurrence during the 12-month post-

discharge follow-up interval. Only GLMMs with complementary log-log link show
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significant “time” effect, which is consistent with the simulation results. Because

random effects are moderate and significant in the real data analysis, the marginal

model with logit link and generalized linear mixed effects model with complemen-

tary log-log link show very similar effects on time-fixed covariates but with different

explanations, which is also consistent with the simulation results.

In summary, the proposed generalized linear mixed effects model with complemen-

tary log-log can deal with interval reported binary recurrent event data but it has its

limitations. First, our simulation scenarios are not comprehensive, which needs to be

broadened including more sensitivity analysis, e.g., scenarios with small covariates’

effect of gender and time, to see their performances on capturing significant signals;

adding tij − ti(j−1) or the number of intervals as a covariate to those standard longi-

tudinal models with logit link, to see if they can take care of the interval reporting

issue. Second, we only consider Cox proportional hazards model for the intensity,

and more intensity structures will be discussed in the future, e.g., adding random

slopes to the intensity in addition to the random intercept. Third, the performance

of the proposed method can be poor if one of the assumptions is violated, e.g., the

fixed intensity within each interval. Further investigations are needed to explore the

proposed method to make it more efficient.
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Chapter 3

Statistical Model for Subgroup Identification in Enrichment Design

3.1 Introduction

The enrichment design was defined as the prospective use of any patient character-

istic to select a study population in which detection of a drug effect (if one is in

fact present) is more likely than it would be in an unselected population by FDA

(2012). According to the enrichment strategies used, there are three broad cate-

gories, strategies to decrease heterogeneity, prognostic enrichment strategies, and

predictive enrichment strategies. Strategies to decrease heterogeneity include se-

lecting patients with decreased inter-patient variability and decreased intra-patient

variability; prognostic enrichment strategies choose patients with a greater likelihood

of having a disease-related endpoint event or a substantial worsening in condition;

predictive enrichment strategies choose patients more likely to respond to the drug

treatment than other patients with the condition being treated. For example, in the

JUPITER study (Ridker et al., 2008), the rosuvastatin was effective reducing the

incidence of major cardiovascular events in patients with LDL cholesterol levels of

less than 130 mg per deciliter but with elevated high-sensitivity C-reactive protein

levels of greater than or equal to 2.0 mg per liter, where LDL cholesterol and CRP

are two prognostic biomarkers with high values indicating high risk of cardiovascu-
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lar events. For the drug erlotinib, there was a highly significant survival difference

for EGFR-positive patients, while only little effects seen among the EGFR-negative

patients (Temple, 2005), where EGFR is a predictive biomarker. Therefore, enrich-

ment strategies can give us efficient and powerful results with smaller sample size,

shortened development time, and reduced cost. But how to select patients that

maximize benefits from a treatment based on the information from the phase II and

prior scientific knowledge becomes an important step for enrichment design.

The enrichment design was originally defined as the additional screening processes

with the active treatments evaluated in the study by Temple (1994). The addi-

tional screening processes with the active treatments were performed after either

the screening period or the placebo run-in period to identify potential patients who

are likely to benefit the test drug in the early phase of the trial (Liu, 2003). It can

be also called randomized withdrawal design or randomized discontinuation design,

which belongs to predictive enrichment strategies. Temple (2005) mentioned that

the randomized withdrawal design is considerably more efficient if there is a respon-

der subpopulation, especially when the responder population is relatively low (30%).

During the past decades, many advanced clinical trial designs emerged. Compared

to the widely used design strategy implementing a placebo lead-in phase prior to

randomization that only reduces placebo rate, the sequential parallel comparison

design (SPCD), or sequential parallel design (SPD), is a clinical trial methodology

developed by Fava et al. (2003) to reduce both the overall placebo response rate and

the sample size for double-blind, placebo-controlled trials in psychiatric disorders.
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This novel study design can reduce the cost and time remarkably for the evalua-

tion of new drugs. Reducing placebo response rate belongs to strategies to decrease

heterogeneity. Unlike the standard designs that enroll a broad range of subjects to

decide a subset of subjects that may benefit from the treatment, Simon and Simon

(2013) introduced a class of adaptive enrichment designs that allow the enrollment

criteria to change adaptively during the trial. However, the whole process is very

complicated and time consuming. With adaptive interventions, which are differ-

ent from the previous adaptive enrichment designs, Sequential Multiple Assignment

Randomized Trials (SMARTs) involve multiple intervention stages, and each par-

ticipant moves through the multiple stages to build optimal adaptive interventions

(Lavori and Dawson, 2000, 2004; Murphy, 2005; Lei et al., 2012). The SMART

designs have been conducted in several clinical trials in recent years. Even though

there are lot of advanced clinical trial designs, their aim is to improve treatment

efficiency and reduce risks with choosing the right subset of population who are

benefit from the treatment before the study or during the study.

If the overall treatment effect is not significant from the phase III clinical trial

of standard designs, it is known that subgroup analysis is popular to identify a

subgroup that benefits from the treatment. However, a lot of patients are under

risk during the phase III clinical trial if they do not benefit from the treatment. In

this paper, we focus on choosing a subset of population who will benefit from the

treatment before phase III clinical trial. The subset is identified based on a selection

model built from the information from the phase II randomized clinical trial.
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3.2 Methods

For a phase II randomized clinical trial for the patient i(i = 1, . . . , n), let xi be all

available information on the patient; zi be the treatment actually received by the

patient in phase II, which can be 0 or 1 with 0 means control group and 1 means

treatment group; Yi be the observed outcome. Then, the observed data for the n

independent and identically distributed patients from phase II can be written as

(xi, zi, Yi). With the observed data from phase II, the goal is to build a selection

model recruiting patients into phase III that can maximize benefits from the treat-

ment.

Let s(X) be the selection model, it can be 0 or 1 based on values of X. For a

new patient with covariates x, the patient would be selected if s(x) = 1 or would

not be selected if s(x) = 0. For example, if x = {Age}, then s(x) = I{Age < 50},

which means that patients less than 50 years of age would be chosen for phase III

clinical trial.

To find the optimal selection model, let Y ∗(0) and Y ∗(1) be potential outcomes

for a subject that would receive control or treatment (Rubin, 1974). Then, under

the consistency assumption that the observed outcome is the potential outcome that

would be seen under the group actually been assigned (Rubin, 1986; Zhang et al.,

2012), the observed outcome can be written as Y = Y ∗(1)Z + Y ∗(0)(1− Z). Since

it is a randomized clinical trial, observed and unobserved covariates’ distributions
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are balanced between control and treatment groups, which shows that the observed

outcome Y is independent of Z, or the potential outcomes {Y ∗(0), Y ∗(1)} are in-

dependent of Z. Thus, E{Y ∗(z)} is the expected outcome for the population if all

patients were to receive treatment z (z = 0 or 1). It can be also written as,

E{Y ∗(z)} = E[E{Y ∗(z)|X}] = E[E{Y ∗(z)|X, Z = z}]

= E[E{Y ∗(1)z + Y ∗(0)(1− z)|X, Z = z}] = E[E{Y |X, Z = z}].

Under a selection option s, the potential outcome Y ∗(s) can be written as Y ∗(s) =

Y ∗(1)s(X) + Y ∗(0)(1 − s(X)), which is for a patient with baseline information X

that were to be selected or not according to s. Let S be the class of all possible

selection options. The optimal selection option is denoted as sopt ∈ S. For a patient

being selected under the optimal selection option, the patient’s expected outcome

would be as large as possible given his/her available information. For all patients

being selected under the optimal selection option, the expected outcome for the

population would be as large as possible. It can be written as

E{Y ∗(s)I{s(X) = 1}|X = x} ≤ E{Y ∗(sopt)I{sopt(X) = 1}|X = x};

E{Y ∗(s)I{s(X) = 1}} ≤ E{Y ∗(sopt)I{sopt(X) = 1}}.

Therefore, sopt can make E{Y ∗(s)} have the largest value for the selected population

among s ∈ S.
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With the consistency assumption, we have:

E{Y ∗(s)} = E [E{Y ∗(s)|X}]

= E[E{Y ∗(1)s(X) + Y ∗(0)(1− s(X))|X}]

= E[E{Y |X, Z = 1}s(X) + E{Y |X, Z = 0}(1− s(X))].

Then, the optimal selection option can be written as,

sopt(x) = I{E[Y |X = x, Z = 1] > E[Y |X = x, Z = 0]};

that is, under the optimal selection option, a patient would be selected if his/her

expected outcome was larger in the treatment group than the control group con-

ditional on x, or would not be selected if his/her expected outcome was larger or

equal in the control group than the treatment group.

Let µ(x, z) = E[Y |X = x, Z = z] be a patient’s expected outcome given his/her

available information and treatment z, and V (s) = E[Y ∗(s)I{s(X) = 1}] be an ex-

pected outcome for the selected population, then sopt(x) and E[Y ∗(s)I{s(X) = 1}]

can be also written as sopt(x) = I{µ(x, 1) > µ(x, 0)}, and V (s) = E[Y ∗(s)I{s(X) =

1}] = E[µ(x, 1)s(x)].

3.2.1 Outcome Regression Model

To build the optimal selection model, µ(x, z) can be modeled as a linear or logistic

regression µ(x, z;β), and β can be estimated by ordinary least squares, maximum
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likelihood, weighted least squares, or other appropriate methods. With the esti-

mated outcome regression model µ(x, z; β̂), sopt(x) and E[Y ∗(sopt)I{sopt(X) = 1}]

can be estimated as

ŝoptµ (x) = I
{
µ(x, 1; β̂) > µ(x, 0; β̂)

}
and

V̂ (ŝoptµ ) = n−1
1

n1∑
i=1

[
µ(Xi, 1; β̂)ŝoptµ (Xi)

]
, (3.1)

where n1 is the number of patients being selected. For example, if µ(x, z; β̂) =

β̂0 + β̂1x1 + β̂2x2 + β̂3x3 +z(β̂4 + β̂5x2 + β̂6x3), the estimated optimal selection option

can be simplified as ŝoptβ (x) = I
{
β̂4 + β̂5x2 + β̂6x3 > 0

}
with a subset of elements of

x. It can be rewritten as I{x2 > η̂0 + η̂1x3} if β̂5 is positive, or I{x2 < η̂0 + η̂1x3} if

β̂5 is negative, with η̂0 = −β̂4/β̂5, and η̂1 = −β̂6/β̂5 (Zhang et al., 2012). In general,

η is a function of β, which can be written as, η = η(β). Therefore, with the correct

fitted outcome regression model µ(x, z;β), soptη (x) = s(x,ηopt) can be estimated for

sopt to make E{Y ∗(sη)I{sη = 1}} have the largest value among sη ∈ Sη. If the

outcome regression model is incorrectly fitted, sopt may not be in Sη and ŝoptη (x)

may be far away from sopt. It also happens when outcome regression models are too

complex, Zhang et al. (2012) proposed an alternative method using only a key subset

of elements of X based on interpretability, cost, and feasibility in practice to define

a class of regimes by η. For example, sη(x) = s(x,η) = I{x1 < η0, x2 < η1, x3 < η2}

without using a regression model. Therefore, the optimal selection option soptη based

on the mis-specified outcome regression model with parameter estimators β̂ can
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lead to poor performance on E{Y ∗(soptη )I{soptη = 1}}, which may result in recruiting

patients who would not benefit from the treatment.

3.2.2 Inverse Probability Weighted Estimator

From the previous section, ηopt should be estimated to obtain the maximum value of

E{Y ∗(sη)} for the selected population; that is, patients selected have the maximum

benefits from the treatment. With the estimator η̂opt, the optimal selection model

soptη is estimated by ŝoptη (X) = s(X, η̂opt). Let Cη = Zs(X,η) + (1−Z)(1− s(X,η))

with fixed η, Cη can be 0 or 1. For patients with Cη = 1, they received control or

treatment following the selection model sη, which means their outcomes are observed

with Y ∗(sη) = Y . For the others with Cη = 0, their outcomes Y ∗(sη) following the

selection model sη are unknown, which means they are missing. Only observed pa-

tients are used for estimating E{Y ∗(sη)I{sη = 1}}. Since Cη is a function of {Z,X},

and Y ∗(sη) = Y ∗(1)s(X,η) + Y ∗(0)(1− s(X,η)) is a function of {Y ∗(0), Y ∗(1),X}

with the fixed η, Cη is independent of Y ∗(sη), which means that the missing mech-

anism on Y ∗(sη) is missing at random (MAR) (Cao et al., 2009; Zhang et al., 2012).

Therefore, the probability of being observed given X can be written as

P (Cη = 1|X) = P (Zs(X,η) + (1− Z)(1− s(X,η)) = 1|X)

= s(X,η)P (Z = 1) + (1− s(X,η))P (Z = 0)

= s(X,η)p+ (1− s(X,η))(1− p),
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where p = P (Z = 1) is a known proportion of patients being assigned to the treat-

ment group. Therefore, P (Cη = 1|X) = ec(X;η) = s(X,η)p+ (1− s(X,η))(1− p).

With the known proportion p and the fixed η, the inverse probability weighted esti-

mator (IPWE) for E{Y ∗(sη)I{sη = 1}} can be written as (Lunceford and Davidian,

2004; Cao et al., 2009; Zhang et al., 2012),

V̂IPW (sη) = n−1

n∑
i=1

Cη,iI{s(Xi,η) = 1}Yi
P (Cη,iI{s(Xi,η) = 1} = 1|Xi)

= n−1

n∑
i=1

Cη,iI{s(Xi,η) = 1}Yi
n1

n
p

= n−1
1

n1∑
i=1

Zis(Xi,η)Yi
p

. (3.2)

By maximizing the above IPWE V̂IPW (sη), the optimal selection model soptη can

be estimated. Since the proportion p is known, it can be shown that the IPWE

is consistent with E[V̂IPW (sη)] = E[Y ∗(sη)I{s(X,η) = 1}]. The proof is given as

following.

E[V̂IPW (sη)] = E

[
CηI{s(X,η) = 1}Y

p

]
= E

{
E

[
CηI{s(X,η) = 1}Y

p
|Y ∗(sη),X

]}

= E

{
E

[
I{Cη = 1}I{s(X,η) = 1}Y ∗(sη)

p
|Y ∗(sη),X

]}

= E

{
Y ∗(sη)

p
E [I{Zs(X,η) = 1}|Y ∗(sη),X]

}

= E

{
Y ∗(sη)

p
I{s(X,η) = 1}E [I{Z = 1}|Y ∗(sη),X]

}

= E[Y ∗(sη)I{s(X,η) = 1}].

Therefore, the IPWE is always consistent for randomized clinical trials with constant

true propensity scores. To improve efficiency on the IPWE, an augmentation term
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including outcome regression model is added, which will be presented in the following

section.

3.2.3 Doubly Robust Inverse Probability Weighted Estimator

Even though the IPWE is always consistent with known propensity scores in ran-

domized clinical trials, the doubly robust inverse probability weighted estimator

(DRIPWE) with an augmentation term including outcome regression model is intro-

duced to improve efficiency. Since either the propensity score model or the outcome

regression model is correct, the DRIPWE is consistent with double protections.

With the known propensity score p, the DRIPWE can be always consistent. Based

on the IPWE of (3.2), the DRIPWE for E{Y ∗(sη)I{sη = 1}} is written as following

(Robins et al., 1994; Cao et al., 2009; Zhang et al., 2012),

V̂DRIPW (sη) = n−1
1

n1∑
i=1

{
Cη,iI{s(Xi,η) = 1}Yi

p
− Cη,i − ec(Xi;η)

p
m(Xi;η, β̂)I{s(Xi,η) = 1}

}

= n−1
1

n1∑
i=1

{
Zis(Xi,η)Yi

p
− Zis(Xi,η)− p

p
m(Xi;η, β̂)I{s(Xi,η) = 1}

}
, (3.3)

where ec(X;η) = s(X,η)p + (1 − s(X,η))(1 − p), m(Xi;η, β̂) = E[Y ∗(ŝη)|X] =

µ(X, 1; β̂)s(X,η) + µ(X, 0; β̂)(1 − s(X,η)). By maximizing the above DRIPWE

V̂DRIPW (sη), the optimal selection model soptη can be estimated. With the true

propensity score p, the DRIPWE is always consistent with E[V̂DRIPW (sη)] = E[Y ∗(sη)I{s(X,η) =

1}] no matter the outcome regression model is correct or wrong. The proof is given
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as following.

E[V̂DRIPW (sη)] = E

[
CηI{s(X,η) = 1}Y

p

]
− E

[
Cη − ec(X;η)

p
m(X;η, β̂)I{s(X,η) = 1}

]

= E1 − E2;

E1 = E[Y ∗(sη)I{s(X,η) = 1}], which has been proved in the last section.

E2 = E

[
Cη − ec(X;η)

p
m(X;η, β̂)I{s(X,η) = 1}

]

= E

{
E

[
CηI{s(X,η) = 1} − p

p
µ(X, 1; β̂)s(X,η)|X

]}

= E

{
µ(X, 1; β̂)s(X,η)

p
E[I{Zs(X,η) = 1} − p|X]

}

= E

{
µ(X, 1; β̂)s(X,η)

p
I{s(X,η) = 1}E[I{Z = 1} − p|X]

}

= E

{
µ(X, 1; β̂)s(X,η)

p
I{s(X,η) = 1}(p− p)

}

= 0;

thus,

E[V̂DRIPW (sη)] = E[Y ∗(sη)I{s(X,η) = 1}]− 0 = E[Y ∗(sη)I{s(X,η) = 1}],

where ec(X;η) = s(X,η)p+ (1− s(X,η))(1− p).

Also, with the true propensity score p, the DRIPWE of (3.3) has the minimum

variance if the outcome regression model m(X;η,β)I{s(X,η) = 1} is correctly
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specified (Cao et al., 2009). The variance of DRIPWE can be written as following,

var[V̂DRIPW (sη)] = var

{
CηI{s(X,η) = 1}Y

p
− Cη − ec(X;η)

p
m(X;η, β̂)I{s(X,η) = 1}

}

= E{var(A|X, Y )}+ var{E(A|X, Y )},

where A = CηI{s(X,η)=1}Y
p

− Cη−ec(X;η)

p
m(X;η, β̂)I{s(X,η) = 1}.

It is known that,

E(CηI{s(X,η) = 1}|X) = E(C2
ηI{s(X,η) = 1}|X) = p.

Thus,

E(A|X, Y ) = Y.

var(A|X, Y ) = E(A2|X, Y )− [E(A|X, Y )]2 = E(A2|X, Y )− Y 2

=
pY 2 + pm2

β + p2m2
β − 2p2m2

β − 2pY mβ + 2p2Y mβ

p2
− Y 2

=
(1− p)Y 2 + (1− p)m2

β − 2(1− p)Y mβ

p

=
1− p
p

(Y −mβ)2,

where mβ = m(X;η, β̂)I{s(X,η) = 1}.

Therefore,

var[V̂DRIPW (sη)] = E

[
1− p
p

(Y −m(X;η, β̂)I{s(X,η) = 1})2

]

+ var(Y ). (3.4)
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To minimize the variance of the DRIPWE in (3.3), the first part of (3.4) should be 0,

which means that the correctly specified outcome regression modelm(X;η, β̂)I{s(X,η) =

1} = µ(X, 1; β̂)s(X,η) can lead to minimum variance in (3.3) with the true propen-

sity score.

3.3 Simulation Study

We proposed three methods to build a selection model that can maximize the ben-

efits from the treatment, an outcome regression model estimated by ordinary least

squares (3.1), an inverse probability weighted estimator (3.2), and a doubly robust

inverse probability weighted estimator (3.3), with parameter estimates from the last

two methods obtained by the “rgenoud” library in statistical software R 3.4.2. To

compare the performance and effectiveness of the three proposed methods, simu-

lation studies were carried out on correctly and incorrectly specified outcome re-

gression model, inverse probability weighted estimator based on the true propensity

score, and doubly robust inverse probability weighted estimator based on the true

propensity score but with correctly and incorrectly specified outcome regression

model.

3.3.1 Simulation Design

Simulation studies were used to compare the three proposed methods on building

the optimal selection model. The data generating mechanisms are explained in the
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following paragraph. Simulations were done in statistical software R 3.4.2, and the

“rgenoud” library were utilized for parameter estimates for IPWE and DRIPWE.

We carried out 1000 simulations and the sample size was set at 500 for each simu-

lation. Smaller sample size (50) and larger sample size (5,000) were also provided

to see the performance of the three methods.

The simulation process was provided as following. First, we generated n inde-

pendent and identically distributed subjects from phase II randomized clinical trial,

(xi, zi, Yi), where xi = (xi1, xi2, xi3)′ were the three covariates independent with

each other, with xi1 was uniformly distributed on (−1, 1), xi2 was uniformly dis-

tributed on (−1.5, 1.5), and xi3 was binomial distributed on (n, 0.5). zi was the

treatment actually received by the ith subject with 0 indicating the control group

and 1 indicating the treatment group, and it was bernoulli distributed with prob-

ability being assigned to the treatment group 0.5. Given xi and zi, outcomes Yi

can be generated as Yi = exp{2 − 2x2
i1 − 0.5x2

i2 + xi3 + 2xi1xi2xi3 + zi(−0.5 +

xi1 − 0.7xi2 + 0.5xi3)} + ei, with ei ∼ N(0, 0.52). Based on the generated data,

the expected outcome on the treatment and control group can be calculated with

E{Y (1)} = 7.41 and E{Y (0)} = 7.06, so the treatment effect in the phase II

randomized clinical trial is E{Y (1)} − E{Y (0)} = 0.35. Then, based on the

way generating outcomes Yi, the true optimal selection model can be written as,

sopt(xi) = I{−0.5 + xi1 − 0.7xi2 + 0.5xi3 > 0}, and we only keep those being se-

lected, that is, keep those with sopt(xi) = 1. Thus, only those benefiting from

the treatment were remained. Since (−0.5, 1,−0.7, 0.5)′ is only one of the infi-
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nite vectors from the coefficients of −0.5 + xi1 − 0.7xi2 + 0.5xi3 > 0, to achieve a

unique vector for optimal selection model, we scale the vector into a unit vector,

ηopt = (−0.35, 0.71,−0.50, 0.35)′. Then, expected outcomes for the selected popula-

tion were calculated if all of them were assigned to the treatment or control group,

with E[Y ∗(sopt)I{sopt(X) = 1}] = E{Y ∗(1)} = 12.41 and E{Y ∗(0)} = 7.93, and

the treatment effect becomes E{Y ∗(1)} − E{Y ∗(0)} = 4.48. Therefore, if subjects

were selected based on the true optimal selection model, the expected outcome on

the treatment group E[Y ∗(sopt)I{sopt(X) = 1}] can be increased from 7.41 to 12.41,

and the treatment effect can be increased from 0.35 to 4.48.

After obtaining the data, we did analysis on parameter estimates for the optimal

selection model based on the three proposed methods. First, two outcome regression

models were considered,

µT (x, z; β̂) = exp
{
β̂0 + β̂1x

2
1 + β̂2x

2
2 + β̂3x3 + β̂4x1x2x3 + z(β̂5 + β̂6x1 + β̂7x2 + β̂8x3)

}
,

which was a correctly specified model, and

µF (x, z; β̂) = β̂0 + β̂1x1 + β̂2x2 + β̂3x3 + z(β̂4 + β̂5x1 + β̂6x2 + β̂7x3),

which was an incorrectly specified model. Parameters β̂ from the two models were

estimated by ordinary least squares and the vector for η̂opt was scaled into a unit

vector for uniqueness. Then, optimal selection model and expected outcomes for the

selected population were estimated respectively, ŝoptηT
(x) = I{η̂T0 + η̂T1x1 + η̂T2x2 +

η̂T3x3 > 0} and ŝoptηF
(x) = I{η̂F0 + η̂F1x1 + η̂F2x2 + η̂F3x3 > 0}. Second, parameter

estimates were obtained using the “rgenoud” package based on the IPWE. Because
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the generated data followed a randomized clinical trial with the probability being

assigned to the treatment group of 0.5, the true propensity score is known as 0.5.

Third, parameter estimates were obtained using the same package “rgenoud” based

on the DRIPWE with the known propensity score 0.5. To see the influence of out-

come regression model on the DRIPWE, both correctly specified model µT (x, z; β̂)

and incorrectly specified model µF (x, z; β̂) were used to estimate the optimal selec-

tion model and DRIPWE (3.3) or expected outcome. With the package “rgenoud”,

both IPWE (3.2) and DRIPWE (3.3) were estimated from the “genoud” function

(Zhang et al., 2012). Also, to achieve a unique vector for η̂opt, the vector was scaled

into a unit vector for each simulation.

It would be nice if we can fit a model with all of the necessary covariates. However,

the model can be mis-specified without including all of the covariates. Under this

scenario, we want to see the performances of all three methods without considering

the covariate x3. Without considering x3, both outcome regression models are incor-

rectly specified, µF1(x, z; β̂) = exp{β̂0 + β̂1x
2
1 + β̂2x

2
2 + β̂3x1x2 + z(β̂4 + β̂5x1 + β̂6x2)}

and µF2(x, z; β̂) = β̂0 + β̂1x1 + β̂2x2 + z(β̂3 + β̂4x1 + β̂5x2), with the estimated op-

timal selection model ŝoptηF
(x) = I{η̂F0 + η̂F1x1 + η̂F2x2 > 0}. For the IPWE, even

though the true propensity score is known, the estimates are based on the mis-

specified selection model without considering x3. Also, the mis-specified selection

model without considering x3 is used for the DRIPWE with the two incorrectly

specified outcome regression model µF1(x, z; β̂) and µF2(x, z; β̂). For all of the three

methods, the optimal selection model, expected outcome, and treatment effect are
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estimated as the last paragraph.

However, what will happen if our methods include some uncessary covariates? Un-

der this scenario, we consider an additional covairate x4, with x4 ∼ N(2, 1) in

all three methods. Thus, both outcome regression models are incorrectly speci-

fied, µF1(x, z; β̂) = exp{β̂0 + β̂1x
2
1 + β̂2x

2
2 + β̂3x3 + β̂4x4 + β̂5x1x2x3x4 + z(β̂6 +

β̂7x1 + β̂8x2 + β̂9x3 + β̂10x4)} and µF2(x, z; β̂) = β̂0 + β̂1x1 + β̂2x2 + β̂3x3 + β̂4x4 +

z(β̂5 + β̂6x1 + β̂7x2 + β̂8x3 + β̂9x4), with the estimated optimal selection model

ŝoptηF
(x) = I{η̂F0 + η̂F1x1 + η̂F2x2 + η̂F3x3 + η̂F4x4 > 0}. For the IPWE and

DRIPWE with the two incorrectly specified outcome regression model µF1(x, z; β̂)

and µF2(x, z; β̂), the estimates are based on the mis-specified selection model with

considering an additional covariate x4. The same estimators are estimated as above

under different methods.

3.3.2 Simulation Results

Table 3.1 shows results on building the selection model under the three methods

with sample size 500, outcome regression model (3.1), IPWE (3.2) and DRIPWE

(3.3). Under the correctly specified outcome regression model, the estimated se-

lection model ŝoptµT
= I{−0.35 + 0.71x1 − 0.50x2 + 0.35x3} has the best perfor-

mance, which has the same parameter estimates η̂ as the true selection model

sopt = I{−0.35+0.71x1−0.50x2 +0.35x3}, with the smallest standard errors among

all the models. Under the estimated selection model ŝoptµT
, the expected outcome for
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the selected population is 12.42 if all of them were to receive treatment, which is

similar with the true expected outcome 12.41. Then, the treatment effect can be cal-

culated as the difference between the expected outcome if all of them were to receive

treatment and the expected outcome if all of them were to receive placebo for the

selected population, which is 4.49, similar with the true treatment effect 4.48. How-

ever, if the outcome regression model is incorrectly specified, the estimated selection

model ŝoptµF
= I{−0.18 + 0.51x1 − 0.60x2 + 0.51x3} is far away from the true selec-

tion model, with smaller expected outcome for the selected population V̂ (ŝoptµF
) and

smaller treatment effect compared with the true values. With the true propensity

score, the selection model ŝoptDRIPWEµT
estimated by the DRIPWE with the correctly

specified outcome regression model has the best performance among the three es-

timated selection models ŝoptIPWE, ŝ
opt
DRIPWEµT

, and ŝoptDRIPWEµF
, which is the same as

the true selection model with the smallest standard errors. Based on the estimated

selection model ŝoptDRIPWEµT
, the expected outcome V̂ (ŝoptDRIPWEµT

) and treatment ef-

fect are close to the true values with smaller standard errors, which is consistent

with the variance formula in (3.4) that the correctly specified outcome regression

model can minimize the variance with the true propensity score. For the selection

model ŝoptIPWE estimated by the IPWE and ŝoptDRIPWEµF
estimated by the DRIPWE

but with the incorrectly specified outcome regression model, their parameter esti-

mates are also close to the true selection model. However, the expected outcome

V̂ (ŝoptIPWE) and treatment effect based on the IPWE are larger than the true values

with larger standard errors compared with the values estimated by the DRIPWE.

Even though the expected outcome V̂ (ŝoptDRIPWEµF
) and treatment effect estimated by

103



the DRIPWE with incorrectly specified outcome regression model are not as good

as the one with correctly specified outcome regression model, their values are close

to the true values. Therefore, estimates based on the DRIPWE with incorrectly

specified outcome regression model still have good performance with small bias.

Table 3.1: Comparisons of model performances and effectiveness on building the selection model (n = 500)

Method η̂0 (SE) η̂1 (SE) η̂2 (SE) η̂3 (SE) V̂ (ŝopt) (SE) E{Y ∗(1)} − E{Y ∗(0)} (SE)
(−0.35) (0.71) (−0.50) (0.35) (12.41) (4.48)

µT -0.35 (0.01) 0.71 (0.007) -0.50 (0.005) 0.35 (0.01) 12.42 (0.66) 4.49 (0.28)
µF -0.18 (0.07) 0.51 (0.17) -0.60 (0.13) 0.51 (0.19) 10.55 (0.70) 2.52 (0.61)

IPWE -0.32 (0.17) 0.66 (0.17) -0.48 (0.16) 0.30 (0.23) 12.93 (2.05) 6.45 (1.76)
DRIPWEµT -0.35 (0.04) 0.71 (0.03) -0.50 (0.02) 0.35 (0.04) 12.43 (0.72) 4.47 (0.54)
DRIPWEµF -0.33 (0.11) 0.72 (0.09) -0.49 (0.09) 0.31 (0.13) 12.31 (1.23) 4.90 (1.00)

To investigate whether the inference and estimation of the three methods sensitive

to small sample size, the results under small sample size 50 are shown in Table 3.2

while keep the others same as Table 3.1. With small sample size, the standard errors

increase for all models under different situations. The selection model ŝoptµT
estimated

by the correctly specified outcome regression model still performs good, which is

close to the true selection model with expected outcome V̂ (ŝoptµT
) and treatment effect

similar with the true values; while the results from the incorrectly specified outcome

regression model are far away from the true values. With the true propensity score,

only the selection model ŝoptDRIPWEµT
estimated by the DRIPWE with the correctly

specified outcome regression model closes to the true selection model, which also

has good estimator on expected outcome and treatment effect. For the DRIPWE

with the incorrectly specified outcome regression model, the estimated selection

model ŝoptDRIPWEµF
is far away from the true selection model while the estimator for
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the expected outcome is close to the true value but not the treatment effect. The

performance of the IPWE becomes worse under small sample size, with estimated

selection model ŝoptIPWE, expected outcome, and treatment effect far away from the

true values. Therefore, the method DRIPWE with the correctly specified outcome

regression model should be used under the small sample size.

Table 3.2: Sensitivity of model performances and effectiveness on building the selection model under smaller sample
size (n = 50)

Method η̂0 (SE) η̂1 (SE) η̂2 (SE) η̂3 (SE) V̂ (ŝopt) (SE) E{Y ∗(1)} − E{Y ∗(0)} (SE)
(−0.35) (0.71) (−0.50) (0.35) (12.41) (4.48)

µT -0.35 (0.04) 0.71 (0.03) -0.50 (0.02) 0.35 (0.04) 12.41 (2.05) 4.48 (0.85)
µF -0.14 (0.20) 0.35 (0.46) -0.40 (0.33) 0.31 (0.49) 10.45 (2.80) 3.54 (1.79)

IPWE -0.21 (0.34) 0.43 (0.47) -0.35 (0.34) 0.17 (0.41) 14.60 (4.71) 11.10 (4.81)
DRIPWEµT -0.33 (0.11) 0.70 (0.09) -0.51 (0.09) 0.33 (0.13) 12.26 (2.09) 4.44 (1.54)
DRIPWEµF -0.25 (0.31) 0.37 (0.49) -0.37 (0.33) 0.26 (0.39) 12.77 (3.53) 6.92 (3.24)

In addition to the smaller sample size shown in Table 3.2, the results from a larger

sample size (5,000) are provided in Table 3.3 while keep the others same as Table

3.1. With larger sample size, the results from both correctly and incorrectly outcome

regression model are similar with the results in Table 3.1, with good performance

for µT and poor performance for µF . With the true propensity score, estimates from

the IPWE and DRIPWE with incorrectly outcome regression model are much more

close to the true values compared with the results in Table 3.1, while the estimates

from the DRIPWE with correctly outcome regression model are similar with the

results in Table 3.1. Therefore, estimates from the IPWE and DRIPWE are close

to the true values with good performance if we have enough sample size, regardless

of the outcome regression model for DRIPWE.
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Table 3.3: Sensitivity of model performances and effectiveness on building the selection model under larger sample
size (n = 5, 000)

Method η̂0 (SE) η̂1 (SE) η̂2 (SE) η̂3 (SE) V̂ (ŝopt) (SE) E{Y ∗(1)} − E{Y ∗(0)} (SE)
(−0.35) (0.71) (−0.50) (0.35) (12.41) (4.48)

µT -0.35 (0.003) 0.71 (0.002) -0.50 (0.002) 0.35 (0.003) 12.40 (0.19) 4.47 (0.08)
µF -0.18 (0.02) 0.55 (0.05) -0.62 (0.04) 0.53 (0.05) 10.53 (0.19) 2.46 (0.19)

IPWE -0.35 (0.08) 0.69 (0.08) -0.50 (0.07) 0.34 (0.11) 12.50 (0.86) 4.94 (0.64)
DRIPWEµT -0.35 (0.02) 0.71 (0.01) -0.50 (0.01) 0.35 (0.02) 12.41 (0.24) 4.48 (0.17)
DRIPWEµF -0.35 (0.05) 0.71 (0.04) -0.50 (0.04) 0.35 (0.06) 12.40 (0.51) 4.61 (0.38)

Table 3.4 shows results for all methods without considering the covariate x3. Since

both outcome regression models are incorrectly specified, their estimates are far away

from the true values with larger standard errors compared with Table 3.1. With the

true propensity score, estimates from the IPWE and DRIPWE without considering

the covariate x3 in the selection model also far away from the true values except

for the estimate of treatment effect by the DRIPWE. Therefore, the performances

of all three methods are poor with large bias without including all of the necessary

covariates that are needed for estimation.

Table 3.4: Sensitivity of model performances and effectiveness on building the selection model without considering
the covariate x3 (n = 500)

Method η̂0 (SE) η̂1 (SE) η̂2 (SE) η̂3 (SE) V̂ (ŝopt) (SE) E{Y ∗(1)} − E{Y ∗(0)} (SE)
(−0.35) (0.71) (−0.50) (0.35) (12.41) (4.48)

µF1
-0.07 (0.07) 0.81 (0.05) -0.58 (0.06) - 10.35 (0.80) 3.74 (0.62)

µF2
0.09 (0.18) 0.60 (0.24) -0.71 (0.18) - 9.40 (0.55) 2.40 (0.65)

IPWE -0.07 (0.18) 0.78 (0.15) -0.55 (0.17) - 10.97 (1.07) 5.21 (1.29)
DRIPWEµF1

-0.06 (0.12) 0.81 (0.09) -0.56 (0.12) - 10.70 (0.80) 4.41 (0.86)

DRIPWEµF2
-0.07 (0.13) 0.80 (0.10) -0.55 (0.12) - 10.71 (0.89) 4.49 (1.02)

Table 3.5 shows results for all methods with considering an additional covariate x4.

Even though both outcome regression models are incorrectly specified, the results

from µF1 are much better than µF2 with estimates much more close to the true val-

ues, but they are not as good as the results from µT in Table 3.1. With the true
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propensity score, estimates from the DRIPWE with considering an additional co-

variate x4 have good performance with estimates close to the true values, especially

the one with the incorrectly specified model µF1 , which has the smallest bias com-

pared to the other models. However, estimates from the IPWE are far away from

the true values compared with those from the DRIPWE. Therefore, the method

DRIPWE can be used even with additional covariates that are not included in the

true model.

Table 3.5: Sensitivity of model performances and effectiveness on building the selection model with considering an
additional covariate x4 (n = 500)

Method η̂0 (SE) η̂1 (SE) η̂2 (SE) η̂3 (SE) η̂4 (SE) V̂ (ŝopt) (SE) E{Y ∗(1)} − E{Y ∗(0)} (SE)
(−0.35) (0.71) (−0.50) (0.35) - (12.41) (4.48)

µF1 -0.40 (0.09) 0.62 (0.06) -0.50 (0.05) 0.42 (0.05) 0.02 (0.06) 12.20 (0.75) 3.76 (0.43)
µF2

-0.17 (0.22) 0.51 (0.17) -0.58 (0.12) 0.49 (0.18) -0.001 (0.11) 10.55 (0.67) 2.59 (0.61)

IPWE -0.26 (0.30) 0.63 (0.17) -0.48 (0.15) 0.28 (0.24) -0.02 (0.16) 12.83 (1.96) 6.59 (1.76)
DRIPWEµF1

-0.35 (0.12) 0.70 (0.06) -0.49 (0.06) 0.35 (0.08) -0.0009 (0.06) 12.53 (0.89) 4.84 (0.72)

DRIPWEµF2
-0.31 (0.17) 0.70 (0.11) -0.50 (0.08) 0.31 (0.14) -0.009 (0.08) 12.31 (1.20) 5.01 (1.03)

From the previous outputs comparing the three methods, we have the following

conclusions. First, the outcome regression model has the best performance with the

estimated selection model similar with the true model, smallest bias on expected

outcome and treatment effect, and smallest standard errors, regardless of the sample

size if we can fit the model correctly. However, it is difficult to fit an outcome

regression model correctly, so the DRIPWE should be used under large sample

size with small bias and standard errors, even with incorrectly specified outcome

regression model. Second, even though the selection model estimated by the IPWE

is close to the true selection model, the bias for expected outcome and treatment

effect are larger than the DRIPWE. But as the sample size increases, the bias become
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smaller, which also shows good performance of the IPWE with enough sample size.

Third, the performances of all methods become poor with large bias if they mis-

specify the model without considering all of the necessary covariates. However, if the

model is incorrectly specified with including unnecessary covariates, the DRIPWE

still has good estimates on selection model with small bias on expected outcome

and treatment effect.

3.4 Discussion

Unlike the traditional method that uses one or two indicator variables for choos-

ing a subset of population into the phase III randomized clinical trial based on

the information from the phase II randomized clinical trial, historical literatures,

and other studies, we have developed a selection model including more variables to

identify the subset. The easiest method to build the selection model is fitting an

outcome regression model. However, estimates are far away from the true values

if the outcome regression model is incorrectly specified. Another method to build

the selection model is based on the inverse probability weighted estimator. Even

though the estimated selection model is close to the true selection model with the

true propensity score, the expected outcome or estimator can be poor with large

bias if the sample size is not enough. To improve efficiency of the inverse probabil-

ity weighted estimator, the doubly robust inverse probability weighted estimator is

proposed adding the benefit of robustness, i.e., the performance of doubly robust

inverse probability weighted estimator is always good no matter the outcome regres-
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sion model is correct or not with the true propensity score. However, if one of the

important covariates is missing on building the selection model, all models’ perfor-

mances are poor with large bias. If the model is incorrectly specified with including

unnecessary covariates, the DRIPWE can still be used with good estimates on selec-

tion model with small bias on expected outcome and treatment effect. Therefore, to

make sure at least one of our methods can have good estimates on selection model

and expected outcome, it is important to include as many covariates as possible into

our model.

Since our proposed methods on building the selection model are only based on the

information from the phase II randomized clinical trial, the true propensity score

is known from the randomness nature. However, because of the small sample size

in phase II randomized clinical trial and different endpoints used between phase II

and phase III randomized clinical trials, the information is not enough to build a

selection model to make the phase III randomized clinical trial design more effi-

cient. It is necessary to use other information from some historical observational

studies. Therefore, our methods need to be extended by building a propensity score

model for inverse probability weighted estimator and doubly robust inverse prob-

ability weighted estimator, which will be discussed in the future work. Also, we

will apply our methods to a real randomized clinical trial in the future to see their

performances.
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