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Input-Output Linearization of MIMO Systems

with Applications to Longitudinal Flight Dynamics

Jhon Manuel Portella Delgado and Ankit Goel

Abstract— This paper presents an extension of the input-
output linearization method for nonsquare systems with
more outputs than inputs. Unlike the square systems

and nonsquare systems with fewer outputs than inputs,
which can be completely linearized, we consider the prob-
lem of linearizing nonsquare systems with more outputs
than inputs. In particular, the system is linearized by
decomposing the state using a diffeomorphism, which is
chosen such that the output of the system is a linear
combination of the outputs of integrator chains, and the
input of the system is chosen to cancel the nonlinearities
using feedback linearization. In the case of nonsquare
systems with more outputs than inputs, we observe that
the resulting linear system can be stabilized even though it
is uncontrollable at all times. This apparent contradiction
is due to the switching behavior in the control action. We
apply the input-output linearization method to linearize the
longitudinal aircraft dynamics and demonstrate asymptotic
stability of the closed-loop system despite the switching
behavior.

I. INTRODUCTION

Although input-output linearization methods have

been well-studied for square systems and nonsquare sys-

tems with fewer outputs than inputs, these methods have

not been explored for system with more outputs than

inputs [1]–[4]. In the classical input-output linearization

method, a diffeomorphism is used to transform the

state such that the dynamics matrix of a part of the

transformed state is in the Jordan form, whereas the

input matrix potentially remains a nonlinear function of

the full state [3]. It turns out that, in the case of square

systems and nonsquare systems with fewer outputs than

inputs, the transformed input matrix, which is square or

wide, is often full-column rank. Nonlinearities thus can

be canceled exactly to yield a linear input-output system.

On the other hand, in the case of nonsquare systems with

more outputs than inputs, the transformed input matrix,

which is tall, does not yield a fully controllable linear

input-output system. In this paper, we extend the input-

output linearization method for such systems.
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This extension is motivated by the problem of lin-

earizing the longitudinal aircraft dynamics. The longitu-

dinal dynamics of an aircraft typically has two inputs,

namely thrust and the elevator-deflection angle and two

outputs, namely the velocity and the flight-path angle

[5], [6]. Although this square system can be linearized

by input-output linearization methods, the resulting zero

dynamics turns out to be unstable. We show, in this

paper, that the zero dynamics can be eliminated by

considering an additional output in the linearization

process. However, the resulting linearized system turns

out to be uncontrollable at all time. Nonetheless, we

observe that, even though the resulting linear system is

uncontrollable, the uncontrollable modes are not fixed

in time. In fact, the uncontrollable modes switch as a

function of the state, which allows the state of the system

to be driven to zero.

Several methods have been explored to regulate the

states of aircraft longitudinal dynamics. The total energy

control system proposed in [7], [8] transforms the states

to energy states and uses heuristically tuned PID gains to

regulate the states of the aircraft. However, this approach

does not guarantee stability of the closed-loop system.

Nonlinear backstepping methods have also been inves-

tigated to solve this problem [9]. Since backstepping

methods require the dynamics to be in a strict feedback

form, these approaches often omit the effect of the

elevator deflection on the lift in order to formulate the

dynamics in strict feedback form. This paper considers a

more realistic model of an aircraft by including the effect

of the elevator deflection on the lift. Since the dynamics

considered in this paper is not in a strict feedback form,

classical backstepping methods are not applicable.

In order to regulate the longitudinal aircraft dynamics

with theoretical guarantees, this paper extends the input-

output linearization method to the case of nonsquare

systems with more outputs than inputs, and applies it to

design a controller to linearizing the aircraft longitudinal

dynamics. The paper is organized as follows. Section II

describes the problem considered in this paper and re-

views relevant definitions, Section III presents the input-

output linearization method for under-actuated MIMO

systems, Section IV describes the longitudinal aircraft

dynamics used to construct the input-output linearizing

controller, Section V shows the application of the input-
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output linearization method to the problem of linearizing

longitudinal aircraft dynamics in the case of two and

three outputs, and Section VI shows the results of the

numerical simulations of the closed-loop longitudinal

aircraft dynamics. Finally, the paper concludes with a

discussion of results and future research directions in

Section VII.

II. PROBLEM FORMULATION

Consider an affine system

ẋ = f(x) + g(x)u, (1)

y = h(x), (2)

where x(t) ∈ R
lx is the state, u(t) ∈ R

lu is the input,

y(t) ∈ R
ly is the output, and f, g, h are smooth functions

of appropriate dimensions. The objective is to construct

a control law such the dynamics from the input to the

output is linear, that is,

ξ̇ = Aξ +Bv, (3)

y = Cξ, (4)

where A,B,C are, possibly user-defined, known matri-

ces, ξ, not necessarily equal to x, is a state, and v is

the control which can be designed to obtain any desired

output response using tools from linear systems theory.

The following definitions appear in [4] and are re-

peated here for further use in the paper.

Definition 2.1: In the system (1), (2). the relative

degree of the ith output yi is the smallest integer ρi ≥ 0

such that ρi-th derivative of yi, that is y
(ρi)
i , is an explicit

function of input u.

Definition 2.2: The relative degree of the system (1),

(2) is the sum of the relative degree of each of its

outputs, that is, ρ
△
=

∑ly
i ρi.

III. MIMO INPUT-OUTPUT LINEARIZATION

This section reviews the multi-input, multi-output ex-

tension of the input-output linearizing control presented

in [1], and extends it to the case of nonsquare systems

with more outputs than inputs..

Consider the transformation

T : Rlx → R
lx

T (x) =

[

φ(x)
ψ(x)

]

, (5)

where φ(x) satisfies

Lgφ(x) = 0, (6)

and

ψ(x) =







ψ1(x)
...

ψly (x)






, (7)

where

ψi(x)
△
=











hi(x)
Lfhi(x)

...

L
ρi−1
f hi(x)











∈ R
ρi . (8)

Note that φ : Rlx → R
lx−ρ and, for i = 1, . . . , ly, ψi :

R
lx → R

ρi , and thus ψ : Rlx → R
ρ. Furthermore, the

functions ψi are well-defined since the functions f, g, h

are assumed to be smooth. However, φ satisfying (6)

may or may not exist.

Assuming that φ satisfying (6) exists and defining η
△
=

φ(x), it follows that

η̇ = Lfφ(x) + Lgφ(x)u = Lfφ(x), (9)

where Lgφ(x) = 0 by construction. Note that (9) is the

zero dynamics [3].

Next, defining ξ
△
= ψ(x), it follows that

ξ̇ = Lfψ(x) + Lgψ(x)u. (10)

Next, note that

Lfψ(x) = Acξ +Bc







L
ρ1

f h1(x)
...

L
ρly

f hly (x)






, (11)

where Ac = diag(Ac,1, . . . , Ac,ly) ∈ R
ρ×ρ and Bc =

diag(bc,1, . . . , bc,ly) ∈ R
ρ×ly and, for i = 1, . . . , ly,

Ac,i
△
=















0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 . . . . . . 0 1
0 . . . . . . 0 0















∈ R
ρi×ρi , (12)

bc,i
△
=







0
...

1






∈ R

ρi . (13)

Finally,

Lgψ(x) = Bc









LgL
ρi−1
f h1(x)

...

LgL
ρly−1

f hly (x)









. (14)

Substituting (11) and (14) in (10) yields

ξ̇ = Acξ +Bcγ(x)[u − α(x)], (15)



where

γ(x)
△
=









LgL
ρi−1
f h1(x)

...

LgL
ρly−1

f hly (x)









∈ R
ly×lu , (16)

α(x)
△
= γ(x)+







−L
ρ1

f h1(x)
...

−L
ρly

f hly (x)






∈ R

lu . (17)

where γ(x)+ ∈ R
lu×ly is the psuedo-inverse of γ(x).

Finally, letting

u(x) = α(x) + γ(x)+v, (18)

yields

ξ̇ = Acξ +BcΛ(x)v, (19)

where Λ(x)
△
= γ(x)γ(x)+ ∈ R

ly×ly and v ∈ R
ly . Note

that

Λ(x) =







λ1(x) · · · 0
...

. . .
...

0 · · · λly (x)






, (20)

where, for all i = 1, . . . , ly, λi(x) is either 1 or 0. Note

that (18) is the input-output linearizing (IOL) controller

and (19) is the linearized system.

In the square and wide plants, where lu ≥ ly , if γ(x)
is full-column rank for all x, then, for all i = 1, . . . , ly,
λi(x) = 1, and thus Λ(x) = Ily . Consequently, all of

the outputs can be directly manipulated by appropriately

defining the control signal v.

On the other hand, in the tall plants, where lu < ly,

at least ly − lu diagonal elements of Λ(x) are zero.

Furthermore, if γ(x) is full-column rank for all x, then

exactly ly − lu diagonal elements of Λ(x) are zero.

However, it is not necessary that a particular λi(x) is

always zero. Each λi(x) may switch between 0 and 1,

giving rise to a switched input system. As shown in the

numerical example considered later in the paper, this

input-switching property allows full manipulation of the

state ξ even though Λ(x) is not full rank.

IV. LONGITUDINAL AIRCRAFT DYNAMICS

This section reviews the longitudinal dynamics of an

aircraft and presents the notation used in this paper. The

longitudinal flight dynamics are given by

V̇ =
1

m
[F cos(α)−D −mg sin(γ)], (21)

γ̇ =
1

mV
[F sin(α) + L−mg cos(γ)], (22)

θ̇ = q (23)

q̇ =
M

Iyy
, (24)

where V in the velocity, γ is the flight-path angle, θ

is the pitch angle, α
△
= θ − γ is the angle-of-attack, q

is the pitch rate, F is the thrust, and δe is the elevator

deflection angle. [10]. The lift L, the drag D, and the

moment M are parameterized as

L =
1

2
ρV 2SCL, (25)

D =
1

2
ρV 2SCD, (26)

M =
1

2
ρV 2ScCM, (27)

where ρ is the air density, S is the wing surface area, and

c is the mean chord length. Finally, the lift coefficient

CL, the draf coefficient CD, and the moment coefficient

CM are parameterized as

CL = CL0
+ CLα

α+ CLδe
δe, (28)

CD = CD0
+ CDα

α, (29)

CM = Cm0
+ Cmα

α+ Cmδeδe, (30)

where CD0
, CDα

, CL0
, CLα

, CLδe , Cm0
, Cmα

, and Cmδe

are aircraft aerodynamic coefficients, and δe is the

elevator angle. Note that the inclusion of CLδe
in the

dynamics makes the system non-triangular, and hence,

conventional backstepping methods can not be applied

to this problem [9].

V. INPUT-OUTPUT LINEARIZATION OF

LONGITUDINAL AIRCRAFT DYNAMICS

This section applies the input-output linearizing con-

trol presented in Section III to the longitudinal aircraft

dynamics problem. In particular, we consider two cases.

Since, tn typical longitudinal flight controllers, the ve-

locity and flight-path angle references are given by an

appropriate guidance law, in the first case, we construct

a linearizing controller to drive the velocity error and the

flight-path angle error to zero. However, it turns out that

the corresponding zero dynamics in this case is unstable.

Next, in order to remove the detrimental effect of the

zero dynamics, we construct a linearizing controller to

drive the velocity error, the flight-path angle error, and

the pitch angle error to zero. In this case, it turns out

that there is no zero dynamics. Note that we use the

trim conditions to compute the desired pitch angle and

the pitch angle error used by the linearizing controller.

A. Two outputs

Defining x
△
=

[

V − V γ − γ θ q
]T

and u
△
=

[

F δe
]T
, it follows that (21)-(24) can be written as



(1), (2), where

f1(x)
△
= −

ρ(x1 + V )2S

2m
(CD0

+ CDα
(x3 − x2 − γ))

− g sin (x2 + γ)− V̇ , (31)

f2(x)
△
=
ρ(x1 + V )S

2m
(CL0

+ CLα
(x3 − x2 − γ))

−
g cos (x2 + γ)

(x1 + V )
− γ̇, (32)

f3(x)
△
= x4, (33)

f4(x)
△
=
ρ(x1 + V )Sc

2Iyy
(Cm0

+ Cmα
(x3 − x2 − γ)),

(34)

and

g(x) =





















cos (x3 − x2 − γ)

m
0

sin (x3 − x2 − γ)

m(x1 + V )

ρ(x1 + V )S

2m
CLδe

0 0

0
ρ(x1 + V )Sc

2Iyy
Cmδe





















.

(35)

It is assumed that V , V̇ , γ, γ̇ are well-defined. The output

y is given by

y = h(x)
△
=

[

x1
x2

]

. (36)

Note that, in this formulation of the dynamics, x1 is the

velocity error and x2 is the flight-path angle error.

Next, note that ρ1 = ρ2 = 1, and thus ρ = 2. This

implies that the η = φ(x) ∈ R
2 and ξ = ψ(x) ∈ R

2. It

follows from (8) that

ξ1 = x1, (37)

ξ2 = x2. (38)

Furthermore,

γ(x) =









cos (x3 − x2 − γ)

m
0

sin (x3 − x2 − γ)

m(x1 + V )

ρ(x1 + V )S

2m
CLδe









.

(39)

Note that, if x1 6= −V and x3 − x2 − γ 6=
π

2
, then

det(γ(x)) 6= 0. and thus, the input-output linearizing

control given by (18) yields

ẋ1 = v1, (40)

ẋ2 = v2. (41)

Next, solving (6) yields

η1 = sin (x3 − x2 − γ)(x1 + V ), (42)

η2 =
mcCmδe

IyyCLδe

x2 − x4, (43)

and thus the zero dynamics is given by

η̇1 = η1

[

−
ρV S

2m

(

CD0
+ CDα

arcsin

(

η1

V

))

−
g sin γ

V
−
V̇

V

]

+

√

(V
2
− η21)

[

−
ρV S

2m

(

CL0
+ CLα

arcsin

(

η1

V

))

+
g cos γ

V
+ γ̇ − η2

]

, (44)

η̇2 =
ρV ScCmδe

2IyyCLδe

(

CL0
+ CLα

arcsin

(

η1

V

))

−
mgcCmδe cos γ

IyyV CLδe

−
mcCmδe γ̇

IyyCLδe

−
ρV Sc

2Iyy

(

Cm0
+ Cmα

arcsin

(

η1

V

))

. (45)

Several simulations with nominal values of the parame-

ters show that the zero-dynamics in this case is in fact

unstable. Furthermore, since

x3 = arcsin (
η1

ξ1 + V
) + ξ2 + γ, (46)

x4 =
mcCmδe

IyyCLδe

ξ2 − η2, (47)

the pitch angle and the pitch rate also diverge due to the

unstable zero dynamics.

B. Three outputs

In order to remove the unstable zero dynamics, we

consider an additional output, as shown below. In par-

ticular, we assume that the pitch angle of the aircraft

is commanded to a desired value, which is assumed to

be given by the desired trim condition. Redefining the

state x
△
=

[

V − V γ − γ θ − θ q
]T
, it follows that



(21)-(24) can be written as (1), (2), where

f1(x)
△
= −

ρ(x1 + V )2S

2m
(CD0

+ CDα
(x3 + θ − x2 − γ))

− g sin (x2 + γ)− V̇ , (48)

f2(x)
△
=
ρ(x1 + V )S

2m
(CL0

+ CLα
(x3 + θ − x2 − γ))

−
g cos (x2 + γ)

(x1 + V )
− γ̇, (49)

f3(x)
△
= x4, (50)

f4(x)
△
=
ρ(x1 + V )Sc

2Iyy
(Cm0

+ Cmα
(x3 + θ − x2 − γ))

− θ̈. (51)

The output y is given by

y = h(x)
△
=





x1
x2
x3



 . (52)

Note that the output now consists of the velocity error,

the flight-path angle error, and the pitch-angle error.

Next, note that ρ1 = ρ2 = 1, and ρ3 = 2, and thus

ρ = 4 and thus ξ = ψ(x) ∈ R
4. In fact, it follows from

(7) and (8) that ψ(x) = x, and thus there is no zero

dynamics. Finally, the input-output linearizing control

is given by (18) with

γ(x) =

















cos (x3 − x2 − γ)

m
0

sin (x3 − x2 − γ)

m(x1 + V )

ρ(x1 + V )S

2m
CLδe

0
ρ(x1 + V )Sc

2Iyy
Cmδe

















,

(53)

and

α(x) = −γ(x)+





f1(x)
f2(x)
f4(x)



 . (54)

The closed-loop system is thus

ẋ = Acx+BcΛ(x)v, (55)

where

Ac =









0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0









, Bc =









1 0 0
0 1 0
0 0 0
0 0 1









, (56)

Numerical simulations have revealed that

Λ(x) =





λ1(x) 0 0
0 λ2(x) 0
0 0 1



 (57)

where λ1(x) 6= λ2(x) are either 1 or 0. That is, if

λ1(x) = 1, then λ2(x) = 0, and vice-versa.

This structure of the closed-loop dynamics (55) sug-

gests that the pitch angle and the pitch rate is stabilized

by the control law v3 = k3x3+k4x4, where k3, k4 < 0.
The closed-loop dynamics also reveals the switching

behaviour of the control action in the first two states,

namely, the velocity error and the flight-path angle error,

since the rank of Λ(x) ∈ R
3×3 is 2. Letting k1, k2 < 0

yields

ẋ1 = k1λ1(x)x1, (58)

ẋ2 = k2λ2(x)x2. (59)

Note that x1 and x2 converge to 0 if λ1(x) and

λ2(x) keep switching. Numerical example shown in the

next section show that λ1(x) and λ2(x) indeed keep

switching in this particular application, and thus the

velocity error, flight-path error, and this pitch angle error

converge to zero asymptotically.

VI. SIMULATION RESULTS

This section demonstrates a numerical example of

application of the input-output linearizing control to the

Longitudinal flight dynamics. Consider the model of

A330 given in [11]. The equilibrium inputs are obtained

by numerically finding the roots of the dynamics equa-

tions. Figure 1 shows the equilibrium inputs required

to maintain a steady-state at several velocities for the

model used in this paper.

In order to demonstrate the application of the input-

output linearizing controller, the aircraft is assumed to

be flying at steady-state with a velocity of 200 m/s at an

altitude of 10, 000 km. The aircraft is then commanded

to increase its velocity to 250 m/s. The desired pitch

angle is given by computing the equilibrium state for

the chosen velocity. Letting k1 = −0.5, k2 = −1, k3 =
−5, k4 = −3 Figure 2 shows the velocity, flight path

angle, and the pitch of the aircraft and Figure 3 shows

the control inputs given by the input-output linearizing

controller. Figure 4 shows the switching behavior of

the components of Λ(x), that allows the state errors to

converge to zero. Finally, Figure 5 shows the closed-

loop response of the aircraft for several values of gains.

Since the velocity and the flight-path angle states are

independently controlled, their time response can be

arbitrarily chosen by appropriately choosing k1 and k2,

respectively. Similarly, an arbitrary pitch response can

be obtained designed by appropriately choosing k3 and

k4.

In this formulation of the input-output linearizing

controller, reference value of the pitch angle is required

to compute the control signal. In practice, however,

the pitch angle at the desired trim condition can not

be exactly determined. Nonetheless, the control signals



can be computed with the incorrect pitch reference.

Figure 6 shows the closed-loop response of the aircraft

in this case. Note that, as expected, the the flight-path

angle does not converge to zero and the pitch does not

converge to the correct pitch reference, however, the

velocity converges to the correct reference.

200 220 240 260 280 300
1.3

1.35

1.4

1.45
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1.55

1.6

1.65
105

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

Fig. 1: Input values to maintain steady state at various aircraft
velocities.
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-0.05

0

0.05

0.1

0 5 10 15 20 25 30 35 40 45 50

0.05

0.1

0.15

Fig. 2: Velocity, flight-path angle, and the pitch angle response of the
linearized longitudinal aircraft dynamics. Note that the output is shown
in solid blue and the corresponding reference is shown in dashed black.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented an extension of the MIMO

input-output linearization method applicable to under-

actuated plants and applied the method to stabilize the

longitudinal flight dynamics. The numerical simulations

presented in the paper reveal that the application of the

method to under-actuated plants leads to a switching

behavior in the control action.

The future work will focus on the structure of the

switching matrix Λ(x) in order to develop theoretical
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Fig. 3: Thrust and elevator-deflection angle given by the linearizing
controller.
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Fig. 4: The diagonal components of Λ(x). Note that λ1(x) and λ1(x)
switch between 0 and 1, whereas λ1(x) = 1 for all t ≥ 0. The
switching behavior allows both the velocity error and the flight-path
angle error to be driven to zero in spite of the fact that the rank of
Λ(x) = 2 for all t ≥ 0.

guarantees for globally asymptotically stable controllers.

In addition, we will focus on relaxing the assumptions

including exact knowledge of the various coefficients

parameterizing the dynamics as well as the exact knowl-

edge of trim conditions. In particular, we will extend

the method by including adaptive laws to estimate the

coefficients online and use reference governor to update

the setpoints.
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