https://ntrs.nasa.gov/search.jsp?R=20180007719 2018-12-11T15:35:41+00:00Z

A COMPACT TWO-STEP LASER TIME-OF-FLIGHT MASS SPECTROMETER FOR IN SITU ANALYSIS OF PLANETARY SURFACES

Stephanie A. Getty and William B. Brinckerhoff

NASA Goddard Space Flight Center

Timothy J. Cornish C&E Research, Inc.

Xiang Li University of Maryland, Baltimore County Andrej Grubisic

University of Maryland, College Park

Kyle Uckert New Mexico State University

SOLAR SYSTEM DESTINATIONS... THAT ARE JUST BEGGING TO BE ANALYZED!

9/16/2015

ENCELADUS & TITAN

9/16/2015

3

S. Getty/HEMS 2015

9/16/2015

WHAT DO THESE BODIES HAVE IN COMMON? VOLATILES, INCLUDING WATER!

WHY MASS SPECTROMETRY FOR PLANETARY MISSIONS?

• 'Universal' Detector

• Comprehensive Sample Analysis: compatible with various front-end analytical techniques

• Flexible to mission architecture: flybys, orbiters, landers, rovers

9/16/2015

LASER DESORPTION/IONIZATION FOR DIRECT ANALYSIS OF PLANETARY SURFACE MATERIALS

S. Getty/HEMS 2015

Commercial LD-TOF-MS (or MALDI) is a gold-standard technique for the analysis over a wide range of molecular weight, including large biomolecules

LD-TOF-MS as a compact instrument is capable of analyzing broadband composition directly from a solid sample

- Minerals
- Small organics: amino acids, carboxylic acids, polycyclic aromatics, etc.
- Intermediate organics: molecular fossil precursors, conjugated polymers, etc.
- Large organics: peptides, biopolymers, informational polymers, etc.
- Can resolve isotopes elemental & ¹²C/¹³C patterns

DUAL POLARITY ION MODE: INORGANIC COMPOSITION SEDIMENTARY AND AQUEOUSLY ALTERED MINERALS

^{9/16/2015}

COMPLEMENTARY POSITIVE AND NEGATIVE ION DETECTION: DETECTING ORGANICS ACROSS CLASSES

BUT IN REALITY WE COULD GET A SPECTRUM LIKE...

S. Getty/NASA GSFC

4/1/2015

Fragment Analysis

15 9/16/2015

L2MS PROTOTYPE:

FEATURES AND OPERATING PRINCIPLES

Two-Step Laser MS

Ionization Pulse

Precision Ion Gating

Fragment Analysis

16 9/16/2015

2-10 mJ/pulse(0.2-1 mJ/mm²)

Resonance Enhanced Multiphoton Ionization Selective ionization:

- A. molecules ionization energy is lower than the two-photon energy
- B. intermediate state can be pumped by onephoton absorption

Absorption of IR photons (0.12 eV): Molecules may be at a higher state

Annu. Rev. Phys. Chem. 2007. 58:585–612

S. Getty/HEMS 2015

9/16/2015

MOTIVATION FOR L2MS: MOLECULAR SPECIFICITY

- L2MS has been an informative technique used in the analysis of extraterrestrial materials, such as meteorites and Stardust samples
- The ionization laser can be chosen to be selective to a subset of organic species, such as polycyclic aromatic hydrocarbons
- Comparison between the single-laser baseline and L2MS spectra can allow separation of aromatic contributions

L2MS PROTOTYPE: LABORATORY EXPERIMENT

IR Laser:

- 1064 nm Nd:YAG
- 2.7 to 3.1 um tunable OPO
- 10 um CO2

UV Laser:

266 nm harmonic Nd:YAG 4-7 ns pulse width focused to 50-100 um spot

L2MS PROTOTYPE: SELECTIVITY TO AROMATICS

L2MS prototype: SELECTIVITY TO AROMATICS

Getty et al. IEEE AeroConf 2014

L2MS PROTOTYPE: SENSITIVITY TO PREBIOTIC SPECIES IN THE PRESENCE OF A MINERAL MATRIX

L2MS – SELECTIVITY IN IONIZATION STEP

Murchison powder 1.DMS mode

+0

L2MS – SELECTIVITY IN DESORPTION STEP

Iransmittance

L2MS PROTOTYPE: IR TUNABILITY CAN EXPLOIT RESONANCES FOR HIGH SENSITIVITY

L2MS PROTOTYPE: FEATURES AND OPERATING PRINCIPLES

Precision Ion Gating

29 9/16/2015

L2MS PROTOTYPE: PRECISION ION GATING AND TANDEM MS

Structural determination using MS/MS techniques

S. Getty/HEMS 2015

9/16/2015

Fragment Analysis

S. Getty/HEMS 2015

31 9/16/2015

L2MS PROTOTYPE: LASER-ASSISTED COLLISION-INDUCED DISSOCIATION FOR PSEUDO-TANDEM MASS SPECTROMETRY

L2MS INSTRUMENT DESIGN:

5 KG-CLASS IN SITU ANALYZER

1. TOF-MS	700
1.1 Mass Analyzer	330
1.2 Housing	370
2. Laser	1693
3. Optical	380
4. Electronics	1826
4.1 Comm/Data	291
4.2 Power Supply	585
4.3 Pulsed HV	440
4.4 Detector	260
4.5 Harness	250
SUBTOTAL (airless body)	4599
r Turbo Dump*	550
5. Turbo Pullip"	550
5.1 Pump, 200 krpm	200
5.2 Controller	350
TOTAL	5149

L2MS Mass Estimate

Mass/g

Subsystem

33

S. Getty/HEMS 2015

9/16/2015

Our Team

GSFC Planetary Environments Lab

- Will Brinckerhoff
- Xiang Li
- Andrej Grubisic
- Rick Arevalo
- Melissa Floyd

GSFC Astrochemistry Lab

- Jamie Elisila
- Mike Callahan

C&E Research, Inc

- Tim Cornish
- Scott Ecelberger

GSFC Laser and Electro Optics Branch

• Tony Yu

Stanford University

- Dick Zare
- Qingaho Wu

New Mexico State University

• Kyle Uckert (NASA Space Technology Research Fellow)

Supported by

- Planetary Instrument Definition and Development Program
- Astrobiology Science and Technology for Instrument Development Program

HIGH SENSITIVITY MODE

S. Getty/HEMS 2015

9/16/2015