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Abstract. Visual Commonsense Reasoning (VCR) predicts an answer with cor-
responding rationale, given a question-image input. VCR is a recently introduced
visual scene understanding task with a wide range of applications, including vi-
sual question answering, automated vehicle systems, and clinical decision sup-
port. Previous approaches to solving the VCR task generally rely on pre-training
or exploiting memory with long dependency relationship encoded models. How-
ever, these approaches suffer from a lack of generalizability and prior knowl-
edge. In this paper we propose a dynamic working memory based cognitive VCR
network, which stores accumulated commonsense between sentences to provide
prior knowledge for inference. Extensive experiments show that the proposed
model yields significant improvements over existing methods on the benchmark
VCR dataset. Moreover, the proposed model provides intuitive interpretation into
visual commonsense reasoning. A Python implementation of our mechanism is
publicly available at https://github.com/tanjatang/DMVCR

1 Introduction

Reflecting the success of Question Answering (QA) [1] research in Natural Language
Processing (NLP), many practical applications have appeared in daily life, such as Arti-
ficial Intelligence (AI) customer support, Siri, Alex, etc. However, the ideal AI applica-
tion is a multimodal system integrating information from different sources [2]. For ex-
ample, search engines may require more than just text, with image inputs also necessary
to yield more comprehensive results. In this respect, researchers have begun to focus on
multimodal learning which bridges vision and language processing. Multimodal learn-
ing has gained broad interest from the computer vision and natural language processing
communities, resulting in the study of Visual Question Answering (VQA) [3]. VQA
systems predict answers to language questions conditioned on an image or video. This
is challenging for the visual system as often the answer does not directly refer to the
image or video in question. Accordingly, high demand has arisen for AI models with
cognition-level scene understanding of the real world. But presently, cognition-level
scene understanding remains an open, challenging problem. To tackle this problem,
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Rowan Zeller et al. [4] developed Visual Commonsense Reasoning (VCR). Given an
image, a list of object regions, and a question, a VCR model answers the question and
provides a rationale for its answer (both the answer and rationale are selected from a set
of four candidates). As such, VCR needs not only to tackle the VQA task (i.e., to pre-
dict answers based on a given image and question), but also provides explanations for
why the given answer is correct. VCR thus expands the VQA task, thereby improving
cognition-level scene understanding. Effectively, the VCR task is more challenging as
it requires high-level inference ability to predict rationales for a given scenario (i.e., it
must infer deep-level meaning behind a scene).

The VCR task is challenging as it requires higher-order cognition and common-
sense reasoning ability about the real world. For instance, looking at an image, the
model needs to identify the objects of interest and potentially infer people’s actions,
mental states, professions, or intentions. This task can be relatively easy for human be-
ings in most situations, but it remains challenging for up-to-date AI systems. Recently,
many researchers have studied VCR tasks (see, e.g., [4–8]). However, existing meth-
ods focus on designing reasoning modules without consideration of prior knowledge
or pre-training the model on large scale datasets which lacks generalizability. To ad-
dress the aforementioned challenges, we propose a Dynamic working Memory based
cognitive Visual Commonsense Reasoning network (DMVCR), which aims to design a
network mimicking human thinking by storing learned knowledge in a dictionary (with
the dictionary regarded as prior knowledge for the network). In summary, our main
contributions are as follows. First, we propose a new framework for VCR. Second, we
design a dynamic working memory module with enhanced run-time inference for rea-
soning tasks. And third, we conduct a detailed experimental evaluation on the VCR
dataset, demonstrating the effectiveness of our proposed DMVCR model.

The rest of this paper is organized as follows. In section 2 we review related work on
QA (and specifically on VCR). Section 3 briefly covers notation. In section 4 we detail
how the VCR task is tackled with a dictionary, and how we train a dictionary to assist
inference for reasoning. In section 5 we apply our model to the VCR dataset. Finally,
in section 6 we conclude our paper.

2 Related Work

Question answering (QA) has become an increasingly important research theme in re-
cent publications. Due to its broad range of applications in customer service and smart
question answering, researchers have devised several QA tasks (e.g., Visual Question
Answering (VQA) [3], Question-Answer-Generation [9]). Recently, a new QA task
named VCR [4] provides answers with justifications for questions accompanied by an
image. The key step in solving the VCR task is to achieve inference ability. There exists
two major methods of enhancing inference ability. The first focuses on encoding the
relationship between sentences using sequence-to-sequence based encoding methods.
These methods infer rationales by encoding the long dependency relationship between
sentences (see, e.g., R2C [4] and TAB-VCR [6]). However, these models face diffi-
culty reasoning with prior knowledge, and it is hard for them to infer reason based on
commonsense about the world. The second method focuses on pre-training [7, 10, 8].
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Such studies typically leverage pre-training models on more than three other image-text
datasets to learn various abilities like masked multimodal modeling, and multimodal
alignment prediction [8]. The approach then regards VCR as a downstream fine-tuning
task. This method however lacks generalizability.

Considering the disadvantages of either aforementioned approach, we design a net-
work which provides prior knowledge to enhance inference ability for reasoning. The
idea is borrowed from human beings’ experience – prior knowledge or commonsense
provides rationale information when people infer a scene. To achieve this goal, we pro-
pose a working memory based dictionary module for run-time inference. Recent works
such as [11–13] have successfully applied the working memory into QA, VQA, and
image caption. Working memory provides a dynamic knowledge base in these studies.
However, existing work focuses on textual question answering tasks, paying less atten-
tion to inference ability [11, 12]. Concretely, the DMN network proposed in [14] uses
working memory to predict answers based on given textual information. This consti-
tutes a step forward in demonstrating the power of dynamic memory in QA tasks. How-
ever, that approach can only tackle textual QA tasks. Another work in [12] improves
upon DMN by adding an input fusion layer (containing textual and visual information)
to be used in VQA tasks. However, both methods failed to prove the inference ability
of dynamic working memory. Our paper proposes a dictionary unit based on dynamic
working memory to store commonsense as prior knowledge for inference.

3 Notations and Problem Formulation

The VCR dataset consists of millions of labeled subsets. Each subset is composed of an
image with one to three associated questions. Each question is then associated with four
candidate answers and four candidate rationales. The overarching task is formulated
as three subtasks: (1) predicting the correct answer for a given question and image
(Q → A); (2) predicting the correct rationale for a given question, image, and correct
answer (QA → R); and (3) predicting the correct answer and rationale for a given
image and question (Q → AR). Additionally, we defined two language inputs - query
q{q1, q2, · · · , qn} and response r{r1, r2, · · · , rn}, as reflected in Figure 1. In the Q→
A subtask, query q is the question and response r is the answers. In the QA → R
subtask, query q becomes the question together with correct answer, while rationales
constitute the response r.

4 Proposed Framework

As shown in Figure 1, our framework consists of four layers: a feature representation
layer, a multimodal fusion layer, an encoder layer, and a prediction layer. The first
layer captures language and image features, and converts them into dense representa-
tions. The represented features are then fed into the multimodal fusion layer to generate
meaningful contexts of language-image fused information. Next, the fused features are
fed into an encoder layer, which consists of a long dependency encoder [15] RNN mod-
ule along with a dictionary unit. Finally, a prediction layer is designed to predict the
correct answer or rationale.
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Fig. 1. High-level overview of the proposed DMVCR consisting of four modules: feature repre-
sentation layer to extract visual and textual features; multimodal feature fusion to contextualize
multimodal representations; encoder layer to encode rich visual commonsense; and prediction
layer to select the most related response.

4.1 Feature Representation Layer

The feature representation layer converts features from images and language into dense
representations. For the language, we learn embeddings for the query q{q1, q2, · · · , qn}
and response r{r1, r2, · · · , rn} features. Additionally, the object features o{o1, o2, · · · ,
on} are extracted from a deep network based on residual learning [16].

Language embedding. The language embeddings are obtained by transforming raw
input sentences into low-dimensional embeddings. The query represented by q{q1, q2,
· · · , qn} refers to a question in the question answering task (Q → A), and a question
paired with correct answer in the reasononing task (QA→ R). Responses r{r1, r2, · · · ,
rn} refer to answer candidates in the question answering task (Q → A), and rationale
candidates in the reasoning task (QA → R). The embeddings are extracted using an
attention mechanism with parallel structure [17]. Note that the sentences contain tags
related to objects in the image. For example, see Figure 3(a) and the question “Are [0,1]
happy to be here?” The [0,1] are tags set to identify objects in the image (i.e., the object
features of person 1 and person 2).

Object embedding. The images are filtered from movie clips. To ensure images with
rich information, a filter is set to select images with more than two objects each [4].
The object features are then extracted with a residual connected deep network [16].
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The output of the deep network is object features with low-dimensional embeddings
o{o1, o2, · · · , on}.

4.2 Multimodal Feature Fusion Layer

The multimodal feature fusion layer consists of three modules: a visual grounding mod-
ule, an RNN module, and an attention module.

Visual grounding. Visual grounding aims at finding out target objects for query and
response in images. As mentioned in section 4.1, tags are set in query and responses to
reference corresponding objects. The object features will be extracted and concatenated
to language features at the visual grounding unit to obtain the representations with both
image and language information. As shown in Figure 1, the inputs of visual grounding
consist of language (q{q1, q2, · · · , qn} and r{r1, r2, · · · , rn}) along with related ob-
jects features (o{o1, o2, · · · , om}). The output contains aligned language and objects
features (gq and gr). The white unit at visual grounding is grounded representations,
which contains image and text information. It can be formulated as follows (where
concat represents the concatenate operation):

gr = concat(o, r) (1)
gq = concat(o, q) (2)

RNN module. The grounded language and objects features gq and gr at the visual
grounding stage contain multimodal information from images and text. However, they
cannot understand the semantic dependency relationship around each word. To obtain
language-objects mixed vectors with rich dependency relationship information, we feed
the aligned language features gq and gr into BiLSTM [15], which exploits the contexts
from both past and future. In details, it increases the amount of information by means of
two LSTMs, one taking the input in a forward direction with hidden layer

−→
hlt, and the

other in a backwards direction with hidden layer
←−
hlt. The query-objects representations

and response-objects hl
l∈{q,r}

output at each time step t is formulated as:

hlt =
−→
hlt ⊕

←−
hlt (3)

−→
hlt = ot � tanh(ct) (4)

where ct is the current cell state and formulated as:

ct = ft � ct−1 + it � tanh(Wc · [ct−1, hl(t−1), xt] + bc) (5)
it = σ(Wi · [ct−1, hl(t−1), xt] + bi) (6)
ot = σ(Wo · [ct−1, hl(t−1), xt] + bo) (7)
ft = σ(Wf · [ct−1, hl(t−1), xt] + bf ) (8)

where i, o, f represent input gate, output gate, and forget gate, respectively, and xt is
the tth input of a senquence. In addition, Wi,Wo,Wf ,Wc, bc, bi, bo, bf are trainable
parameters with σ representing the sigmoid activation function [18].
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Attention module. Despite the good learning of BiLSTM in modeling sequential tran-
sition patterns, it is unable to fully capture all information from images and languages.
Therefore, an attention module is introduced to enhance the RNN module, picking up
object features which are ignored in the visual grounding and RNN modules. The atten-
tion mechanism on object features o{o1, o2, · · · , on} and response-objects representa-
tions hr is formulated as:

αi,j = softmax(oiWrhrj) (9)

ˆfri =
∑
j

αi,jhrj (10)

where i and j represent the position in a sentence, Wr is trainable weight matrix. In
addition, this attention step also contextualizes the text through object information.

Furthermore, another attention module is implemented between query-objects rep-
resentations hq and response-objects representations hr, so that the output fused query-
objects representation contains weighted information of response-objects representa-
tions. It can be formulated as:

αi,j = softmax(hriWqhqj) (11)

ˆfqi =
∑
j

αi,jhqj (12)

where Wq is the trainable weight matrix, i and j denote positions in a sentence.

4.3 Encoder Layer

The encoder layer aims to capture the commonsense between sentences and use it to
enhance inference. It is composed of an RNN module and a dictionary module.

RNN module. An RNN unit encodes the fused queries and responses by long depen-
dency memory cells [19], so that relationships between sentences can be captured. The
input is fused query (f̂q) and response (f̂r) features. To encode the relationship be-
tween sentences, we concatenate f̂q and f̂r at sentence length dimensions as the input
of LSTM. Its last output hidden layer contains rich information about commonsense
between sentences. At time step t, the outputting representations can be formulated as:

ht = ot � tanh(ct) (13)

where the ct is formulated the same as in Equation (5). The difference is that xt =
concat(f̂q, f̂q), where concat is the concatenate operation. In addition, the outputting
representations ht is the last hidden layer of LSTM, while the outputting in Equation (3)
is every time step of BiLSTM.
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Dictionary module. Despite effective learning of the RNN unit in modeling the re-
lationship between sentences, it is still limited for run-time inference. We therefore
propose a dictionary unit to learn dictionary D, and then use it to look up common-
sense for inference. The dictionary is a dynamic knowledge base and is being updated
during training. We denote the dictionary as a d× k matrix D{d1, d2, ..., dk}, where k
is the size of dictionary. The given encoded representation h from RNN module will be
encoded using the formulations:

ĥ =

K∑
k=1

αkdk, α = softmax(DTh) (14)

where α can be viewed as the “key” idea in memory network [13].

4.4 Prediction Layer

The prediction layer generates a probability distribution of responses from the high-
dimension context generated in the encoder layer. It consists of a multi-layer percep-
tron. VCR is a multi-classification task in which one of the four responses is correct.
Therefore, multiclass cross-entropy [20] is applied to complete the prediction.

5 Experimental Results

In this section, we conduct extensive experiments to demonstrate the effectiveness of
our proposed DMVCR network for solving VCR tasks. We first introduce the datasets,
baseline models, and evaluation metrics of our experiments. Then we compare our
model with baseline models, and present an analysis of the impact of the different strate-
gies. Finally, we present an intuitive interpretation of the prediction.

5.1 Experimental Settings

Dataset. The VCR dataset [4] is composed of 290k multiple-choice questions in total
(including 290k correct answers, 290k correct rationales, and 110k images). The correct
answers and rationales labeled in the dataset are met with 90% of human agreements.
An adversarial matching approach is adopted to obtain counterfactual choices with min-
imal bias. Each answer contains 7.5 words on average, and each rationale contains 16
words on average. Each set consists of an image, a question, four available answer
choices, and four candidate rationales. The correct answer and rationale are given in the
dataset.

The distribution of inference types is shown in Figure 2. Thirty-eight percent of the
inference types are regarding explanation, and 24% of them are about the activity. The
rest are related to temporal, mental, role, scene, and hypothetical inference problems.
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Fig. 2. Overview of the types of inference required by questions in VCR.

Hyperparameters. The image features are projected to 512 dimension. The word em-
bedding dimension is 768. The dictionary is a [512,800] matrix, where 512 is the em-
bedding dimension, and 800 is the dictionary size. We separately set the learning rate
for the memory cell (the dictionary cell) to 0.02, and others to 0.0002. In addition, for
the Q→ A subtask, we set the hidden size of LSTM encoder to 512. For the QA→ R
subtask, we set the hidden size of LSTM encoder to 64. The model was trained with the
Adam algorithm [21] using PyTorch on NVIDIA GPU GTX 1080.

Metric. The VCR task can be regarded as a multi-classification problem. We use
mAp [22] to evaluate the performance, which is a common metric for evaluating pre-
diction accuracy in multi-classification areas.

Approach for comparison. We compare the proposed DMVCR with recent deep
learning-based models for VCR. Specifically, the following baseline approaches are
evaluated:

– RevisitedVQA [23]: Different from the recently proposed systems, which have a
reasoning module that includes an attention mechanism or memory mechanism,
RevisitedVQA focuses on developing a “simple” alternative model, which reasons
the response using logistic regressions and multi-layer perceptrons (MLP).

– BottomUpTopDown [24]: Proposed a bottom-up and top-down attention method
to determine the feature weightings for prediction. It computes a weighted sum
over image locations to fuse image and language information so that the model can
predict the answer based on a given scene and question.

– MLB [25]: Proposed a low-rank bilinear pooling for the task. The bilinear pooling
is realized by using the Hadamard product for attention mechanism and has two
linear mappings without biases for embedding input vectors.
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– MUTAN [26]: Proposed a multimodal fusion module tucker decomposition (a 3-
way tensor), to fuse image and language information. In addition, multimodal low-
rank bilinear (MLB) is used to reason the response for the input.

– R2C [4]: Proposed a fusion module, a contextualization module, and a reasoning
module for VCR. It is based on the sequence relationship model LSTM and atten-
tion mechanism.

5.2 Analysis of Experimental Results

Task description. We implement the experiments separately in three steps. We firstly
conducted Q → A evaluation, and then QA → R. Finally, we join the Q → A result
and QA → R results to obtain the final Q → AR prediction result. The difference
between the implementation of Q → A and QA → R tasks is the input query and
response. For the Q → A task, the query is the paired question, image, four candidate
answers; while the response is the correct answer. For the QA → R task, the query
is the paired question, image, correct answer, and four candidate rationales; while the
response is the correct rationale.

Models Q → A QA → R Q → AR

RevisitedVQA [23] 39.4 34.0 13.5

BottomUpTopDown [24] 42.8 25.1 10.7

MLB [25] 45.5 36.1 17

MUTAN [26] 44.4 32.0 14.6

R2C (Baseline) [4] 61.9 62.8 39.1
DMVCR 62.4 (+0.8%) 67.5 (+7.5%) 42.3 (+8.2%)

Table 1. Comparison of results between our methods and other popular methods using the VCR
Dataset. The best performance of the compared methods is highlighted. Percentage in parenthesis
is our relative improvement over the performance of the best baseline method.

Analysis. We evaluated our method on the VCR dataset and compared the performance
with other popular models. As the results in Table 1 show, our approach outperforms
in all of the subtasks: Q → A, QA → R, and Q → AR. Specifically, our method
outperforms MUTAN and MLB by a large margin. Furthermore, it also performs better
than R2C.

5.3 Qualitative Results

We evaluate qualitative results on the DMVCR model. The qualitative examples are
provided in Figure 3. The candidate in green represents the correct choice; the candidate
with a checkmark X represents the prediction result by our proposed DMVCR model.
As the qualitative results show, the DMVCR model improves its power in inference.
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(a) Qualitative example 1. The model predicts the correct answer and ratio-
nale.

(b) Qualitative example 2. The model predicts the correct answer and ra-
tionale.

(c) Qualitative example 3. The model predicts the correct answer but in-
correct rationale in Question 1. The model predicts an incorrect answer but
correct rationale in Question 2.

Fig. 3. Qualitative examples. Prediction from DMVCR is marked with a X while correct results
are highlighted in green.
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For instance, see Figure 3(a). The question listed is: “What kind of profession does
[0,1] and [2] practice?”. The predicted answer is D - “They are all lawyers.” Further-
more, the model offers rationale C - “[0,1] and [2] are all dressed in suits and holding
papers or briefcases, and meet with people to discuss their cases.” DMVCR correctly
infers the rationale based on dress and activity, even though this task is difficult for
humans.

DMVCR can also identify human beings’ expressions and infer emotion. See for
example the result in Figure 3(b). Question 1 is: “Are [0,1] happy to be there?”. Our
model selects the correct answer B along with reason A: “No, neither of them is happy,
and they want to go home”; because “[0] looks distressed, not at all happy.”

Finally, there are also results which predict the correct answer but infer the wrong
reason. For instance, see question 1 in Figure 3(c): “What are [3,1] doing?” DMVCR
predicts the correct answer A - “They are preparing to run from the fire.” But it infers
the wrong reason A - “They are turned towards the direction of the fire.” The correct
answer is of course B - “They are in motion, and it would be logistical to try to leave.”
It is also possible for the model to predict a wrong answer but correct rationale. This
appears in question 2 of Figure 3(c). The model predicts the wrong answer D - “[0] is
afraid that he will be seen.” The correct reason is B - “The building is on fire and he is
vulnerable to it.”

6 Conclusion

This paper has studied the popular visual commonsense reasoning (VCR). We propose
a working memory based model composed of a feature representation layer to capture
multiple features containing language and objects information; a multimodal fusion
layer to fuse features from language and images; an encoder layer to encode common-
sense between sentences and enhance inference ability using dynamic knowledge from
a dictionary unit; and a prediction layer to predict a correct response from four choices.
We conduct extensive experiments on the VCR dataset to demonstrate the effectiveness
of our model and present intuitive interpretation. In the future, it would be interesting to
investigate multimodal feature fusion methods as well as encoding commonsense using
an attention mechanism to improve the performance of VCR.
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