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It is commonly accepted that in typical situations the rate of entropy production is non-negative. We show
that this assertion is not entirely correct, not even in the linear regime, if a time-dependent, external perturbation
is not compensated by a rapid enough decay of the response function. This is demonstrated for three variants
of the Drude model to describe electrical conduction in noble metals, namely the classical free electron gas,
the Drude-Sommerfeld model, and the extended Drude-Sommerfeld model. The analysis is concluded with a
discussion of potential experimental verifications and ramifications of negative entropy production rates.
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I. INTRODUCTION

Most systems in the observable universe exhibit a tendency
to evolve towards a state of equilibrium. Phenomenologically,
this universal behavior is described by the non-negativity of
the entropy production [1]. More specifically, the thermo-
dynamic entropy is defined such that (i) it is maximal in
equilibrium [1], and that (ii) all real, nonequilibrium processes
are accompanied by the production of additional irreversible
entropy [2]. In irreversible thermodynamics it is then often
taken for granted that also the rate of entropy production has
to be a non-negative function [2,3], even to the extent that
negative rates would have cosmological implications [4].

Over the last couple of decades, the non-negativity of the
entropy production rate has then become somewhat synony-
mous to a statement of the second law of thermodynamics
[5-13]. However, in its original treatment [2] it is clear that
the non-negativity is a direct consequence of the assumption
of local equilibrium and, in particular, the rapid decay of the
system’s response to external perturbations. Thus, if either
the rate of driving becomes comparable to the inverse of
the local relaxation time, or if the interaction between sys-
tem and environment conspires to give rise to more intricate
time-dependent response functions, finding negative entropy
production rates is not that uncommon [14-22].

Thus, the natural question arises, whether there are any
experimentally relevant scenarios in which negative entropy
production rates are prevalent and persist in the linear regime,
i.e., close to equilibrium. Remarkably, only very few studies
have analyzed this scenario. To the very best of our knowl-
edge, this question has only been analyzed and demonstrated
by Williams et al. [23]. In Ref. [23] they showed that in
viscoelastic fluids sheared by oscillatory forces, the entropy
production rate has marked negative periods, while the aver-
age entropy production remains positive. In viscoelastic media
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the relaxation times are rather long, while at the same time
the viscosity is high. Therefore, these negative rates are not
a consequence of driving far from equilibrium, but rather
an inherent property of the medium even in the regime of
time-dependent linear response [24,25].

While viscoelastic fluids under oscillatory shears are inter-
esting, they may not be the most common physical system.
Therefore, the present work is dedicated to the analysis of the
entropy production rate in a much more mundane situation,
namely noble metals under AC driving. To this end, we ana-
lyze the entropy production rates in three different scenarios
starting with the classical Drude model [26,27], continuing
to the Drude-Sommerfeld model [28], and finishing with the
extended Drude-Sommerfeld model [29-31]. The extended
Drude-Sommerfeld model is a sophisticated generalization of
the classical free electron gas, which describes experimental
findings to very high accuracy [32-34].

Specifically, we compute the entropy production rate with
a standard tool of condensed matter theory, namely by means
of time-dependent linear response theory [25,35-39]. We find
that for all three cases, ranging from the simplest classical
treatment to the sophisticated quantum model, negative pe-
riods of the entropy production rate are prevalent, while the
entropy production itself remains strictly positive. In particu-
lar, we argue that these negative rates are a direct consequence
of Ohm’s law and thus fully consistent with phenomenologi-
cal, irreversible thermodynamics. The analysis is concluded
with a discussion of experimental consequences that could be
observed in measurements of the conductivity in noble metals,
such as silver [33] and gold [32].

II. IRREVERSIBLE THERMODYNAMICS OF
ELECTRICAL CONDUCTION

In condensed matter theory [37-39], in particular in the
description of electrical conduction of simple metals, it has
been established that tools from linear, irreversible thermody-
namics are apt and convenient. Thus, the main object of the
present analysis is the entropy production rate, 3, written as
a bilinear form, ¥ = ), F;(t)J(t), of forces F; and flows or
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currents J; [3,4]. The currents are given by the most general
linear expression and we write [24,40]

t
2= "Fit) / dt' @;i(r — 1) Fi (1), (1)
ij -

where ®;;(¢) denotes the response function. Note that for
slowly varying forces the time-averaged response function
becomes identical to the Onsager transport matrix [1,24,41].
This is the “usual case,” in which also the average en-
tropy production rate remains strictly positive [42—44]. In the
following, we will focus on the more general case of time-
dependent response functions, ®;;(¢), and we will see that >
can, indeed, take negative values if the temporal variation of
the forces F;(¢) cannot be compensated quickly enough by the
decay of ®;;(z).

Equation (1) is not only at the core of the description
of material properties [37], but has recently also attracted
significant interest in the study of thermodynamic control
[45-53]. In this context it has been argued that the sign of
¥ is rooted in whether or not the response function gives rise
to a Riemannian metric [53].

In the present analysis, we focus on a physical scenario
of immediate practical relevance, namely the entropy pro-
duction in noble metals under AC electrical driving. To this
end, we now proceed to compute the response function ()
for three variants of the Drude model and determine the re-
sulting entropy production rate. We start with the simplest
case, and build up to more sophisticated scenarios. Despite
its shortcomings and simplicity [37], the Drude model does
describe the properties of real metals such as gold, copper, and
silver [32,33] at room temperatures and low photon energies
reasonably well.

A. Classical Drude model

In its original formulation [27,27], the Drude model
describes a free electron gas of N noninteracting and in-
dependent charge carriers. Nevertheless, it is assumed that
these particles have a finite mean free path, which can be
translated into a relaxation time. This quantity can be phe-
nomenologically introduced, expressing the collision term of
the Boltzmann equation as [37]

af _ _ﬁ
<¥>coll B TR ’ (2)

where f, §f = f — fo, and 1z denote the nonequilibrium
distribution, the deviation from the initial equilibrium distri-
bution fy, and the relaxation time tg, respectively.

The relation between current, j (w), and electric field,
E(w), in the frequency domain is given by Ohm’s law [37],

J (@) = 0a(0)E (o), 3)
where the conductivity oy (w) reads
o0
oc(w) = L “4)
1 —iwtg

with 0(0) = Ng?>tg/m. Hence, Eq. (4) reduces to the classi-
cal DC conductivity in the zero-frequency limit.

Computing the inverse Fourier transform of Eq. (3), we
obtain

Jt) = / dt' ®(t —t'YE(t), 5)
where the response function ®(¢) is given by [24]
(0
(1) = O(1) ol )eXP(—ItI/tR), (6)

TR

with O(t) denoting the Heaviside step function.

Comparing the response function ®(¢) in Eq. (6) with
the analysis of sheared viscoelastic fluids [23], we immedi-
ately conclude that the entropy production rate (1) can indeed
exhibit negative values for oscillating electric fields. We em-
phasize again that our approach is purely phenomenological,
as required by irreversible thermodynamics. Hence, the oc-
currence of these negative entropy production rates are fully
consistent with the second law. Furthermore, a free electron
gas can be understood as a charged ideal gas, for which also
negative rates have been reported [15].

B. Drude-Sommerfeld model

The classical Drude model is only a poor conceptual de-
scription of electrical conduction in real metals. Thus, we need
to address the question of whether these negative rates persist
in more sophisticated models. The Drude-Sommerfeld model
is a quantum generalization of the classical free electron gas.
In this model the classical, thermal distribution is upgraded
to the Fermi-Dirac statistics [28]. Nevertheless, the expres-
sion for the conductivity (4) remains formally the same. The
quantum effects are encoded in modified values of N, g, and
m. The number of charge carriers N is given by the number
of available electrons near the Fermi surface, 7z changes dif-
ferently with temperature, and m is the effective (band) mass
[54].

Hence, the entropy production rate (1) becomes

t
5= 0EO [ exp it =Y EG). D)
w T Jo
where oy is the zero-frequency conductivity of the Drude-
Sommerfeld model [34,37], T is the temperature, and we
assume E(¢) # 0 for¢t > 0 only.

Now further assuming the simplest parametrization for the
electric field, E(t) = Ey sin (wopt ), and employing Eq. (7), the
entropy production rate (1) becomes

0 (EZ/T) sin (wot) B
= T+ (wotR)? [wotk exp (—1/Tr)

— woTg cos (wot) + sin (wpt)]. 8)

Figure 1 provides a numerical illustration of this expression
for 3. Obviously, Eq. (8) can take marked negative values.
Moreover, negative rates persist even when 19 = 27 /wy is
orders of magnitude larger than 7z, which shows that this phe-
nomenon is not restricted to microscopic time scales. For large
periods of oscillation and wytz — 0, ¥ (8) asymptotically
becomes

2
O'()EO

¥~ sin (wot )[—wo Tk cos (wot) + sin (wot)],  (9)
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FIG. 1. Entropy production rates given by Eq. (8) for the following values of the ratio 7y/7z: (a) 1, (b) 5, (c) 20, and (d) 10%. We defined

20 = O'QE(?/T

which shows that there is always a small vicinity of wyt = n,
n=1,2,3,...,with® < OaslongastrR # 0.

The emergence of negative values of ¥ can also be under-
stood qualitatively. In Eq. (7) we observe that ¥ is given by the
product of a time-dependent electric field and a convolution
between the same field (evaluated at a previous time) and the
response function. This convolution describes a delay between
the response of the system and the external driving. Thus,
if the function E(¢) is nonmonotonic and acquires negative
values, this delay leads to negative values of X.

Now, the natural question arises whether the entropy pro-
duction, ¥ = f(; dt’ E, itself remains positive at all times. To
this end, we write

1 t
D R

~ 2T )y (10)

a’t’/ dt"E@tHet —t"HE@1"),
0

which follows from simple manipulations of the integral and
using ¢(—t) = ¢(¢) (see Appendix A). For such quadratic
forms it was recently shown [21] that the entropy production
is non-negative iff the Fourier transform of the response func-
tion, ¢(w) = f dt exp (iwt)¢(t), is a non-negative function
(see Appendix B).

For the Drude-Sommerfeld model we obtain
2 o1 0

P(w) = m,

(1)
which is clearly positive. Thus, also the entropy production
X is a non-negative, albeit nonmonotonic function of time.
In Fig. 2 we depict £ for the entropy production rate (8)
for a range of parameters. The plot clearly demonstrates the
theoretical prediction. Curiously, comparing with Ref. [23]
we also observe the stark thermodynamic similarity of the
Drude-Sommerfeld model and viscoelastic fluids.

In the Appendix C we further show that the time-averaged
entropy production rate is proportional to the Fourier trans-
form ¢(w) of the response function. Thus, the non-negativity
of ¢(w) might be understood simply as the standard statement
of the fluctuation-dissipation theorem. However, we have also
demonstrated that ¢(w) > 0 is not equivalent to the positivity
of 3. In other words, the second law of thermodynamics is
not synonymous to non-negative entropy production rates.

Figure 1 also shows that negative rates become more salient
as the frequency of the oscillatory field approaches 1/7y.
However, it is known that the Drude-Sommerfeld model starts
to deviate from experimental results for high frequencies
[32,33]. Therefore, we continue the analysis with an extended
model that accounts for more intricate quantum effects.
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FIG. 2. Entropy production (10) as a function of time for the
Drude-Sommerfeld model under AC driving in units of X, =
UoEg TR / T.

III. EXTENDED DRUDE-SOMMERFELD MODEL

The extended Drude-Sommerfeld model is a phenomeno-
logical generalization accounting for the frequency depen-
dence of the dielectric constant € (w) [29,31]. Specifically, the
electrical conductivity is written as

€0 Cl),z,
G(w) — iw’
where ¢ is the vacuum electrical permittivity and w), is the
plasma frequency with a)lz, = Ng?/eom.

Comparing Eq. (4) with Eq. (12) we notice that the function
G(w) phenomenologically encodes the quantum many-body
properties, and it is determined such that o (w) agrees with
the Kramers-Kronig relations (see Appendix D). Note that
in the “standard” Drude-Sommerfeld model we simply have
G(w) = 1/10, where 79 now denotes the relaxation time at
w = 0. More generally, G(w) is given by

o(w) = (12)

G(w) = /Oodt exp (iwt) g(t), (13)
0

with g(¢) real and g(¢) = 0 for ¢+ < 0, which again is an ex-
pression of causality. It can be shown that g(r) generalizes the
collision term (2) of the Boltzmann equation to a convolu-
tion, which becomes local in time (i.e., memoryless) in the
relaxation-time approximation [29].

Equation (12) implies that the relaxation time becomes a
function of frequency tz(w), and we have

1 oo  G(o)
@) o) 1-G(w) o

where the subscripts 1 and 2 denote real and imaginary parts,
respectively. For noble metals, the electron-phonon interac-
tion is fully covered by the relaxation time approximation, and
the electron-electron interaction at the level of Fermi-liquid
theory yields in leading order [30,34]

1 1

N — +bw, 15
@) e (15)

(14)

where both 7 and b are functions of temperature.

1,
5
s
=05
<
0,\ 1 1
0 10 20

t(107%s)

FIG. 3. Response function for the extended Drude-Sommerfeld
model resulting from the phenomenological ansatz (16) and parame-
ters A = 1072, at, = 10, and 7. = 3 x 10~ s (see Appendix D).

To appropriately describe experimental findings, G(w)
must fulfill that (i) the order of magnitude of r,? at room
temperature is O(107'%) s, and (ii) the relaxation time 7z(w)
has to match the experimentally measured behavior (15), with
b/t of the order of O(10~2) [33]. Given these conditions, we
make a phenomenological ansatz with three free parameters,
A, a, and .,

2 2
HZ#} exp (—1/7.)

X [cos (at) + sin (at)/az.]. (16)

gt) = ®(Z)A[

where ©(¢) is again the Heaviside step function. In Ap-
pendix D we compare our phenomenological description with
the experimental findings in gold [32] and silver [33]. We find
good agreement for conductivity in the ranges 0.1 to ~4 eV of
photon energies.

Using the phenomenological ansatz (16) we determine the
conductivity o (@) (12), and eventually the response function.
The resulting expression is depicted in Fig. 3 for experimen-
tally relevant parameters. We observe that ¢(¢) is given by a
sum of a simple exponential decay and another exponential
decay (with a slightly faster rate) that multiplies an oscillatory
function (see Appendix D for details).

In Fig. 4 we plot the entropy production rate for the Drude-
Sommerfeld model (8) together with the rate resulting for the
extended Drude-Sommerfeld model. Parameters are chosen to
be experimentally relevant and for a photon energy of 0.5 eV.
We observe that (i) the Drude-Sommerfeld model and the
extended Drude-Sommerfeld model result in barely distin-
guishable rates, (ii) the entropy production rate has marked
negative periods, and (iii) after an initial transient the driven
system relaxes into a periodic stationary state.

In conclusion, we have demonstrated that the entropy
production rate in metals under AC driving can take nega-
tive values. This observation is not an artifact of the overly
simplistic Drude and Drude-Sommerfeld models, but is also
exhibited by the extended Drude-Sommerfeld model that de-
scribes experimental data to high accuracy [32,33].
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FIG. 4. Entropy production rates, 3, in units of ¥y = o0EZ /T
for photon energy of 0.5 eV for the Drude-Sommerfeld model
(8) (green solid line) and the extended Drude-Sommerfeld model
(black dotted line). Parameters are A = 1072, ar. = 10, and 7. =
3 x 107" s (see Appendix D).

IV. EXPERIMENTAL VERIFICATION AND
GENERALIZATIONS

As alluded to above, the occurrence of negative values of
the entropy production rate is governed by the competition of
the rate of relaxation time and the rate of driving. Typically,
1/zQ varies from 10° to 10'*Hz depending on the tempera-
ture and the impurity concentration [32,33]. These rates are
well within experimentally accessible driving. From a more
practical point of view, negative entropy production rates are
intimately related to negative heating rates [23]. Thus, our
results suggest that metals under AC driving exhibit an in-
trinsic cooling mechanism, which may be exploited by clever
design in electronics. However, to develop such applications
these negative rates might have to be directly measured. This
may become possible if one measures the temporally resolved,
local temperature. However, nanothermometry still poses sig-
nificant challenges with many open questions [55-58]

In the present case, the entropy production rate has the
form of current times electric field. From the theory of elec-
trodynamics it follows that this is exactly minus the power
transferred from the electromagnetic radiation to the charges
in the conductor. Thus, we have just described a situation
in which the energy delivered by radiation is irreversibly
absorbed by a thermally isolated system consisting of a collec-
tion of electrons plus its heat bath of phonons. However, we
know from everyday life experience that metals reflect part
of the visible light that we shine on them. This seems to be
the experimental evidence that entropy production rates can
become negative since they are a measure of absorbed power.

Additionally, the physical mechanism leading to negative
entropy production rates is not restricted to free electron
gases. For instance, similar behavior of the response func-
tion can also be found in the Hubbard model [59], which
suggests that analogous studies and/or experiments could be
performed in more complicated materials. In addition, con-
ductivity measurements of ultracold atoms in optical lattices
have already been performed and might constitute an alterna-
tive setup to bulk metals [60].

Finally, experiments on levitated nanoparticles have been
reported that also exhibit potentially negative entropy pro-

duction rates [61]. However, similarly to sheared viscoelastic
fluids [23], levitated nanoparticles [61] are somewhat less
commonplace than electrical conduction.

V. CONCLUDING REMARKS

In the present work, we have demonstrated that in the rather
mundane situation of electric conduction under AC driving
the entropy production rate assumes negative values. This is
not a peculiarity of a system driven far from equilibrium, but
rather a consequence of a competition of time scales in the
linear regime. We have found the same behavior for three
variants of the Drude model, ranging from the classical free
electron gas to a phenomenological extension accounting for
all underlying quantum many-body effects. Finally, we em-
phasize that the positivity of the entropy production rate is not
synonymous to the second law of thermodynamics in general,
and that negative values are not necessarily prohibited, not
even in the linear-response regime.
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APPENDIX A: CONDUCTIVITY
AND GREEN-KUBO FORMULA

We briefly show here how to express the conductivity in
terms of Green-Kubo formula. We start with the Hamiltonian

N
H(t)=Ho—q ) _rc-EQ),
k=1

(AL)

where Hj is the bare Hamiltonian of the electron gas plus
its heat bath, and E(¢) is the time-dependent electric field.
Moreover, ¢ is the charge and r; denotes the position of the
kth electron. We further assume that the material is isotropic
and homogeneous, and only the magnitude of E(¢) changes
while its direction remains constant. In the simplest case, we
have E(t) = Eg sin (wo?), but the following analysis remains
true for more complicated driving.

The standard approach [24,37,38] then allows to compute
the electrical current, 7 (), in terms of the response function.
We have

t
Jt) = / dt' @@t —tHE(t), (A2)
—00
where we dropped the vector notation, since the direction of
the electric field is constant. The response function at inverse
temperature § is determined by [24],

B
O(r) = ®(t)/ dr (J(=iha)J (1)) = O@) (),  (A3)
0

and where we included the Heaviside step function ®(¢) to
preserve causality. Moreover, J(¢) is the total electric flux
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operator in the interaction picture,
J(t) = exp (iHot /h) <q Z L'tk> exp (—iHot /h), (A4)
k

where the i are the time derivatives of the projection of ry in
the direction of E(¢). Finally, the flux correlation function in
Eq. (A3) reads
tr{exp (—BHo)J (—ih3)J (1))}

tr{exp (—BHo)}
which is a thermal average with respect to the bare Hamil-
tonian Hy. Hamiltonian dynamics demands that the response

function in Eq. (A3) fulfills ¢(—1) = ¢(¢) (see Ref. [24]), and
is thus thermodynamically consistent [21].

(J(=ihr)J (1)) = , (AS)

APPENDIX B: NON-NEGATIVITY OF
ENTROPY PRODUCTION

A question that naturally arises from our results is whether
the entropy production X obtained from the time integral of
¥ is always non-negative. Mathematically, this issue can be
addressed along the same lines of what was done in Ref. [21].
First, we rewrite the time integral appropriately as

Y= T dt/dt Et)od —t"YE1"), (B1)

where the property ¢(—t) = ¢(¢) was used (see Appendix A).
Afterwards, the following theorem applies.

Theorem 1. The entropy production X given by Eq. (B1)
is non-negative if, and only if, the Fourier transform é(w) of
¢(t) is a non-negative function, i.e.,

d(w) = /OO dt exp (iwt) ¢(1) > 0. (B2)

We will restrict ourselves to prove the first implication of
Theorem 1. The second one can be seen in detail in Ref. [62]
under the name Bochner’s theorem. We start using the fact that
d;(a)), as defined in Eq. (B2), is real since ¢p(—t) = ¢(¢) (see
Appendix A). Hence, if ¢(w) is non-negative, we can write
Eq. (B1) as follows:

dt dt" EX)E ("
= 1xT f (tHE@")

X /00 dw exp[—io( —1")] p(w)

oo

4;T dw ‘/ dt’ exp (—iwt")E(t") q)(a))
(B3)

which proves the first implication. It is straightforward
to further verify that the Fourier transform of ¢(¢) =

(00/tr) exp (—t|/TR),
200
1+ (wt)*’
(B4)

A 20’() o0
d(w) = —/ dt exp (—t/tg) cos(wt) =
0

TR

is always non-negative.

APPENDIX C: FLUCTUATION-DISSIPATION THEOREM

We now show that the time-averaged entropy production
(TEP) rate is proportional to the Fourier transform of the
response function ¢(z). To this end, we define the TEP rate

as
$-1 /sz s = EOTO (C1)
T Jo T

where 7 = 27 /w is the period of oscillation of E(¢). Since the
current J (t) is given by

j(t):/ dt’ CIJ(t—t/)E(t/)=/oodt/<b(t/)E(t—t/),
0

(C2)
with ®(¢) = O(t)¢p(¢) and E(t) = Ey sin (wt ), we obtain
Eo i s ot
J@) = E[ X (@) — e x ()], (C3)
where
x(w) = /0 dt € ¢(1) = x1(0) + ixa(w). (C4)

The current 7 (¢) can be written then in terms of y;(w) and
Xx2(w), the real and imaginary parts of x (), respectively:

J (1) = Ep[sin (o1) x1 (@) — cos (wt) x2(w)], (€5
that yields the following expression for TEP rate,

= E}I E}
Y =2—| dtsin® (ot = " C6
T T/O sin® (@) x1(@) = x1(@) (Co)
Equation (B4) implies that x;(w) = dA)(a))/Z, i.e., the TEP
rate, which is a measure of the averaged dissipated power, is
given in terms of the Fourier transform ¢(w) of the response
functi_on. Hence, ¢(w) must be non-negative if we demand

that 3 > 0. Since the Green-Kubo formula relates ¢(w) to
the Fourier transform of certain equilibrium fluctuations, the
non-negativity of Eq. (C6) becomes the standard statement of
the fluctuation-dissipation theorem [24].

APPENDIX D: CONDUCTIVITY OF THE EXTENDED
DRUDE-SOMMERFELD MODEL

Our phenomenological proposal of an extended Drude-
Sommerfeld model (EDS) relies on the following expression
for the electrical conductivity [29,31]:

2
€0 a)p

G(w) — iw’ ©h

o(w) =
where € is the vacuum electrical permittivity and w), is
the plasma frequency. For G(w) = 1/tg, we recover the DS
model. Thus, the function G(w) introduces a frequency-
dependent relaxation time whose underlying physical mech-
anism is the electron-electron interaction [32-34].

We demand that Eq. (D1) fulfills the Kramers-Kronig or
dispersion relations (which are an expression of causality
[63]). For that, o (w) must be analytic in the upper-half com-
plex plane, i.e., poles of o (w) must have negative imaginary
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parts (for details, see the Titchmarsh theorem [63]). Addition-
ally, the response function obtained from Eq. (D1) through

() = % /oo dwe o (w) (D2)

oo

must be real. This requires that o;(—w) = oj(w) and
oy (—w) = —os(w), where oy(w) and o,(w) denote the real
and imaginary parts of o (w), respectively.

All the requirements mentioned above can be achieved by
a suitable choice of G(w). First, simple algebra shows that
Gi(—w) = G| (w) and Gy(—w) = —G,(w) [where subscripts
1 and 2 denote real and imaginary parts of G(w), respectively]
imply the correct parity of o (w). Second, by choosing G(w)
analytic in the upper-half complex plane, we will verify that
o(w) is also analytic in the upper-half complex plane and
hence satisfies Kramers-Kronig relations. In summary, G(w)
can be expressed as

G(w) = /00 dt exp (iwt) g(t), (D3)
0

where the function g(¢) is real and g(¢) = 0 forr < 0.

To give a hint about the physical meaning of g(¢), we recall
that transport coefficients are often calculated using the Boltz-
mann equation [37]. In this approach, Drude-Sommerfeld
(DS) conductivity is obtained in the so-called relaxation-
time approximation, which assumes that the collision term of
Boltzmann equation can be written as (9 f /9t )con = —36f/ 1’18,
where f, §f = f — fo, and t,? denote, respectively, the
non-equilibrium distribution, the deviation from the initial
equilibrium distribution fy (which in the present case is the
Fermi-Dirac one) and the relaxation time. For the extended
DS (EDS) model, the collision term is written as [29]

of _ ! / Y ’
(ﬁwn _ f =)0,

where g(¢) is the function introduced in Eq. (D3). If g(¢)
decays sufficiently fast, § f can be taken outside the integral in
Eq. (D4) and the relaxation-time approximation is recovered.

As stated above, our approach does not provide a micro-
scopic derivation of g(¢). In what follows, we show that an
expression of g(¢) in terms of elementary functions accounts
for a minimum list of experimental facts. Our results are
based on experiments compiled in Refs. [32,33] for the optical
dielectric function of Au and Ag. These experiments show that
DS model describes very well the behavior of these two noble
metals in the range of 0.1 to 1.5 eV. EDS is understood then
as a correction of DS model for photon energies larger than
1.5 eV. Additionally, Refs. [32,33] show that

(i) The zero-frequency relaxation time 79 must be of the
order of 10™!# s at room temperature.

(i) The frequency-dependent relaxation time 7z(w) must
have the following low-frequency behavior (which is also
predicted by Fermi-liquid theory [34]):

(D4)

1/tr(w) = 0oy (w)/oa(w) ~ 1/1) + bo?,  (D5)

with the ratio b/t ~ 10~ at room temperature.

01,00 (M7

104 ‘
10°8 1072 10" 10° 10
Photon Energy (eV)

FIG. 5. Real (solid line) and imaginary (dashed line) parts of the
conductivity o (w) obtained from Egs. (D1), (D3), and (D6) with the
choice of parameters A = 1072, at, = 10, and 7, = 3 x 107"% 5. The
value of liw, = 8.9V for the plasma frequency was taken from the
experimental results reported in Refs. [32,33].

Figure 5 shows the result obtained for the conductivity
given by Eq. (D1) with the following choice of g(¢):

21, -2
gt) = @(t)<m> Aexp (—t/t.)[cos (at)

+{1/(at.)}sin (at)], (D6)
where ©(¢) is the Heaviside step function and A, and a and
7. are free parameters whose values are determined by the
previously mentioned experimental facts. Our results can be
directly compared to the conductivity of Au presented in
Fig. 8 of Ref. [32] and of Ag presented in Fig. 7 of Ref. [33].
They show a reasonable agreement with experiments and
provide 79 ~ 6 x 10~15s (roughly 3 times smaller than the
relaxation time of Ag and Au [32,33]) and b/7) ~ 3 x 1073
for the choice of parameters A = 1072, ar, = 10, and 7, =
3 x 1075 s, and the experimental value of fiw, = 8.9eV.

0.2/ 10

T 018 5

S

< 0

£016 1
014,

00 02 04 06 08 10
Photon Energy (eV)

FIG. 6. Low-frequency behavior of 1/tz(w) = wo(w)/0o2(w)
(solid lines) as predicted by our phenomenological EDS model [see
Egs. (D1), (D3), and (D6) for the choice of parameters A = 1072,
at, = 10,and 7, = 3 x 107 s, and the experimental value of fiw, =
8.9¢eV. The dashed line shows 1/t9 4+ bw?, with 79 ~ 6 x 1075 s
and b/7) ~ 3 x 1073 obtained from our model. The inset shows that
our model breaks down for energies between 2 and 3 eV.
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FIG. 7. Time evolution of the contributions ¢, () (solid line) and
¢5(t) (dashed line) of the response function (D9) for the parameters
A=10"2ar.=10,and 7, =3 x 107 P s.

Figure 6 shows that our EDS model provides a quadratic
behavior for 1/tg(w) at low frequencies. However, experi-
ments show that 1/tz(w) grows monotonically (and faster
than w?) up to photon energies of 5 to 10 eV [33]. Our model
fails to predict that already for photon energies between 2 and
3eV.

A few words about our choice of Eq. (D6). The function
g(t) must decay sufficiently fast since the relaxation-time
approximation must be recovered in some limit. We have
verified that a simple exponential decay such as A exp (—¢/t.)
does not allow us to describe the minimum amount of ex-
perimental results described previously. Thus, Eq. (D6) is the
simplest function we have been able to find that furnishes a
reasonably good agreement with experiments.

1. Response function of the EDS model
Equations (D1), (D3), and (D6) imply that

o(w) = % (@) — (i +wt)l, (D7)
R

. 00
9

Sf(w)
where oy = eoa)f,tlg and

f@) = @1) +2iwr)? — 2 11 + @ P

“’f [1 4 (at.)’1[4 + A(l + (az.)>)].  (D8)

The response function (D2) can be calculated then by contour
integration in the complex plane once the poles of Eq. (D7)
are obtained for the choice A = 1072, ar, = 10 and . =
3 x 10715 s. It can be shown that the poles are of the form
w) = —i,wp, =y —in,and wz = —y — in, withe, y,and n
all positive. Thus, Eq. (D7) fulfills Kramers-Kronig relations
and the response function is expressed as the sum of two
contributions,

Q(r) = ®(t):_§[¢A(t) + @501, (D9)

such that, for t > 0,
¢a(t) = ¢a(0) exp (—at), (D10)
¢p(1) = ¢p(0)exp (—nt)[cos (y1) + k sin(y1)],  (D11)

where ¢4(0), ¢p(0), x, a, y, and n are constants determined
by the values of A, at., and .. Figure 7 shows the behavior
of ¢4(t) and ¢p(r). Expression (D9) was used to obtain the
entropy production rate shown in Fig. 3 of the main text.

[1] H. Callen, Thermodynamics and an Introduction to Ther-
mostastistics (Wiley, New York, 1985).

[2] I. Prigogine, Introduction to Thermodynamics of Irreversible
Processes (Interscience, New York, 1961).

[3] S. R. De Groot and P. Mazur, Non-Equilibrium Thermodynam-
ics (Courier, New York, 2013).

[4] 1. Prigogine and J. Géhéniau, Entropy, matter, and cosmology,
Proc. Natl. Acad. Sci. USA 83, 6245 (1986).

[5] J. Schnakenberg, Network theory of microscopic and macro-
scopic behavior of master equation systems, Rev. Mod. Phys.
48, 571 (1976).

[6] R. T. McAdory, Jr. and W. C. Schieve, On entropy production
in a stochastic model of open systems, J. Chem. Phys. 67, 1899
1977).

[7] H. Spohn, Entropy production for quantum dynamical semi-
groups, J. Math. Phys. 19, 1227 (1978).

[8] H. Spohn and J. L. Lebowitz, Irreversible thermodynamics for
quantum systems weakly coupled to thermal reservoirs, Adv.
Chem. Phys. 38, 109 (1978).

[9] R. Alicki, The quantum open system as a model of the heat
engine, J. Phys. A: Math. Gen. 12, L103 (1979).

[10] G. Gallavotti and E. G. D. Cohen, Dynamical Ensembles in
Nonequilibrium Statistical Mechanics, Phys. Rev. Lett. 74,
2694 (1995).

[11] D. Ruelle, Positivity of entropy production in nonequilibrium
statistical mechanics, J. Stat. Phys. 85, 1 (1996).

[12] U. Seifert, Entropy Production Along a Stochastic Trajectory
and an Integral Fluctuation Theorem, Phys. Rev. Lett. 95,
040602 (2005).

[13] S. Deffner and S. Campbell, Quantum Thermodynamics (Mor-
gan & Claypool, San Rafael, CA, 2019).

[14] B. Bylicka, M. Tukiainen, D. Chruscinski, J. Piilo, and S.
Maniscalco, Thermodynamic power of non-Markovianity, Sci.
Rep. 6, 27989 (2016).

[15] J. I Belandria, Positive and negative entropy production in an
ideal-gas expansion, Europhys. Lett. 70, 446 (2005).

[16] S. Bhattacharya, A. Misra, C. Mukhopadhyay, and A. K. Pati,
Exact master equation for a spin interacting with a spin bath:
Non-markovianity and negative entropy production rate, Phys.
Rev. A 95, 012122 (2017).

[17] S. Marcantoni, S. Alipour, F. Benatti, R. Floreanini, and A. T.
Rezakhani, Entropy production and non-markovian dynamical
maps, Sci. Rep. 7, 12447 (2017).

[18] M. Popovic, B. Vacchini, and S. Campbell, Entropy production
and correlations in a controlled non-markovian setting, Phys.
Rev. A 98, 012130 (2018).

[19] Y. Y. Xu, J. Liu, and M. Feng, Positive entropy production
rate induced by non-markovianity, Phys. Rev. E 98, 032102
(2018).

[20] P. Strasberg and M. Esposito, Non-markovianity and neg-
ative entropy production rates, Phys. Rev. E 99, 012120
(2019).

012109-8


https://doi.org/10.1073/pnas.83.17.6245
https://doi.org/10.1103/RevModPhys.48.571
https://doi.org/10.1063/1.435120
https://doi.org/10.1063/1.523789
https://doi.org/10.1002/9780470142578.ch2
https://doi.org/10.1088/0305-4470/12/5/007
https://doi.org/10.1103/PhysRevLett.74.2694
https://doi.org/10.1007/BF02175553
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1038/srep27989
https://doi.org/10.1209/epl/i2004-10508-7
https://doi.org/10.1103/PhysRevA.95.012122
https://doi.org/10.1038/s41598-017-12595-x
https://doi.org/10.1103/PhysRevA.98.012130
https://doi.org/10.1103/PhysRevE.98.032102
https://doi.org/10.1103/PhysRevE.99.012120

NEGATIVE ENTROPY PRODUCTION RATES IN ...

PHYSICAL REVIEW E 103, 012109 (2021)

[21] P. Nazé and M. V. S. Bonanca, Compatibility of linear-response
theory with the second law of thermodynamics and the emer-
gence of negative entropy production rates, J. Stat. Mech.: Theo.
Exp. (2020) 013206.

[22] G. T. Landi and M. Paternostro, Irreversible entropy production,
from quantum to classical, arXiv:2009.07668.

[23] S. R. Williams, D. J. Evans, and E. Mittag, Negative entropy
production in oscillatory processes, C. R. Phys. 8, 620 (2007).

[24] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II:
Nonequilibrium Statistical Mechanics, Springer Series in Solid-
State Sciences Vol. 31 (Springer, Berlin, 2012).

[25] S. R. Williams and D. J. Evans, Time-dependent response the-
ory and nonequilibrium free-energy relations, Phys. Rev. E 78,
021119 (2008).

[26] P. Drude, Zur Elektronentheorie der Metalle, Ann. Phys.
(Leipzig) 306, 566 (1900).

[27] P. Drude, Zur Elektronentheorie der Metalle. II. Teil. Gal-
vanomagnetische und thermomagnetische Effecte, Ann. Phys.
(Leipzig) 308, 369 (1900).

[28] A. Sommerfeld, Zur Elektronentheorie der Metalle auf Grund
der Fermischen Statistik, Z. Phys. 47, 1 (1928).

[29] J. W. Allen and J. C. Mikkelsen, Optical properties of CrSb,
MnSb, NiSb, and NiAs, Phys. Rev. B 15, 2952 (1977).

[30] R. T. Beach and R. W. Christy, Electron-electron scattering in
the intraband optical conductivity of Cu, Ag, and Au, Phys. Rev.
B 16, 5277 (1977).

[31] S. J. Youn, T. H. Rho, B. I. Min, and K. S. Kim, Extended
Drude model analysis for noble metals, Phys. Status Solidi B
244, 1354 (2007).

[32] R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh,
G. D. Boreman, and M. B. Raschke, Optical dielectric function
of gold, Phys. Rev. B 86, 235147 (2012).

[33] H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker,
G. D. Boreman, and M. B. Raschke, Optical dielectric function
of silver, Phys. Rev. B 91, 235137 (2015).

[34] D. L. Maslov and A. V. Chubukov, Optical response of corre-
lated electron systems, Rep. Prog. Phys. 80, 026503 (2016).

[35] H. Mori, A quantum-statistical theory of transport processes, J.
Phys. Soc. Jap. 11, 1029 (1956).

[36] H. Nakano, A method of calculation of electrical conductivity,
Prog. Theor. Phys. 15, 77 (1956).

[37] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saun-
ders, Philadelphia, 1976).

[38] G. F. Giuliani and G. Vignale, Quantum Theory of the Electron
Liquid (Cambridge University Press, Cambridge, 2005).

[39] S. M. Girvin and K. Yang, Modern Condensed Matter Physics
(Cambridge University Press, Cambridge, 2019).

[40] R. Zwanzig, Memory effects in irreversible thermodynamics,
Phys. Rev. 124, 983 (1961).

[41] K. Proesmans and C. Van den Broeck, Onsager Coefficients
in Periodically Driven Systems, Phys. Rev. Lett. 115, 090601
(2015).

[42] C. Maes, F. Redig, and A. Van Moffaert, On the definition
of entropy production, via examples, J. Math. Phys. 41, 1528
(2000).

[43] M. Bauer, K. Brandner, and U. Seifert, Optimal performance
of periodically driven, stochastic heat engines under limited
control, Phys. Rev. E 93, 042112 (2016).

[44] K. Brandner and U. Seifert, Periodic thermodynamics of open
quantum systems, Phys. Rev. E 93, 062134 (2016).

[45] D. A. Sivak and G. E. Crooks, Thermodynamic Metrics and
Optimal Paths, Phys. Rev. Lett. 108, 190602 (2012).

[46] P. R. Zulkowski, D. A. Sivak, G. E. Crooks, and M. R.
DeWeese, Geometry of thermodynamic control, Phys. Rev. E
86, 041148 (2012).

[47] M. V. S. Bonanga and S. Deffner, Optimal driving of isothermal
processes close to equilibrium, J. Chem. Phys. 140, 244119
(2014).

[48] D. Mandal and C. Jarzynski, Analysis of slow transitions be-
tween nonequilibrium steady states, J. Stat. Mech.: Theor. Exp.
(2016) 063204.

[49] S. Deftner, Kibble-Zurek scaling of the irreversible entropy
production, Phys. Rev. E 96, 052125 (2017).

[50] M. V. S. Bonanga and S. Deffner, Minimal dissipation in pro-
cesses far from equilibrium, Phys. Rev. E 98, 042103 (2018).

[51] M. V. S. Bonanga, Approaching Carnot efficiency at maximum
power in linear response regime, J. Stat. Mech.: Theor. Exp.
(2019) 123203.

[52] M. Scandi and M. Perarnau-Llobet, Thermodynamic length in
open quantum systems, Quantum 3, 197 (2019).

[53] S. Deffner and M. V. S. Bonanga, Thermodynamic control—An
old paradigm with new applications, Europhys. Lett. 131, 20001
(2020).

[54] J. Bardeen, Electrical conductivity of metals, J. Appl. Phys. 11,
88 (1940).

[55] C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Milldn, V. S.
Amaral, F. Palacio, and L. D. Carlos, Thermometry at the
nanoscale, Nanoscale 4, 4799 (2012).

[56] FE. Menges, H. Riel, A. Stemmer, and B. Gotsmann, Nanoscale
thermometry by scanning thermal microscopy, Rev. Sci.
Instrum. 87, 074902 (2016).

[57] E. Menges, P. Mensch, H. Schmid, H. Riel, A. Stemmer, and
B. Gotsmann, Temperature mapping of operating nanoscale de-
vices by scanning probe thermometry, Nat. Commun. 7, 10874
(2016).

[58] S. Campbell, M. G. Genoni, and S. Deftner, Precision thermom-
etry and the quantum speed limit, Quantum Sci. Technol. 3,
025002 (2018).

[59] C. Karrasch, D. M. Kennes, and J. E. Moore, Transport
properties of the one-dimensional Hubbard model at finite tem-
perature, Phys. Rev. B 90, 155104 (2014).

[60] R. Anderson, F. Wang, P. Xu, V. Venu, S. Trotzky, F. Chevy, and
J. H. Thywissen, Conductivity Spectrum of Ultracold Atoms in
an Optical Lattice, Phys. Rev. Lett. 122, 153602 (2019).

[61] J. Gieseler and J. Millen, Levitated nanoparticles for micro-
scopic thermodynamics—A review, Entropy 20, 326 (2018).

[62] W. Feller, An Introduction to Probability Theory and its Appli-
cations (John Wiley & Sons, New York, 2008), Vol. 2.

[63] H. M. Nussenzveig, Causality and Dispersion Relations (Aca-
demic, New York, 1972), Vol. 95.

012109-9


https://doi.org/10.1088/1742-5468/ab54ba
http://arxiv.org/abs/arXiv:2009.07668
https://doi.org/10.1016/j.crhy.2007.05.007
https://doi.org/10.1103/PhysRevE.78.021119
https://doi.org/10.1002/andp.19003060312
https://doi.org/10.1002/andp.19003081102
https://doi.org/10.1007/BF01391052
https://doi.org/10.1103/PhysRevB.15.2952
https://doi.org/10.1103/PhysRevB.16.5277
https://doi.org/10.1002/pssb.200642097
https://doi.org/10.1103/PhysRevB.86.235147
https://doi.org/10.1103/PhysRevB.91.235137
https://doi.org/10.1088/1361-6633/80/2/026503
https://doi.org/10.1143/JPSJ.11.1029
https://doi.org/10.1143/PTP.15.77
https://doi.org/10.1103/PhysRev.124.983
https://doi.org/10.1103/PhysRevLett.115.090601
https://doi.org/10.1063/1.533195
https://doi.org/10.1103/PhysRevE.93.042112
https://doi.org/10.1103/PhysRevE.93.062134
https://doi.org/10.1103/PhysRevLett.108.190602
https://doi.org/10.1103/PhysRevE.86.041148
https://doi.org/10.1063/1.4885277
https://doi.org/10.1088/1742-5468/2016/06/063204
https://doi.org/10.1103/PhysRevE.96.052125
https://doi.org/10.1103/PhysRevE.98.042103
https://doi.org/10.1088/1742-5468/ab4e92
https://doi.org/10.22331/q-2019-10-24-197
https://doi.org/10.1209/0295-5075/131/20001
https://doi.org/10.1063/1.1712751
https://doi.org/10.1039/c2nr30663h
https://doi.org/10.1063/1.4955449
https://doi.org/10.1038/ncomms10874
https://doi.org/10.1088/2058-9565/aaa641
https://doi.org/10.1103/PhysRevB.90.155104
https://doi.org/10.1103/PhysRevLett.122.153602
https://doi.org/10.3390/e20050326

	publisher cover
	PhysRevE.103.012109

