The Mechanics of a Cantilever Beam with an Embedded Horizontal Crack Subjected to an End Transverse Force, Part A: Modelling

Author/Creator ORCID

Date

2016-07

Department

Program

Citation of Original Publication

Panos G. Charalambides & Xiaomin Fang (2016). The Mechanics of a Cantilever Beam with an Embedded Horizontal Crack Subjected to an End Transverse Force, Part A: Modelling. Mechanics, Materials Science & Engineering, Vol 5. doi:10.13140/RG.2.1.5051.5605

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)

Abstract

This study addresses the mechanics of a cracked cantilever beam subjected to a transverse force applied at it’s free end. In this Part A of a two Part series of papers, emphasis is placed on the development of a four-beam model for a beam with a fully embedded horizontal sharp crack. The beam aspect ratio, crack length and crack centre location appear as general model parameters. Rotary springs are introduced at the crack tip cross sections as needed to account for the changes in the structural compliance due to the presence of the sharp crack and augmented load transfer through the near-tip transition regions. Guided by recent finite element findings reported elsewhere, the four-beam model is advanced by recognizing two key observations, (a) the free surface and neutral axis curvatures of the cracked beam at the crack center location match the curvature of a healthy beam (an identical beam without a crack under the same loading conditions), (b) the neutral axis rotations (slope) of the cracked beam in the region between the applied load and the nearest crack tip matches the corresponding slope of the healthy beam. The above observations led to the development of close form solutions for the resultant forces (axial and shear) and moment acting in the beams above and below the crack. Axial force and bending moment predictions are found to be in excellent agreement with 2D finite element results for all normalized crack depths considered. Shear force estimates dominating the beams above and below the crack as well as transition region length estimates are also obtained. The model developed in this study is then used along with 2D finite elements in conducting parametric studies aimed at both validating the model and establishing the mechanics of the cracked system under consideration. The latter studies are reported in the companion paper Part B-Results and Discussion.