Optic lobe organization in stomatopod crustacean species possessing different degrees of retinal complexity

Author/Creator ORCID

Date

2019-12-06

Department

Program

Citation of Original Publication

Lin, Chan; Chou, Alice; Cronin, Thomas W.; Optic lobe organization in stomatopod crustacean species possessing different degrees of retinal complexity; Journal of Comparative Physiology A (2019); https://link.springer.com/article/10.1007%2Fs00359-019-01387-5

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Access to this item will begin on 2020-12-06

Subjects

Abstract

Stomatopod crustaceans possess tripartite compound eyes; upper and lower hemispheres are separated by an equatorial midband of several ommatidial rows. The organization of stomatopod retinas is well established, but their optic lobes have been studied less. We used histological staining, immunolabeling, and fluorescent tracer injections to compare optic lobes in two 6-row midband species, Neogonodactylus oerstedii and Pseudosquilla ciliata, to those in two 2-row midband species, Squilla empusa and Alima pacifica. Compared to the 6-row species, we found structural differences in all optic neuropils in both 2-row species. Photoreceptor axons from 2-row midband ommatidia supply two sets of lamina cartridges; however, conspicuous spaces lacking lamina cartridges are observed in locations corresponding to where the cartridges of the upper four ommatidial rows of 6-row species would exist. The tripartite arrangement and enlarged projections containing fibers associated with the two rows of midband ommatidia can be traced throughout the entire optic lobe. However, 2-row species lack some features of medullar and lobular neuropils in 6-row species. Our results support the hypothesis that 2-row midband species are derived from a 6-row ancestor, and suggest specializations in the medulla and lobula found solely in 6-row species are important for color and polarization analysis.