NuSTAR AND XMM-NEWTON OBSERVATIONS OF THE HARD X-RAY SPECTRUM OF CENTAURUS A

Author/Creator ORCID

Date

2016-03-08

Department

Program

Citation of Original Publication

F. Fürst, C. Müller, K. K. Madsen, L. Lanz, E. Rivers, M. Brightman, P. Arevalo, M. Baloković, T. Beuchert, S. E. Boggs, F. E. Christensen, W. W. Craig, T. Dauser, D. Farrah, C. Graefe, C. J. Hailey, F. A. Harrison, M. Kadler, A. King, F. Krauß, G. Madejski, G. Matt, A. Marinucci, A. Markowitz, P. Ogle, R. Ojha, R. Rothschild, D. Stern, D. J. Walton, J. Wilms, and W. Zhang,The Astrophysical Journal, Volume 819, Number 2,https://iopscience.iop.org/article/10.3847/0004-637X/819/2/150

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Public Domain Mark 1.0
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law

Subjects

Abstract

We present simultaneous XMM-Newton and Nuclear Spectroscopic Telescope Array (NuSTAR) observations spanning 3–78 keV of the nearest radio galaxy, Centaurus A (Cen A). The accretion geometry around the central engine in Cen A is still debated, and we investigate possible configurations using detailed X-ray spectral modeling. NuSTAR imaged the central region of Cen A with subarcminute resolution at X-ray energies above 10 keV for the first time, but found no evidence for an extended source or other off-nuclear point sources. The XMM-Newton and NuSTAR spectra agree well and can be described with an absorbed power law with a photon index Γ = 1.815 ± 0.005 and a fluorescent Fe K⍺ line in good agreement with literature values. The spectrum does not require a high-energy exponential rollover, with a constraint of Efold > 1 MeV. A thermal Comptonization continuum describes the data well, with parameters that agree with values measured by INTEGRAL, in particular an electron temperature kTₑ between ≈100–300 keV and seed photon input temperatures between 5 and 50 eV. We do not find evidence for reflection or a broad iron line and put stringent upper limits of R < 0.01 on the reflection fraction and accretion disk illumination. We use archival Chandra data to estimate the contribution from diffuse emission, extra-nuclear point sources, and the outer X-ray jet to the observed NuSTAR and XMM-Newton X-ray spectra and find the contribution to be negligible. We discuss different scenarios for the physical origin of the observed hard X-ray spectrum and conclude that the inner disk is replaced by an advection-dominated accretion flow or that the X-rays are dominated by synchrotron self-Compton emission from the inner regions of the radio jet or a combination thereof.