Ultraviolet surface-enhanced Raman scattering at the plasmonic band edge of a metallic grating

Author/Creator ORCID

Date

Department

Program

Citation of Original Publication

Nadia Mattiucci, Giuseppe D’Aguanno, Henry O. Everitt, John V. Foreman, John M. Callahan, Milan C. Buncick, and Mark J. Bloemer, "Ultraviolet surface-enhanced Raman scattering at the plasmonic band edge of a metallic grating," Opt. Express 20, 1868-1877 (2012), https://doi.org/10.1364/OE.20.001868

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Public Domain Mark 1.0
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.

Subjects

Abstract

Surface-enhanced Raman Scattering (SERS) is studied in sub-wavelength metallic gratings on a substrate using a rigorous electromagnetic approach. In the ultraviolet SERS is limited by the metallic dampening, yet enhancements as large as 105 are predicted. It is shown that these enhancements are directly linked to the spectral position of the plasmonic band edge of the metal/substrate surface plasmon. A simple methodology is presented for selecting the grating pitch to produce optimal enhancement for a given laser frequency.