Identifying meteorological influences on marine low cloud mesoscale morphology using deep learning classifications

Author/Creator ORCID

Date

2020-11-03

Department

Program

Citation of Original Publication

Mohrmann, J., Wood, R., Yuan, T., Song, H., Eastman, R., and Oreopoulos, L.: Identifying meteorological influences on marine low cloud mesoscale morphology using deep learning classifications, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1026, in review, 2020.

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Public Domain Mark 1.0
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.

Subjects

Abstract

Marine low cloud mesoscale morphology in the southeastern Pacific Ocean is analyzed using a large dataset of machine-learning generated classifications spanning three years. Meteorological variables and cloud properties are composited by mesoscale cloud type, showing distinct meteorological regimes of marine low cloud organization from the tropics to the midlatitudes. The presentation of mesoscale cellular convection, with respect to geographic distribution, boundary layer structure, and large-scale environmental conditions, agrees with prior knowledge. Two tropical and subtropical cumuliform boundary layer regimes, suppressed cumulus and clustered cumulus, are studied in detail. The patterns in precipitation, circulation, column water vapor, and cloudiness are consistent with the representation of marine shallow mesoscale convective self-aggregation by large eddy simulations of the boundary layer. Although they occur under similar large-scale conditions, the suppressed and clustered low cloud types are found to be well-separated by variables associated with low-level mesoscale circulation, with surface wind divergence being the clearest discriminator between them, whether reanalysis or satellite observations are used. Clustered regimes are associated with surface convergence and suppressed regimes are associated with surface divergence.