Validation of a CT-based motion model with in-situ fluoroscopy for lung surface deformation estimation

Author/Creator ORCID

Date

2020-11-18

Department

Program

Citation of Original Publication

Maida Ranjbar et al., Validation of a CT-based motion model with in-situ fluoroscopy for lung surface deformation estimation, Physics in Medicine & Biology, DOI: https://doi.org/10.1088/1361-6560/abcbcf

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Attribution-NonCommercial-NoDerivatives 4.0 International

Subjects

Abstract

Many surrogate-based motion models (SMMs), proposed to guide motion management in radiotherapy, are constructed by correlating motion of an external surrogate and internal anatomy during CT-simulation. Changes in this correlation define model break down. We validate a methodology that incorporates fluoroscopic images (FL) acquired during treatment for SMM construction and update. Under a prospective IRB, 4DCT scans, VisionRT surfaces, and orthogonal FLs were collected from five lung cancer patients. VisionRT surfaces and two FL time-series were acquired pre- and post-treatment. A simulated annealing optimization scheme was used to estimate optimal lung deformations by maximizing the mutual information between digitally reconstructed radiographs (DRRs) of the SMM-estimated 3D images and FLs. Our SMM used partial-least-regression and was trained using the optimal deformations and VisionRT surfaces from the first breathing-cycle. SMM performance was evaluated using the mutual information score between reference FLs and the corresponding SMM or phase-assigned 4DCT DRRs. The Hausdorff distance for contoured landmarks was used to evaluate target position estimation error. For four out of five patients, two principal components approximated lung surface deformations with submillimeter accuracy. Analysis of the mutual information score between more than 4,000 pairs of FL and DRR demonstrated that our model led to more similarity between the FL and DRR images compared to 4DCT and DRR images from a model based on an a priori correlation model. Our SMM consistently displayed lower mean and 95th percentile Hausdorff distances. For one patient, 95th percentile Hausdorff distance was reduced by 11mm. Patient-averaged reductions in mean and 95th percentile Hausdorff distances were 3.6mm and 7mm for right-lung, and 3.1mm and 4mm for left-lung targets. FL data were used to evaluate model performance and investigate the feasibility of model update. Despite variability in breathing, use of post-treatment FL preserved model fidelity and consistently outperformed 4DCT for position estimation.