Spatial distribution of the X-ray-emitting plasma of SS Cygni in quiescence and outburst

Date

2021-09-02

Department

Program

Citation of Original Publication

Takeo, Mai et al.; Spatial distribution of the X-ray-emitting plasma of SS Cygni in quiescence and outburst; Publications of the Astronomical Society of Japan, Volume 73, Issue 5, 2 September, 2021; https://doi.org/10.1093/pasj/psab086

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Attribution 4.0 International (CC BY 4.0)

Subjects

Abstract

We present our analysis of the Suzaku data of SS Cygni (SS Cyg) from 2005 both in quiescence and outburst. A fluorescent iron Kα line bears significant information about the geometry of an X-ray-emitting hot plasma and a cold reflector, such as the surfaces of the white dwarf (WD) and the accretion disk (AD). Our reflection simulation has revealed that the X-ray-emitting hot plasma is located either very close to the WD surface in the boundary layer (BL), with an upper limit radial position of <1.004 times the white dwarf radius (RWD), or near the entrance of the BL where the optically thick AD is truncated at a distance of 1.14–1.27 RWD for the assumed WD mass of 1.19 M⊙ in quiescence. In the latter configuration, the plasma torus is located just above the inner edge of the AD. The result suggests that the accreting matter is heated up close to the maximum temperature immediately after the matter enters the BL. The matter probably expands precipitously at the entrance of the BL and leaves the disk plane to reach a height comparable to the radial distance of the plasma torus from the center of the WD. In outburst, on the other hand, our spectral analysis favors the picture that the optically thick disk reaches the WD surface. In addition, the plasma distributes above the disk like coronae, as suggested by a previous study, and the 90% upper limit of the coronae radial position is 1.2 RWD.