Wang, LaiYu, MeilinGobbert, Matthias K.2018-09-132018-09-132017http://hdl.handle.net/11603/11299The compact direct flux reconstruction method (CDFR) for conservation laws utilizes techniques from compact finite difference methods to directly approximate spatial derivatives of fluxes within standard elements. The CDFR scheme is a compact high-order method family which can be efficiently parallelized for high performance computing. In the present study, a parallel performance study of the 3rd-order CDFR scheme with a 3rd-order explicit Runge-Kutta scheme is conducted. The inviscid isentropic vortex propagation problem is adopted as a test case. The numerical performance studies have demonstrated that the CDFR method can efficiently solve conservation laws. The parallel performance study shows excellent observed speedup and efficiency. A comparison between different partition approaches of the mesh also demonstrates that optimized communication between processes can improve the parallel performance.11 pagesen-USThis item may be protected under Title 17 of the U.S. Copyright Law. It is made available by UMBC for non-commercial research and education. For permission to publish or reproduce, please contact the author.compact direct flux reconstruction method (CDFR)UMBC High Performance Computing Facility (HPCF)conservation lawscompact finite difference methodsapproximating spatial derivatives of fluxesparallel performance study of the 3rd-order CDFR3rd-order explicit Runge-Kutta schemeinviscid isentropic vortex propagation problemcomparison between different partition approachesoptimizing communication to improve the parallel performance.A Parallel Performance Study of the High-order Compact Direct Flux Reconstruction Method for Conservation Laws on Maya ClusterText