Park, Kyoung-DuckMay, Molly A.Leng, HaixuWang, JiarongKropp, Jaron A.Gougousi, TheodosiaPelton, MatthewRaschke, Markus B.2019-03-222019-03-222019-02-27Park, Kyoung-Duck et al. Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter. Science Advances 5 (July 12, 2019), no. 7. https://doi.org/10.1126/sciadv.aav5931http://hdl.handle.net/11603/13135https://doi.org/10.1126/sciadv.aav5931Optical cavities can enhance and control light-matter interactions. This has recently been extended to the nanoscale, and with single emitter strong coupling regime even at room temperature using plasmonic nano-cavities with deep sub-diffraction-limited mode volumes. However, with emitters in static nanocavities, this limits the ability to tune coupling strength or to couple different emitters to the same cavity. Here, we present tip-enhanced strong coupling (TESC) spectroscopy, imaging, and control. Based on a nano-cavity formed between a scanning plasmonic antenna-tip and the substrate, by reversibly and dynamically addressing single quantum dots (QDs) we observe mode splitting > 160 meV and anticrossing over a detuning range of ~100 meV, and with sub-nm precision control over the mode volume in the ~103 nm3 regime. Our approach, as a new paradigm of nano-cavity quantum-electrodynamics nearfield microscopy to induce, probe, and control single-emitter plasmon hybrid quantum states, opens new pathways from opto-electronics to quantum information science.20 pagesen-USThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.optical nano-cavitieslight-matter interactionsstrong coupling (TESC) spectroscopyimaging and controlnano-cavity quantum-electrodynamics near-field microscopyTip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitterTip-enhanced strong coupling spectroscopy and control of a single quantum emitterText