Bourgeois, IlannPeischl, JeffNeuman, J. AndrewBrown, Steven S.St. Clair, Jasonet al2022-01-242022-01-242022-08-29Bourgeois, I., Peischl, J., Neuman, J. A., Brown, S. S., Allen, H. M., Campuzano-Jost, P., Coggon, M. M., DiGangi, J. P., Diskin, G. S., Gilman, J. B., Gkatzelis, G. I., Guo, H., Halliday, H. A., Hanisco, T. F., Holmes, C. D., Huey, L. G., Jimenez, J. L., Lamplugh, A. D., Lee, Y. R., Lindaas, J., Moore, R. H., Nault, B. A., Nowak, J. B., Pagonis, D., Rickly, P. S., Robinson, M. A., Rollins, A. W., Selimovic, V., St. Clair, J. M., Tanner, D., Vasquez, K. T., Veres, P. R., Warneke, C., Wennberg, P. O., Washenfelder, R. A., Wiggins, E. B., Womack, C. C., Xu, L., Zarzana, K. J., and Ryerson, T. B.: Comparison of airborne measurements of NO, NO₂, HONO, NOᵧ, and CO during FIREX-AQ, Atmos. Meas. Tech., 15, 4901–4930, https://doi.org/10.5194/amt-15-4901-2022, 2022.https://doi.org/10.5194/amt-15-4901-2022http://hdl.handle.net/11603/24062Ilann Bourgeois, Jeff Peischl, J. Andrew Neuman, Steven S. Brown, Hannah M. Allen, Pedro Campuzano-Jost, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Jessica B. Gilman, Georgios I. Gkatzelis, a, Hongyu Guo, Hannah A. Halliday, b, Thomas F. Hanisco, Christopher D. Holmes, L. Gregory Huey, Jose L. Jimenez, Aaron D. Lamplugh, Young Ro Lee, Jakob Lindaas, Richard H. Moore, John B. Nowak, Demetrios Pagonis, c, Pamela S. Rickly, Michael A. Robinson, , Andrew W. Rollins, Vanessa Selimovic, Jason M. St. Clair, David Tanner, Krystal T. Vasquez, Patrick R. Veres, Carsten Warneke, Paul O. Wennberg, , Rebecca A. Washenfelder, Elizabeth B. Wiggins, Caroline C. Womack, Lu Xu, d, Kyle J. Zarzana, e and Thomas B. Ryerson, fWe present a comparison of fast-response instruments installed onboard the NASA DC-8 aircraft that measured nitrogen oxides (NO and NO₂), nitrous acid (HONO), total reactive odd nitrogen (measured both as the total (NOᵧ) and from the sum of individually measured species (ΣNOᵧ)) and carbon monoxide (CO) in the troposphere during the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. By targeting smoke from summertime wildfires, prescribed fires and agricultural burns across the continental United States, FIREX-AQ provided a unique opportunity to investigate measurement accuracy in concentrated plumes where hundreds of species coexist. Here, we compare NO measurements by chemiluminescence (CL) and laser induced fluorescence (LIF); NO₂ measurements by CL, LIF and cavity enhanced spectroscopy (CES); HONO measurements by CES and iodide-adduct chemical ionization mass spectrometry (CIMS); and CO measurements by tunable diode laser absorption spectrometry (TDLAS) and integrated cavity output spectroscopy (ICOS). Additionally, total NOᵧ measurements using the CL instrument were compared with ΣNOᵧ (= NO + NO₂ + HONO + nitric acid (HNO₃) + acyl peroxy nitrates (APNs) + submicron particulate nitrate (pNO₃)). Other NOy species were not included in ΣNOy as they either contributed minimally to it (e.g., C₁–C₅ alkyl nitrates, nitryl chloride (ClNO₂), dinitrogen pentoxide (N₂O₅)) or were not measured during FIREX-AQ (e.g., higher oxidized alkyl nitrates, nitrate (NO₃), non-acyl peroxynitrates, coarse-mode aerosol nitrate). The aircraft instrument intercomparisons demonstrate the following: 1) NO measurements by CL and LIF agreed well within instrument uncertainties, but with potentially reduced time response for the CL instrument; 2) NO₂ measurements by LIF and CES agreed well within instrument uncertainties, but CL NO₂ was on average 10 % higher; 3) CES and CIMS HONO measurements were highly correlated in each fire plume transect, but the correlation slope of CES vs. CIMS for all 1 Hz data during FIREX-AQ was 1.8, which we attribute to a reduction in the CIMS sensitivity to HONO in high temperature environments; 4) NOᵧ budget closure was demonstrated for all flights within the combined instrument uncertainties of 25 %. However, we used a fluid dynamic flow model to estimate that average pNO₃ sampling fraction through the NOᵧ inlet in smoke was variable from one flight to another and ranged between 0.36 and 0.99, meaning that approximately 0–24 % on average of the total measured NOᵧ in smoke may have been unaccounted for and may be due to unmeasured species such as organic nitrates; 5) CO measurements by ICOS and TDLAS agreed well within combined instrument uncertainties, but with a systematic offset that averaged 2.87 ppbv; and 6) integrating smoke plumes followed by fitting the integrated values of each plume improved the correlation between independent measurements.30 pagesen-USThis work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.Public Domain Mark 1.0http://creativecommons.org/publicdomain/mark/1.0/Comparison of airborne measurements of NO, NO₂, HONO, NOᵧ and CO during FIREX-AQText