Ma, Po-LunHarrop, Bryce E.Larson, Vincent E.Neale, RichardGettelman, AndrewMorrison, HughWang, HailongZhang, KaiKlein, Stephen A.Zelinka, Mark D.Zhang, YuyingQian, YunYoon, Jin-HoJones, Christopher R.Huang, MengTai, Sheng-LunSingh, BalwinderBogenschutz, Peter A.Zheng, XueLin, WuyinQuaas, JohannesChepfer, HélèneBrunke, Michael A.Zeng, XubinMülmenstädt, JohannesHagos, SamsonZhang, ZhiboSong, HuaLiu, XiaohongWan, HuiWang, JingyuTang, QiCaldwell, Peter M.Fan, JiwenBerg, Larry K.Fast, Jerome D.Taylor, Mark A.Golaz, Jean-ChristopheXie, ShaochengRasch, Philip J.Leung, L. Ruby2021-11-102021-11-102022-04-07Ma, Po-Lun et al. Better calibration of cloud parameterizations and subgrid effects increases the fidelity of the E3SM Atmosphere Model version 1. Geoscientific Model Development 15 (2022), no. 7, pp 2881–2916. https://doi.org/10.5194/gmd-15-2881-2022https://doi.org/10.5194/gmd-15-2881-2022http://hdl.handle.net/11603/23289Realistic simulation of the Earth’s mean state climate remains a major challenge and yet it is crucial for predicting the climate system in transition. Deficiencies in models’ process representations, propagation of errors from one process to another, and associated compensating errors can often confound the interpretation and improvement of model simulations. These errors and biases can also lead to unrealistic climate projections as well as incorrect attribution of the physical mechanisms governing the past and future climate change. Here we show that a significantly improved global atmospheric simulation can be achieved by focusing on the realism of process assumptions in cloud calibration and subgrid effects using the Energy Exascale Earth System Model (E3SM) Atmosphere Model version 1 (EAMv1). The calibration of clouds and subgrid effects informed by our understanding of physical mechanisms leads to significant improvements in clouds and precipitation climatology, reducing common and longstanding biases across cloud regimes in the model. The improved cloud fidelity in turn reduces biases in other aspects of the system. Furthermore, even though the recalibration does not change the global mean aerosol and total anthropogenic effective radiative forcings (ERFs), the sensitivity of clouds, precipitation, and surface temperature to aerosol perturbations is significantly reduced. This suggests that it is possible to achieve improvements to the historical evolution of surface temperature over EAMv1 and that precise knowledge of global mean ERFs is not enough to constrain historical or future climate change. Cloud feedbacks are also significantly reduced in the recalibrated model, suggesting that there would be a lower climate sensitivity when running as part of the fully coupled E3SM. This study also compares results from incremental changes to cloud microphysics, turbulent mixing, deep convection, and subgrid effects to understand how assumptions in the representation of these processes affect different aspects of the simulated atmosphere as well as its response to forcings. We conclude that the spectral composition and geographical distribution of the ERFs and cloud feedback as well as the fidelity of the simulated base climate state are important for constraining the climate in the past and future.36 pagesen-USThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.Public Domain Mark 1.0This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.http://creativecommons.org/publicdomain/mark/1.0/Better calibration of cloud parameterizations and subgrid effects increases the fidelity of E3SM Atmosphere Model version 1Text