Tang, GangGu, JiaxuZhu, WeidongClaramunt, ChristopheZhou, Peipei2022-05-112022-05-112022-03-30Tang, G.; Gu, J.; Zhu, W.; Claramunt, C.; Zhou, P. HD Camera-Equipped UAV Trajectory Planning for Gantry Crane Inspection. Remote Sens. 2022, 14, 1658. https:// doi.org/10.3390/rs14071658https://doi.org/10.3390/rs14071658http://hdl.handle.net/11603/24682https://doi.org/10.3390/rs14071658While Unmanned Aerial Vehicles (UAVs) can be a valuable solution for the damage inspection of port machinery infrastructures, their trajectories are still prone to collision risks, trajectory non-smoothness, and large deviations. This research introduces a trajectory optimization method for inspecting vulnerable parts of a gantry crane by a UAV fitted with a high-definition (HD) camera. We first analyze the vulnerable parts of a gantry crane, then use the A* algorithm to plan a path for the UAV. The trajectory optimization process is divided into two steps, the first is a trajectory correction method and the second is an objective function that applies a minimum snap method while taking into consideration flight corridor constraints. The experimental simulation results show that, compared with previous methods, our approach can not only generate a collision-free and smooth trajectory but also shorten the trajectory length significantly while substantially reducing the maximum deviation average deviation distances. The simulation results show that this modelling approach provides a valuable solution for UAV trajectory planning for gantry crane inspection.14 pagesen-USThis work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.Public Domain Mark 1.0http://creativecommons.org/publicdomain/mark/1.0/HD Camera-Equipped UAV Trajectory Planning for Gantry Crane InspectionText