FROG Analysis Ensures the Reproducibility of Genome Scale Metabolic Models

dc.contributor.authorRaman, Karthik
dc.contributor.authorKratochv�l, Miroslav
dc.contributor.authorOlivier, Brett G.
dc.contributor.authorK�nig, Matthias
dc.contributor.authorSengupta, Pratyay
dc.contributor.authorBaskaran, Dinesh Kumar Kuppa
dc.contributor.authorNguyen, Tung V. N.
dc.contributor.authorLobo, Daniel
dc.contributor.authorWilken, St Elmo
dc.contributor.authorTiwari, Krishna Kumar
dc.contributor.authorRaghu, Aswathy K.
dc.contributor.authorPalanikumar, Indumathi
dc.contributor.authorRaajaraam, Lavanya
dc.contributor.authorIbrahim, Maziya
dc.contributor.authorBalakrishnan, Sanjaay
dc.contributor.authorUmale, Shreyansh
dc.contributor.authorBergmann, Frank
dc.contributor.authorMalpani, Tanisha
dc.contributor.authorSatagopam, Venkata P.
dc.contributor.authorSchneider, Reinhard
dc.contributor.authorBeber, Moritz E.
dc.contributor.authorKeating, Sarah
dc.contributor.authorAnton, Mihail
dc.contributor.authorRenz, Alina
dc.contributor.authorLakshmanan, Meiyappan
dc.contributor.authorLee, Dong-Yup
dc.contributor.authorKoduru, Lokanand
dc.contributor.authorMostolizadeh, Reihaneh
dc.contributor.authorDias, Oscar
dc.contributor.authorCunha, Emanuel
dc.contributor.authorOliveira, Alexandre
dc.contributor.authorLee, Yi Qing
dc.contributor.authorZengler, Karsten
dc.contributor.authorSantib��ez-Palominos, Rodrigo
dc.contributor.authorKumar, Manish
dc.contributor.authorBarberis, Matteo
dc.contributor.authorPuniya, Bhanwar Lal
dc.contributor.authorHelikar, Tom�?
dc.contributor.authorDinh, Hoang V.
dc.contributor.authorSuthers, Patrick F.
dc.contributor.authorMaranas, Costas D.
dc.contributor.authorCasini, Isabella
dc.contributor.authorLoghmani, Seyed Babak
dc.contributor.authorVeith, Nadine
dc.contributor.authorLeonidou, Nantia
dc.contributor.authorLi, Feiran
dc.contributor.authorChen, Yu
dc.contributor.authorNielsen, Jens
dc.contributor.authorLee, GaRyoung
dc.contributor.authorLee, Sang Mi
dc.contributor.authorKim, Gi Bae
dc.contributor.authorMonteiro, Pedro T.
dc.contributor.authorTeixeira, Miguel C.
dc.contributor.authorKim, Hyun Uk
dc.contributor.authorLee, Sang Yup
dc.contributor.authorLiebal, Ulf W.
dc.contributor.authorBlank, Lars M.
dc.contributor.authorLieven, Christian
dc.contributor.authorTarzi, Chaimaa
dc.contributor.authorAngione, Claudio
dc.contributor.authorBlaise, Manga Enuh
dc.contributor.authorAytar, �elik P?nar
dc.contributor.authorKulyashov, Mikhail
dc.contributor.authorAkberdin, Llya
dc.contributor.authorKim, Dohyeon
dc.contributor.authorYoon, Sung Ho
dc.contributor.authorXu, Zhaohui
dc.contributor.authorGautam, Jyotshana
dc.contributor.authorScott, William T.
dc.contributor.authorSchaap, Peter J.
dc.contributor.authorKoehorst, Jasper J.
dc.contributor.authorZu�iga, Cristal
dc.contributor.authorCanto-Encalada, Gabriela
dc.contributor.authorBenito-Vaquerizo, Sara
dc.contributor.authorOlm, Ivette Parera
dc.contributor.authorSuarez-Diez, Maria
dc.contributor.authorYuan, Qianqian
dc.contributor.authorMa, Hongwu
dc.contributor.authorIslam, Mohammad Mazharul
dc.contributor.authorPapin, Jason A.
dc.contributor.authorZorrilla, Francisco
dc.contributor.authorPatil, Kiran Raosaheb
dc.contributor.authorBasile, Arianna
dc.contributor.authorNogales, Juan
dc.contributor.authorLe�n, Granado San
dc.contributor.authorCastillo-Alfonso, Freddy
dc.contributor.authorOlivares-Hern�ndez, Roberto
dc.contributor.authorCanto-Encalada, Gabriela
dc.contributor.authorVigueras-Ram�rez, Gabriel
dc.contributor.authorHermjakob, Henning
dc.contributor.authorDr�ger, Andreas
dc.contributor.authorMalik-Sheriff, Rahuman S.
dc.date.accessioned2025-04-01T14:54:55Z
dc.date.available2025-04-01T14:54:55Z
dc.date.issued2024-09-26
dc.description.abstractGenome-scale metabolic models (GEMs) and other constraint-based models (CBMs) play a pivotal role in understanding biological phenotypes and advancing research in areas like metabolic engineering, human disease modelling, drug discovery, and personalized medicine. Despite their growing application, a significant challenge remains in ensuring the reproducibility of GEMs, primarily due to inconsistent reporting and inadequate model documentation of model results. Addressing this gap, we introduce FROG analysis, a community-driven initiative aimed at standardizing reproducibility assessments of CBMs and GEMs. The FROG framework encompasses four key analyses?Flux variability, Reaction deletion, Objective function, and Gene deletion?to produce standardized, numerically reproducible FROG reports. These reports serve as reference datasets, enabling model evaluators, curators, and independent researchers to verify the reproducibility of GEMs systematically.BioModels, a leading repository of systems biology models, has integrated FROG analysis into its curation workflow, enhancing the reproducibility and reusability of submitted GEMs. In our study evaluating 65 GEM submissions from the community, approximately 40% reproduced without intervention, 28% requiring minor adjustments, and 32% needing input from authors. The standardization introduced by FROG analysis facilitated the detection and resolution of issues, ultimately leading to the successful reproduction of all models. By establishing a standardized and comprehensive approach to evaluating GEM reproducibility, FROG analysis significantly contributes to making CBMs and GEMs more transparent, reusable, and reliable for the broader scientific community.
dc.description.sponsorshipThe curation was partially carried out using the HPC facilities of the University of Luxembourg (hpc.uni.lu). CBMPy Web was developed on the SURF (www.surf.nl) Research Cloud. P.S. acknowledges the Prime Minister?s Research Fellowship (PMRF) from the Ministry of Education, Government of India. MB was supported by the Systems Biology Grant of the University of Surrey. MK was supported by the Federal Ministry of Education and Research (BMBF, Germany) by grant number 031L0304B and by the German Research Foundation (DFG) by grant number 436883643 and by grant number 465194077. This work was supported by the BMBF-funded de.NBI Cloud within the German Network for Bioinformatics Infrastructure (de.NBI) (031A537B, 031A533A, 031A538A, 031A533B, 031A535A, 031A537C, 031A534A, 031A532B). DYL was supported by the National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (RS-2024-00351458, RS-2024-00341312). MCT was funded by the Portuguese Foundation for Science and Technology (UIDB/04565/2020, UIDP/04565/2020).
dc.description.urihttps://www.biorxiv.org/content/10.1101/2024.09.24.614797v1
dc.format.extent14 pages
dc.genrejournal articles
dc.genrepreprints
dc.identifierdoi:10.13016/m2mhvi-9p6b
dc.identifier.urihttps://doi.org/10.1101/2024.09.24.614797
dc.identifier.urihttp://hdl.handle.net/11603/37835
dc.language.isoen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Biological Sciences Department
dc.relation.ispartofUMBC Faculty Collection
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleFROG Analysis Ensures the Reproducibility of Genome Scale Metabolic Models
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0003-4666-6118

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Frog_Analysis.pdf
Size:
926 KB
Format:
Adobe Portable Document Format