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Abstract

We offer an alternative proof, using the Stein-Chen method, of Bollobas’ theorem
concerning the distribution of the extreme degrees of a random graph. The same
method also applies in a more general setting where the probability of every pair of
vertices being connected by edges depends on the number of vertices.
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Consider a random graph with n labeled vertices {1,2,...,n} in which each edge
E;;,1 <14 < j < nis chosen independently and with a fixed probability p, 0 < p < 1.
Denote by d; degree of the vertex 7,7 = 1,...,n of a graph G € G(n,p), where G(n,p)
is the probability space of graphs, and by dy., > ds., > -+ > d,., the degree sequence
arranged in decreasing order. [Bollobds (1980) found the asymptotic distribution of d,,.,

and proved:

Theorem 1 (Bollobas (1980)). Suppose p is fized, 0 <1 <p, g=1—p. Then

. Ay, — NP ) etk
lim P (dmn 2 ) = e € _ 1
fi P (0 >4 m

where

(2log n)_% (loglogn + log4m) .

N~

a, = (2 logn)_%, b, = (2 logn)% -
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We offer an alternative proof of Bollobas’ theorem via the Stein-Chen method.
Denote normalized vertex degrees (zero expectation and unit variance) as d3, ds, ..., d"
and their corresponding decreasing sequence as dj., > d5., > ---> ... >d ...

Let IZ-(") = I(d; > x,(t)), where we choose z,(t) = a,t + b,, with a, and b, as defined
in ().

Set

Wo=>_1", a = P(I" = 1), \,=EW,) =Y =" =nm".
i=1

We will need three Assertions.

Assertion 1.

7 = P(df > 2, (1) ~ 1= ® (2,(t)).
Proof. Follows from [Fellen (1968)(Chapter VIL.6). O

Assertion 2.

lim A, = lim nal™ = lim nP(d} > z,(t)) = e = A(t).

n—oo n—oo n—o0

Proof. Follows from Assertion 1 combined with the result on page 374 of ICramér (1946).
0

Assertion 3.

lim n?(P(df > xn(t),ds > 2,(1))) = e 2 = A3(1). (2)

n—oo

Proof. Let e;; be the indicator random variable for the event { E;; = 1}. Thus, dy = €12 + €13 +
and dy = €91 + €93 + - - - + €9,. Hence, conditional on the event e;o = k, k € {0,1}, d; and

dy are independent. Let d;y =ej3+ -+ ey, and dy = eg3 + --- + e9,, and denote by

* *

+/,dy the corresponding normalized scores (zero expectation and unit variance). We then

have,

P(d} > xn(t),dy > 2,(t) | €12 = k) = P(d} > () | €10 = k) P(d5 > 2 (t) | €12 = k)

_ p2 | T (t) n—1 k—p _
=P (dlz > xn_l(t)fn—l(t) \/ - = 2)pq> , k=201 (3)

..._|_61n



From (B) it follows that P(d} > x,,(t), ds > x,(t) | e1o = k) ~ P (8’1*, > z,-1(t)) P (s;, > ,-1(1))
and by combining that with the formula of total probability, we obtain

P(dy > @y (t),ds > 2y (t)) ~ P (d > 21 (t)) P (dy > 20-1(1)) -
Combining this with Assertion 2, we obtain (2I). O

The indicators (]1("), [2("), . .,I,(l")> are increasing functions of the independent edge
indicators {e;;,1 <i < j <n}. As such, by Theorem 2.G, and hence by Corollary 2.C.4.

in Barbour et al. (1992) (see also related discussion in section 5.2 there), we obtain

Assertion 4.

dry (L(W,,), Poi()\,)) < - ‘Aek" (Var(Wn) ~ A +2i <W§n>)2>

=1

_! _)\6)% (i (7@(")>2 + Z Cov ([Z.("), I]("))> : (4)
n i3

where dry (L(W,,), Poi(\,)) is the total variation distance between distributions of W, and

the Poisson distribution with mean \,,.

i 2
In our case, since dj, . . ., d! are identically distributed, Z <7ri(")) =nP(d} > x,)P(d] > z,),
i=1
and )~ Cov (1}"% 1§">) —n(n—1)[P(d; > z,(t),d} > 2, () — P (d > 2,(£)) P (df > 2,,(t))].
i#]
Hence, from Assertion 2 it follows that

n

i 3 (w7) =0 ®

i=1

and from Assertion 2 and 3 it follows that

nli_)IIOlOZCO’U (IZ-("), ]](-")> =0. (6)
i#]
Then, from (B) and (@) it follows that lim dpy (L(W,,), Poi(\,)) = 0, and we obtain
n—oo

the following result:

Theorem 2. Forp € (0,1) and a fived value of k,

k
lim P(S, = k) = e AD) C At =e "




Noticing that P (d},.,, < z,(t)) = P (S, < m — 1), and applying Theorem [2, we obtain

e — (0 — 1 LR et
lim P . (n )p S ant + bn =e ¢ E e—' (7)

Comment 1. The method and the results can be extended to the case where p depends on
n. In such case, Assertion 1 holds if p(1 — p)n — 0o as n — oo and x,(t)(p(1 — p)n)'/? =
o {(p(1—p)n)*3} (see for evample/Bollobds (2001), Theorem 1.6). Since, x,(t) ~ 2log(n)),
the above conditions are satisfied if p(1 — p)n/(logn)® — oo as n — oo, which coincides
with the condition in Theorem 3.3\ Bollobds (2001), in which the same result was obtained

in the case where p is a function of n but by different method.

Comment 2. If&;, ... &, are independent and identically distributed standard normal ran-
dom variables, with corresponding £1., > oy > - -+ 2> Epan Sequence arranged in decreasing
order, then the limit distribution P ({., < ant +b,) is identical to the RHS of (), with
the same a,,b, (see for example |Galambos (1987%)). However, () is not obvious since

dy,...,d, are dependent and their joint distribution depends on n.

Comment 3. The same asymptotic distribution as in (Il), for the ordered normalized
scores, holds for a round-robin tournament model with n players (Malinouvsky, 2021). The
difference is that the round-robin tournament is a complete directed graph and the total

scores (degrees) of the players are negatively correlated.
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