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Abstract

We offer an alternative proof, using the Stein-Chen method, of Bollobás’ theorem

concerning the distribution of the extreme degrees of a random graph. The same

method also applies in a more general setting where the probability of every pair of

vertices being connected by edges depends on the number of vertices.
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Consider a random graph with n labeled vertices {1, 2, . . . , n} in which each edge

Eij , 1 ≤ i < j ≤ n is chosen independently and with a fixed probability p, 0 < p < 1.

Denote by di degree of the vertex i, i = 1, . . . , n of a graph G ∈ G(n, p), where G(n, p)

is the probability space of graphs, and by d1:n ≥ d2:n ≥ · · · ≥ dn:n the degree sequence

arranged in decreasing order. Bollobás (1980) found the asymptotic distribution of dm:n

and proved:

Theorem 1 (Bollobás (1980)). Suppose p is fixed, 0 < 1 < p, q = 1− p. Then

lim
n→∞

P

(

dm:n − np√
npq

< ant+ bn

)

= e−e−t

m−1
∑

k=0

e−tk

k!
, (1)

where

an = (2 logn)−
1

2 , bn = (2 logn)
1

2 − 1

2
(2 logn)−

1

2 (log logn + log 4π) .
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We offer an alternative proof of Bollobás’ theorem via the Stein-Chen method.

Denote normalized vertex degrees (zero expectation and unit variance) as d∗1, d
∗
2, . . . , d

∗
n

and their corresponding decreasing sequence as d∗1:n ≥ d∗2:n ≥ · · · ≥ . . . ≥ d∗n:n.

Let I
(n)
i = I(d∗i > xn(t)), where we choose xn(t) = ant + bn, with an and bn as defined

in (1).

Set

Wn =

n
∑

i=1

I
(n)
i , π

(n)
i = P (I

(n)
i = 1), λn = E(Wn) =

n
∑

i=1

π
(n)
i = nπ

(n)
1 .

We will need three Assertions.

Assertion 1.

π
(n)
1 = P (d∗1 > xn(t)) ∼ 1− Φ (xn(t)).

Proof. Follows from Feller (1968)(Chapter VII.6).

Assertion 2.

lim
n→∞

λn = lim
n→∞

nπ
(n)
1 = lim

n→∞
nP (d∗1 > xn(t)) = e−t ≡ λ(t).

Proof. Follows from Assertion 1 combined with the result on page 374 of Cramér (1946).

Assertion 3.

lim
n→∞

n2(P (d∗1 > xn(t), d
∗
2 > xn(t))) = e−2t = λ2(t). (2)

Proof. Let eij be the indicator random variable for the event {Eij = 1}. Thus, d1 = e12 + e13 + · · ·+ e1n

and d2 = e21 + e23 + · · ·+ e2n. Hence, conditional on the event e12 = k, k ∈ {0, 1}, d1 and

d2 are independent. Let d1′ = e13 + · · ·+ e1n and d2′ = e23 + · · ·+ e2n, and denote by

d∗
1
′ , d∗

2
′ the corresponding normalized scores (zero expectation and unit variance). We then

have,

P (d∗1 > xn(t), d
∗
2 > xn(t)

∣

∣ e12 = k) = P (d∗1 > xn(t)
∣

∣ e12 = k)P (d∗2 > xn(t)
∣

∣ e12 = k)

= P 2

(

d∗
1′
> xn−1(t)

xn(t)

xn−1(t)

√

n− 1

n− 2
− k − p
√

(n− 2)pq

)

, k = 0, 1. (3)
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From (3) it follows that P (d∗1 > xn(t), d
∗
2 > xn(t)

∣

∣ e12 = k) ∼ P
(

s∗
1
′ > xn−1(t)

)

P
(

s∗
2
′ > xn−1(t)

)

and by combining that with the formula of total probability, we obtain

P (d∗1 > xn(t), d
∗
2 > xn(t)) ∼ P

(

d∗
1′
> xn−1(t)

)

P
(

d∗
2′
> xn−1(t)

)

.

Combining this with Assertion 2, we obtain (2).

The indicators
(

I
(n)
1 , I

(n)
2 , . . . , I(n)n

)

are increasing functions of the independent edge

indicators {eij , 1 ≤ i < j ≤ n}. As such, by Theorem 2.G, and hence by Corollary 2.C.4.

in Barbour et al. (1992) (see also related discussion in section 5.2 there), we obtain

Assertion 4.

dTV (L(Wn), P oi(λn)) ≤
1− eλn

λn

(

V ar(Wn)− λn + 2

n
∑

i=1

(

π
(n)
i

)2
)

=
1− eλn

λn

(

n
∑

i=1

(

π
(n)
i

)2

+
∑

i 6=j

Cov
(

I
(n)
i , I

(n)
j

)

)

, (4)

where dTV (L(Wn), P oi(λn)) is the total variation distance between distributions of Wn and

the Poisson distribution with mean λn.

In our case, since d∗1, . . . , d
∗
n are identically distributed,

n
∑

i=1

(

π
(n)
i

)2

= nP (d∗1 > xn)P (d∗1 > xn),

and
∑

i 6=j

Cov
(

I
(n)
i , I

(n)
j

)

= n(n− 1) [P (d∗1 > xn(t), d
∗
2 > xn(t))− P (d∗1 > xn(t))P (d∗2 > xn(t))].

Hence, from Assertion 2 it follows that

lim
n→∞

n
∑

i=1

(

π
(n)
i

)2

= 0. (5)

and from Assertion 2 and 3 it follows that

lim
n→∞

∑

i 6=j

Cov
(

I
(n)
i , I

(n)
j

)

= 0. (6)

Then, from (5) and (6) it follows that lim
n→∞

dTV (L(Wn), P oi(λn)) = 0, and we obtain

the following result:

Theorem 2. For p ∈ (0, 1) and a fixed value of k,

lim
n→∞

P (Sn = k) = e−λ(t)λ(t)
k

k!
, λ(t) = e−t.
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Noticing that P (d∗m:n ≤ xn(t)) = P (Sn ≤ m− 1), and applying Theorem 2, we obtain

lim
n→∞

P

(

dm:n − (n− 1)p
√

(n− 1)pq
≤ ant+ bn

)

= e−e−t

m−1
∑

k=0

e−tk

k!
. (7)

Comment 1. The method and the results can be extended to the case where p depends on

n. In such case, Assertion 1 holds if p(1− p)n → ∞ as n → ∞ and xn(t)(p(1− p)n)1/2 =

o {( p(1−p)n)2/3} (see for example Bollobás (2001), Theorem 1.6). Since, xn(t) ∼ 2 log(n)),

the above conditions are satisfied if p(1 − p)n/(logn)3 → ∞ as n → ∞, which coincides

with the condition in Theorem 3.3’ Bollobás (2001), in which the same result was obtained

in the case where p is a function of n but by different method.

Comment 2. If ξ1, . . . , ξn are independent and identically distributed standard normal ran-

dom variables, with corresponding ξ1:n ≥ ξ2:n ≥ · · · ≥ ξn:n sequence arranged in decreasing

order, then the limit distribution P (ξm:n ≤ ant+ bn) is identical to the RHS of (1), with

the same an, bn (see for example Galambos (1987)). However, (1) is not obvious since

d1, . . . , dn are dependent and their joint distribution depends on n.

Comment 3. The same asymptotic distribution as in (1), for the ordered normalized

scores, holds for a round-robin tournament model with n players (Malinovsky, 2021). The

difference is that the round-robin tournament is a complete directed graph and the total

scores (degrees) of the players are negatively correlated.
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