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ABSTRACT

Navigating through multidimensional data cubes is a nontrivial task. Although On-Line Analyti-
cal Processing (OLAP) provides the capability to view multidimensional data through rollup, 
drill-down, and slicing-dicing, it offers minimal guidance to end users in the actual knowledge 
discovery process. In this article, we address this knowledge discovery problem by identifying 
novel and useful patterns concealed in multidimensional data that are used for effective explora-
tion of data cubes. We present an algorithm for the DIscovery of Sk-NAvigation Rules (DISNAR), 
which discovers the hidden interesting patterns in the form of Sk-navigation rules using a test of 
skewness on the pairs of the current and its candidate drill-down lattice nodes. The rules then 
are used to enhance navigational capabilities, as illustrated by our rule-driven system. Extensive 
experimental analysis shows that the DISNAR algorithm discovers the interesting patterns with 
a high recall and precision with small execution time and low space overhead. 

Keywords: cube navigation; data cube lattice; OLAP; navigation rules; skewness

INTRODUCTION
With the ever-increasing volume of data 

collected and archived by organizations, it has 
become increasingly critical in order to navigate 
efficiently and effectively through large, multi-
dimensional databases. Dimensional modeling 
techniques offer modeling paradigms in order 
to capture measures along multiple dimensions, 
and On-Line Analytical Processing (OLAP) 

tools provide various operations such as rollup, 
drill-down, and slicing-dicing in order to select 
target datasets and to view them from different 
angles. However, it is still a daunting task for end 
users to detect manually the hidden patterns in 
the voluminous and complex lattice of multidi-
mensional databases. The manual data analysis 
during cube exploration becomes a bottleneck 
in the knowledge-discovery process.
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In this article, we address this problem by 
proposing a knowledge-discovery technique in 
order to identify novel and useful patterns in 
multidimensional data that are later presented 
to end users in an apprehensible form. Specifi-
cally, we propose DIscovery of Sk-NAvigation 
Rules (DISNAR), a novel skewness-based 
algorithm, in order to detect hidden surprises 
in data cubes, and then we use these surprises 
to provide a method for cube navigation. In this 
context, a surprise reveals how anomalous a set 
of transactions is when compared with another 
set of closely related transactions in the fact 
table. The anomalous transactions could be 
defined either by few outliers in the datasets 
influencing the aggregated datasets or by a 
group of transactions showing substantial dif-
ference in facts, such as profit or cost, from the 
remaining transactions. Because the notion of a 
surprise is an intuitive one, different users may 
have different impressions on what constitutes 
a surprise. Our rule-driven system allows users 
to control the knowledge-discovery process by 
letting them set the baseline for surprises by 
simply adjusting the level of significance. 

Our work addresses two open research 
issues. The first one revolves around the inad-
equate level of decision support provided by 
most OLAP systems and is limited to aggregated 
data, which may not be sufficient for all users. 
Users often need to form concepts related to 
surprises in the data. The proposed approach 
using skewness aids in forming these concepts 
of surprises. The second one deals with the 
difficulty of navigating through data cube lat-
tices. Currently, a user must have a fairly good 
understanding of the multidimensional model 
and a good intuition of what might be discovered 
in order to navigate through the vast magnitude 
of combinatorially explosive datasets involv-
ing high dimensionality and high variability in 
a data cube lattice. Without such knowledge, 
exploring these huge datasets is constrained by 
minimal system guidance and often misled by 
aggregated views. For instance, in a hypothetical 
profit scenario, a user may view that for years 
1991 through 1998 the total profit values are 
very close to each other and may conclude 

that there is insignificant difference among the 
years. However, the data may contain some very 
high as well as very low profit segments when 
drilled down to lower hierarchical levels defined 
by quarters, months, and weeks, even though 
the aggregated values reveal no annual profit 
differences. This scenario describes a critical 
issue in cube exploration in which aggregated 
views with no definite guidance often present 
incorrect roadmaps to users. We approach this 
issue by guiding users based on surprises in the 
dataset. Thus, our methodology provides proper 
guidance through the discovery of surprises and, 
at the same time, lets users drive the knowledge 
exploration process.

This article is fundamentally different 
from related work in the sense that it identifies 
surprises by examining the data at the lowest 
level of granularity at every cuboid in a cube 
lattice, as opposed to the common practice of 
using aggregated data. Aggregation often hides 
the characteristics of the detailed data; an ex-
tremely high value and an extremely low value 
can be aggregated to a moderate value, hiding 
both extreme values. Using the smallest level 
of granularity, the problem of hiding a surprise 
as a side effect of aggregation is avoided. Our 
key contributions are as follows:

1. We discover hidden surprises with a high 
recall and precision in multidimensional 
cubes by using the statistical property of 
skewness on lattice nodes.

2. We enable users to examine different sets 
of surprises according to their needs. In 
our rule-driven system, a user can navi-
gate to the same dataset multiple times by 
adjusting the critical level of significance 
of skewness. The practical implication of 
this adjustment is that some obvious sur-
prises already may be known to the user, 
and therefore, he or she might search for 
more fine-grained surprises in different 
iterations.

3. We detect the surprises for multiple 
measures simultaneously at lattice nodes. 
For example, in most real-life settings, 
multiple measures such as revenue and 
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cost are viewed simultaneously in order 
to gain useful insight. 

4. We introduce a rule-driven system that 
presents the discovered surprises in a 
more comprehensible form, thereby guid-
ing users to proper navigation paths. Our 
approach contrasts a traditional OLAP 
system in which presenting information 
is overwhelming due to the combinatorial 
explosion in the number of dimensions, 
levels in the dimensional hierarchies, and 
transactional cardinality. 

The rest of the article is organized as fol-
lows. We present the related work next followed 
by the preliminaries on data cube model. Next, 
we describe the DISNAR algorithm. We then 
present a description of a prototype of the rule-
driven Sk-Navigation system. Next, we proceed 
with the detailed experimental results followed 
by conclusions and future work.

RELATED WORK
A data warehouse is defined as a “sub-

ject-oriented, integrated, time-variant, and 
non-volatile collection of data in support of 
management’s decision making process” (In-
mon 1996). There are two essential tasks to be 
performed in a data warehouse: storage and 
maintenance of data, and providing end users 
effective means of navigation and viewing data 
using multidimensional models. Consequently, 
work in this field has been performed in the 
areas of data warehouse development and main-
tenance (Bouzeghoub, Fabret, & Matulovic, 
1999; Chen, Dehne, Eavis, & Rau-Chaplin, 
2006; Gupta, Mumick, Rao, & Ross, 2001; Yang 
& Widom, 2000), view materialization (Gupta 
& Mumick, 1999; Theodoratos & Sellis, 1999; 
Theodoratos & Sellis, 1999; Yang, Karlapalem, 
& Li, 1997), multidimensional modeling (Bauer 
et al., 2000; Golfarelli, Maio, & Rizzi, 2000; 
Hurtado & Mendelzon, 2001), query languages 
and evaluation (Lemire, 2002; Marcel, 1999; 
Mendelzon & Vaisman, 2000; Park, Kim, & 
Lee, 2001; Poon, 2003; Vaisman & Mendel-
zon, 2001), visualization (Choong, Laurent, & 
Marcel, 2001; Maniatis et al., 2005), indexing 

(Chan & Ioannidis, 1998; Gupta, Harinarayan, 
Rajaraman, & Ullman, 1997; Sarawagi, 1997), 
storage and chunking (Deshpande, Ramasamy, 
Shukla, & Naughton, 1998; Kaser & Lemire, 
2003), and online analytical mining (OLAM) 
(Chen, 1999; Fu, 2005; Han, 1998; Han, Chee, & 
Chiang, 1998; Sarawagi, Agrawal, & Megiddo, 
1998; Tjioe & Taniar, 2005). 

Cube lattices commonly are used in mul-
tidimensional data mining in large databases 
(Casali, Cicchetti, & Lakhal, 2003). Associa-
tion rule mining, first introduced in Agrawal, 
Imielinski, and Swami (1993), is one of the key 
research topics and has been developed in differ-
ent ways, such as the quantitative rules (Aumann 
& Lindell, 1999), RLSD (Zhang, Bloedorn, 
Rosen, & Venese, 2004), strong affinity patterns 
(Xiong, Tan, & Kumar, 2003), DGX distribution 
(Bi, Faloutsos, & Korn, 2001), and CCMine 
(Kim, Lee, & Han, 2004). These methods focus 
primarily on finding the strong associations 
among the items sets. An association rule, for 
example, establishes interesting relationships 
among items but cannot determine an interesting 
set of transactions containing anomalies, if its 
support or confidence is very low. On the other 
hand, the outlier detection techniques, such as 
LOADED (Ghoting, Otey, & Parthasarathy, 
2004), are useful mainly in identifying the 
extreme anomalies in the datasets but do not 
provide adequate solutions to describe the im-
pact of the surprise on the overall patterns in 
the datasets. The DISNAR algorithm addresses 
the discovery of hidden patterns in a multidi-
mensional cube and also detects the nodes in 
the cube lattice that are influenced directly or 
indirectly by interesting patterns.

Another important issue in multidimen-
sional databases is guiding the users to explore 
the data cube. While query-driven knowledge 
discovery (Boulicaut, Marcel, & Rigotti, 1999) 
and discovery-driven exploration of OLAP 
data cubes (Sarawagi et al., 1998) have been 
proposed, they do not address the easy iden-
tification of surprises. Sarawagi et al. (1998) 
define surprises in a rigid manner, implying that 
users cannot view them differently according 
to their needs. Furthermore, it is overwhelming 
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for users to study the surprises by looking at the 
datasets presented in a large number of rows 
and columns. This work was extended further 
by Sarawagi (1999, 2000) by explaining differ-
ences in aggregate values and by using these 
to discover surprises in unexplored parts of a 
data cube using maximum entropy principles. 
However, the previously mentioned limitations 
still exist in these studies, and we differ from 
these by dealing with transactions at the low-
est levels of hierarchies. Other related work in 
the area of subgroup patterns (Klosgen, 2002) 
addresses the general problem of defining and 
identifying local subgroups. While important, 
such methods also presume the way a surprise is 
defined and do not provide a generalized navi-
gational methodology. Another recent approach 
in this area is presented by Fabris and Freitas 
(2006) in which the authors use Simpson’s 
paradox as the basis for defining surprises. In 
this article, we provide a method for navigation 
that will discover not only Simpson’s paradoxes 
but also additional surprises, as defined by the 
user. This article extends the existing work 
by detecting surprises concealed at the lowest 
level of granularities in large multidimensional 
databases and by establishing the concept of 
cube navigation using the discovered surprises 
in a flexible manner. 

OVERVIEW OF
THE DATA CUBE MODEL
Let us assume that the data cube consists 

of m dimensions, d1, d2,…, dm. A dimension di 
is associated with a concept hierarchy contain-
ing one or more levels of aggregation. Level 
lij represents the jth level of dimension di, such 
that 1≤j≤Li where Li is the number of levels 
associated with di. A level lij contains a set of 
attributes. Let vijk be the kth attribute at level 
lij. The facts are numerical measures, usually 
the objects of analysis. Assume that there are 
s facts, f1, f2,…, fs in the fact table and that wpq 
is the qth value for fact fp, where 1≤p≤s, wpq ∈ 
Wp where Wp is the domain of possible values 
of fact fp. In our example, W[profit] is a set of 
discrete values associated with profit, W[profit] = 
{low, medium, high}. The fact table contains 

the complete transaction set T = [τ1, τ2,…, τn], 
where n is the total number of transactions. A 
transaction, τ is represented as {(x1, x2,…, xi ,…, 
xm), (f1, f2,…, fp ,…, fs)}, where xi is an attribute 
(vijk) from the lowest level (=Li) of di, and fp is 
an associated fact. 

Given m dimensions, latt(m) is a lattice 
of cuboids, each being a distinct combination 
of hierarchical levels of dimensions. Figure 1 
illustrates the partial lattice for a grocery da-
tabase with product (P), time (T) and store (S) 
dimensions. (P1) represents a one-dimensional 
cuboid containing level-1 (product category) 
for product dimension. Similarly, (P1,T1) rep-
resents a two-dimensional cuboid constructed 
by level-1 of product (category) and time (year) 
dimensions. An edge shows the possible naviga-
tion from one cuboid to another; for instance, 
from (P1) to (P1,T1). A cuboid consists of a set 
of nodes in which a node contains the attributes 
vijk’s and the facts fp’s. For example, the cuboid 
(P1) contains three nodes; namely, Food, $445K, 
Drinks, $680K, and Supplies, $380K, where the 
profit is the fact. Every node corresponds to a 
set of transactions, also referred to as a dataset. 
A navigation path describes a traversal through 
the nodes in the lattice. For example, the path 
(P1)  (P2)  (P2,T1)  (P2,T1,S1) suggests 
that a user first look at a node at (P1) Product 
category, drill down to a node at (P2) product 
subcategory, and subsequently view the nodes 
at (P2,T1) product subcategory and year and 
(P2,T1,S1) product subcategory, year, and region. 
We next describe the navigation paths.

Figure 1. A partial lattice of cuboids



International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006   31

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is 
prohibited.

A navigation path comprises a set of nodes 
in a predefined order starting from a root node, 
which is a node in a one-dimensional cuboid 
such as (P1), (T1), or (S1). Subsequent nodes 
are determined either by drilling down one 
dimension from a preceding node or by includ-
ing a new dimension that does not exist in the 
preceding node. This process may continue 
until there are no more nodes to traverse. As 
an example of navigation, starting from a cur-
rent node containing the rule Year = 1992, the 
candidate nodes to examine for traversal include 
the rules {“Quarter=Q1-1992”, “Quarter=Q2-
1992”, “Quarter=Q3-1992”, “Quarter=Q4-
1992”, “Year=1992 and Product Category 
= Drinks”, …, “Year = 1992 and Region = 
Eastern”, …}.

Suppose nodcurr is a lattice node with the 
fact fp[curr]: 

nodcurr = {l1[curr], l2[curr], ...li[curr], ...lm[curr]}.

Here li[curr] is the hierarchical level for 
dimension di at node nodcurr. A distance metric, 
dist(nodx, nody), between two nodes is defined 
as follows:

dist(nodx, nody) = 
1

m

i=
∑li(nodx) – li(nody).

A node nodcand is considered a candidate 
node if its distance from the current node nodcurr 
is 1 under the following conditions:

∃ li[cand] : li[cand] = li[curr] + 1 for exactly one li[cand];

∀ i li(nodcand) ≥ li(nodcurr), where i = 1, ...m.

Assume that nodcurr contains m1 dimen-
sions (1 ≤ m1 ≤m) at lij ≠ 0. Candidate nodes 
then are determined by (1) navigating one level 
down in dimensional hierarchy for dk, dk ∈ m1, 
and (2) navigating along a new dimension dl, 
dl ∈ (m-m1) dimension set. 

THE DISNAR ALGORITHM
We present DISNAR, an algorithm to 

discover hidden surprises in multidimensional 
cubes using the property of skewness. DISNAR 

utilizes normal distribution for detecting skewed 
nodes existing in cube lattices. To discover 
the surprises, we follow a four-step recursive 
process as follows:

1. Given a current node, generate a set of 
candidate nodes.

2. Measure the skewness of candidate 
nodes.

3. Apply the test of significance of skewness 
on candidate nodes.

4. Transform nodes with significant skew-
ness into Sk-navigation rules.

Once a node with a significant skewness 
is identified, it acts as the current node for 
generating next-level candidates. The algo-
rithm terminates either when it reaches the 
lowest level nodes in the lattice or when no 
more nodes of surprises are discovered in the 
current iteration. We then establish the concept 
of cube navigation using Sk-navigation rules. 
Finally, we present three ways to guide through 
the navigations in order to enhance the cube 
exploration capabilities.

Generation of candidate nodes (Step 1) 
is explained in the previous section. We now 
explain the next three steps of the algorithm.

Step 2. Measurement of Skewness for 
Candidate Nodes

A dataset is skewed if it is not symmetri-
cally distributed with reference to its central 
axis (usually the mean). If μ and σ are the 
mean and standard deviation of a population, 
skewness is defined by its third standardized 
moment as follows:

3 3( ) ( )
.1 2 3 / 2 3[ ( ) ]

E X E X

E X
skewness µ  µ

β
µ σ

− −
= =

−

Here, E is the expected value operator. 
For a symmetric distribution, such as a normal 
distribution N(μ,σ), the skewness 1 is equal 
to zero. A nonnormal distribution is skewed 
either to the left or to the right of its central 
axis, 1 ≠ 1. If the distribution is positively 
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(negatively) skewed, 1 > 0 ( 1 < ), the por-
tion of the curve on the right (left) of the central 
axis contains the longer tail. 

Once the candidate nodcand is identified, we 
measure skewness of the dataset for nodcand with 
respect to its central axis defined by the mean of 
the fact at nodcurr. Evidently, nodcand always will 
contain a subset of the transactions contained at 
current node nodcurr. For example, a candidate 
node product subcategory = frozen food will 
contain a subset of the transactions from the 
current node product category = food. Let T[curr] 
be the transaction set for nodcurr, T[cand] be the 
transaction set for nodcand, n1 be the number of 
transactions at nodcurr, and n2 be the number of 
transactions at nodcand. Then:

T[curr] ⊆ T, T[cand] ⊆ T, and T[cand] ⊆ T[curr], n1 ≤ n, 
n2 ≤ n, and n2 ≤ n1.

Let us say that f p[curr] is the mean value 
of fact fp[curr] at nodcurr. Let fp(j)[cand] be fp’s value 
for the jth transaction τj[cand]. 

The skewness of candidate node nodcand 
is measured as follows:

2 3( ) /[ 2( )[ ]1
1[ ] 3/2

2 2( ) /[ ] 2( )[ ]1

n
f f np currp j candj

b cand n
f f np currp j candj

∑ −
=

=

∑ −
=

 
  

Step 3. Test of Significance of
Skewness for Candidate Nodes

In order to determine the pattern (i.e., 
low-profit region, high-profit region) at a 
node relative to its parent node, we establish 
the corresponding side of the central axis (left 
or right) for the significance of skewness. It 
is achieved by conducting a one-sided test of 
skewness as follows:

H0: normality with 1 = 0
H1: non-normality with 1 > 0, or H1: non-

normality with 1 < 0

If 1 satisfies the critical skewness at a 
level of significance α, the null hypothesis H0 

becomes false and is rejected. Based on positive 
or negative skewness, we infer the element of 
Wpq to which the fact fp belongs. For example, 
a positive skewness for the profit means a high-
profit region relative to its parent.

We apply the test of significance of skew-
ness (D’Agostino & Stephens, 1986) to discover 
the candidate nodes with significant skewness. 
Based on the sample size (n2) of nodcand, the 
critical skewness 1b critical[cand] is determined 
as follows.

Critical Value for Skewness [5 ≤ n2 ≤ 35]
The skewness 1b [cand] for a candidate node 

is compared with the simulation probability 
points of 1b  called Monte Carlo points at a 
level of significance α.

Critical Value for Skewness [n2 ≥ 36]
We perform a normal approximation of 

the null distribution of 1b  characterized by 
a Johnson SU curve. The obtained Z-value 
represents approximately a standard normal 
variable. This Z-value is looked up in the 
standard normal distribution N(0,1) table at a 
given α to either reject or accept the null hy-
pothesis H0. Another way to test the skewness 
is to compare it against the probability points 
for 1b  computed from Johnson SU approxima-
tion. These probability points are available for 
sample sizes up to 10,000. We applied the least 
square fitting technique on available probability 
points to extend them for sample sizes greater 
than 10,000.

Test of Significance of Skewness
If 1b [cand] > 1b critical[cand], we reject the 

null hypothesis; therefore, the skewness 1b [cand] 
of candidate node nodcand is found significant 
at α, suggesting a significantly skewed pattern 
at nodcand on the navigation path from nodcurr 
to nodcand. 

If 1b [cand] ≤ 1b critical[cand], the null hy-
pothesis cannot be rejected, implying that the 
candidate dataset normally is distributed with no 
significant skewness in f p[curr]. Figure 2 presents 
Step 1 to Step 3 of the DISNAR algorithm. The 
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function nodes_of_skewness() describes the first 
two steps, generation of candidate nodes and 
measurement of skewness. The main function 
discover_sk_navigation_rules() describes Step 
3, the test of significance of skewness. 

Step 4. Transforming Nodes of
Significant Skewness Into
Sk-Navigation Rules

A candidate node nodcand, identified for a 
significant skewed pattern, is transformed into 
an Sk-navigation rule. The individual dimen-
sions, along with their hierarchical levels, and 
attributes from nodcand are represented in the 

antecedent. If a dimension does not exist in 
nodcand, it is assumed to be aggregated to ALL. 
The consequent consists of a fact and its skew-
ness. For example, a positive skewness for profit 
suggests a high profit region at nodcand relative to 
its parent node. Similarly, a negative skewness 
suggests a low profit region at nodcand relative 
to its parent node. An Sk-navigation rule skr 
then is represented as follows:

(d1: l1j=v1jk, d2: l2j=v2jk, …, di: lij=vijk,…, dm: 
lmj=vmjk)  fp = wpq, [α, 1b ].

For instance, if a node “Drinks, profit: 
$680K” is positively skewed at α = 0.05 and 

Figure 2. The DISNAR algorithm

discover_sk_navigation_rules () 
Input  
Output: complete set of sk-navigation rules (rs_skewbar) 
 
let Li = number of levels for dimension di; 

 
 

Li – 1; 
while curr_ navig_level < max_navig_level++  

nodes_of_skewness(curr_navig_level); 
  for every node nodcand in ns_current 
    apply test of significance for ][1 candb  

    if nodcand is significant then 
      add nodcand to rs_skewbar; 
      rule_navig_level (nodcand ij; 
  end for; 
end while; 
end; 
 
nodes_of_skewness (curr_navig_level) 
Input: curr_navig_level  // current level of navigation 
Output: set of candidate nodes nodcand and their skewness

][1 candb  

 
if curr_navig_level = 0, then     
  { }0,...,0,...,20,10: mlilllcurrnod ;  

 
-1) and current node is not null; 

 
for each of t rules 
  { }mtlitltltlcurrnod ,...,,...,2,1: ;  
  generate candidate nodes nodcand such that  dist (nodcurr, nodcand) = 1; 
  measure

][1 candb  for every nodcand and nodcurr; 

end for; 
end; 
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1b  = 2.63, the corresponding Sk-navigation 
rule will be product category = Drinks  profit 
= high [0.05, 2.63] relative to its parent node 
product category = All.

The support (υ) of an Sk-navigation rule is 
defined by the number of transactions to estab-
lish the rule and is a useful parameter to control 
the number of rules generated by DISNAR. 
A very small sample size may produce a large 
number of rules, in which case υ can be used to 
restrict the rule generation by qualifying only 
those candidate nodes that satisfy the condition 
n2 ≥ υ. However, DISNAR allows us to identify 
skewed datasets for a sample size (n2) as small as 
5. As we drill down to the near-lowest levels in 
dimensional hierarchies, the sample size is greatly 
reduced. To our advantage, test of skewness still 
qualifies for these small sample sizes. 

It is important to note that Sk-navigation 
rules are neither association rules found in data 
mining nor production rules found in expert 
systems. Association rules cannot discover sur-
prises, as they detect the most commonly found 
patterns as opposed to uncommon patterns. On 
the other hand, the primary utility of Sk-naviga-
tion rules is in aiding an OLAP user traverse the 
data cube efficiently and effectively.

Cube Traversal Using
Sk-Navigation Rules

In this section, we formally define cube 
traversals using Sk-navigation rules. A rule also 
is called a node of surprise, because essentially 
it represents a lattice node containing a signifi-
cant skewed pattern relative to its parent. A user 
begins the navigation with a root node (level-1 
rules) and continues drilling down to children 
nodes until no further rules are detected. The 
rules guide the users to reach surprises of inter-
est. The rules also provide a better choice of 
cube exploration for the following reasons:

1. They are simple to comprehend. It is 
easier to interpret an Sk-navigation rule 
than to manually scan a large dataset and 
try to find surprises, if any. 

2. They are convenient to use. It is quite 
easy to navigate through Sk-navigation 

rules. Cube navigation is straightforward, 
because the rules can be understood and 
recollected better than the real datasets.

3. Cube exploration using Sk-navigation 
rules provides guidance for cube navi-
gation, which does not exist in current 
OLAP tools.

The following properties of Sk-navigation 
rules and navigation paths are used in cube 
navigation:

1. A navigation path (np) is defined by the 
complete traversal from a root node to the 
leaf node. If a navigation path npx contains 
a total of t Sk-navigation rules, then:

 npx = {skri: 1 ≤ i ≤ t}.

 Here, npx represents an ordered set of 
rules arranged from 1 to t in their order 
of navigation.

2. The level of navigation for a rule is de-
termined by summing up the dimensional 
levels in its antecedent. For a rule skrp that 
contains q dimensions in its antecedent 
(q ≤ n), the level of navigation, lnavig, is 
given by:

 1
( )

q

navig p j
j

l skr l
=

=∑ .

For example, lnavig(skr2) is 3 for a rule skr2  year 
= 1993, product subcategory = frozen 
food  profit=high [0.05, 1.53].

3. A rule is the root node in a navigation 
path, if and only if it does not connect to 
a parent. It is defined as follows:

 npx = {skri: 1 ≤ i ≤ t}
 ∃ skj[parent]: lnavig(skrj[parent]) < lnavig(skri) for 

all i > j

 For example, year = 1993  profit = 
high [0.05, 1.79] is a root node, because 
it does not have any parents.

4. A rule is the leaf node (end point) in a 
navigation path, if and only if it does not 
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extend to any children rules. The level of 
navigation for a leaf node ranges from 1 
to (ΣLi – 1). That is:

 npx = {skri: 1 ≤ i ≤ t}
 ∃ skj[leaf]: lnavig(skrj[leaf]) < lnavig(skri) for 

all i ≠ j

5. Two rules, skr1 and skr2, exist in the same 
navigation path, if and only if one rule is 
an ancestor rule of another:

 (skrj, skrk) ∈ npx iff skrj = ancestor(skrk) 
or skrk = ancestor(skrj).

6. The length of a navigation path, lennp, 
represents the total number of rules in 
the complete traversal. A path is called 
a shallow-navigation path (npsh) if lennp 
is equal to 1. The longest path, recog-
nized by lennp = (ΣLi – 1), is called a 
dense-navigation path (npden). We use 
dense-navigation paths to describe the 
most detailed paths to reach the lowest 
possible nodes of surprises.

An important property that arises from the 
Sk-navigation rules is that a rule may belong 
to multiple navigation paths, since the cuboids 
in the lattice are interlinked. A node of surprise 
such as in cuboid (T1, P1) can be reached ei-
ther from cuboid (T1) or from cuboid (P1). For 
example, a user can navigate to year = 1993, 
product category = food  profit = high [0.05, 
1.53] either from year = 1993  profit = high 
[0.05, 1.79] or from product category=‘food’ 
 profit = high [0.05, 1.38]. 

Proposed Ways to Guide Through 
Navigation Paths

The properties of Sk-navigation rules 
explained in the previous section are used in 
our rule-driven system to navigate through 
data cubes. To steer the user to one of several 
possible navigation paths, three complementary 
yet independent controls available to the user 
are proposed.

1. Level of Significance (α). The level of 
significance is a key parameter in our rule-
driven system. The system allows users to 
dynamically adjust α to view different sets 
of rules at the same lattice node. The value 
of α is user-defined and is initially set to 
0.05 by default. A user, looking for only 
extreme surprises, just needs to decrease 
α to 0.01 or 0.005. Similarly, α can be 
relaxed to 0.1 for less-extreme surprises. 
Next, we explain the effect of change of 
α on discovery of Sk-navigation rules.

 If α1 and α2 are two levels of signifi-
cance (α1<α2), a node nodcurr contains a 
Sk-navigation rule under the following 
circumstances:

(a) | 1b [curr]| > 1b critical[curr] at (n, α1)
 In this case, skewness 1b [curr] al-

ways will be greater than the critical 
skewness at (n, α2) because α1<α2. 
Therefore, nodcurr contains a rule at 
both α1 and α2.

(b) | 1b [curr]| < 1b critical[curr] at (n, α1), and
 |

1b [curr]| > 
1b
critical[curr] at (n, α2)

 Here, nodcurr contains a rule at α2 
but is rejected as a non-significant 
skewed node at α1. This results in 
different sets of Sk-navigation rules 
at different αs.

(c) | 1b [curr]| < 1b critical[curr] at (n, α1), and
 |

1b [curr]| < 
1b
critical[curr] at (n, α2)

 Because 1b [curr] does not satisfy the 
critical skewness at either α1 or α2, 
nodcurr does not contain a rule at ei-
ther of the levels of significance.

2. Interestingness of Sk-Navigation 
Rules. An important metric of discovered 
knowledge in association rules mining 
is the interestingness of rules, and it is 
considered an important post-data mining 
issue. Using this metric, users can prune 
the large number of rules generated to 
only the ones that are interesting. While 
it is difficult to formalize interestingness, 
it can take the form of unexpected rules 
or in terms of objective measures such 



36   International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. 
is prohibited.

as support and confidence. Since our 
approach is based on detecting surprises, 
we adopt the interestingness of rules in 
terms of unexpectedness. 

 While navigating through the data cube, 
the user expects the children rules to 
provide additional details beyond what is 
provided by their parent in terms of sur-
prises. If a parent rule contains more than 
one child rule, only one of the children is 
certain to conform to the parent’s surprise. 
The remaining children rules may or may 
not encode the similar surprise as that of 
parent. For instance, while the parent rule 
shows a positive skewness, a subset of the 
same transaction set (a child rule) may 
behave differently and may show negative 
skewness. To examine this unexpected-
ness, we introduce a neighborhood-based 
categorization of Sk-navigation rules and 
then examine the rules for their unex-
pectedness based on their categories. The 
rules are grouped into three categories: 
expected, unexpected, and NA (not ap-
plicable), based on the skewness pattern 
for the pairs of parent and child. A rule 
is called expected if it matches the prior 
knowledge of its parent rule’s consequent, 
meaning that the user is consistently 
navigating through the rules having the 
same nature of skewness. An unexpected 
rule indicates a perceptible change on the 
skewness while navigating from parent to 
child. The consequent of an unexpected 
rule differs from that of its parent. A root 
node is indicated by NA if it is the first 
node of navigation and does not have a 
parent rule with which to compare.

 Let us assume that skrparent and skrchild are 
the parent and child Sk-navigation rules. 
Then:

(a) skrchild is expected if
 ante(skrchild) ⊃ ante(skrparent), and
 cons(skrchild) = cons(skrparent)
(b) skrchild is unexpected if
 ante(skrchild) ⊃ ante(skrparent), and
 cons(skrchild) ≠ cons(skrparent)

(c) skrparent is NA if
 lnavig(skrparent) = 1, or skrparent is a root 

node in its navigation path.

 For instance, the algorithm discovered an 
unexpected surprise, quarter = 1993-Q2 
 profit = low , when navigating from 
year = 1993  profit = high. This catego-
rization adds purposeful information to 
navigation paths. We can rank the naviga-
tion paths by their number of unexpected 
rules. Users then simply can drill down 
on the paths that contain a large number 
of unexpected Sk-navigation rules and 
examine the corresponding datasets 
that contain many highs and lows in the 
transactions. 

3. Dealing With Multiple Facts. Our 
rule-driven system allows users to work 
simultaneously with many rules that con-
tain multiple facts in their consequents. 
Given a navigation path, a user can study 
the behavior of different facts at the same 
time by looking at different consequents 
while maintaining the same antecedent. 
If skrj and skrk are two rules representing 
two different facts, then:

 lnavig(skrj) = lnavig(skrk),
 ante(skrj) = ante(skrk), and
 cons(skrj) ≠ cons(skrk).

 For example, two Sk-navigation rules, 
skr1 year = 1993  profit = high [0.05, 
1.79] and skr2 year = 1993 cost = low 
[0.05, -2.06], represent the same lattice 
node but refer to two different facts: profit 
and cost.

PROTOTYPE OF A
RULE-DRIVEN

Sk-NAVIGATION SYSTEM
In this section, we describe our rule-driven 

prototype and illustrate how it assists end users 
to explore data cubes and to reach low-level 
surprises. In order to discover surprises, our 
system supports drill-down and rollup opera-
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tions on Sk-navigation rules in the same manner 
as OLAP. In addition, the system provides novel 
methods of cube navigation and a navigation 
history to the end users. 

We illustrate the rule-driven system with 
few sample screens for exploring a grocery data 
cube consisting of three dimensions, Product, 
Time, and Store, with the lowest dimensional 
levels as Product Brand, Month, and City, 
respectively. In Figure 3, the top left panel 
(panel_a) displays the three dimensions and their 
respective top-level hierarchies in drop-down 
lists. A user simply can select a hierarchical 
level available for navigating from the drop-
down lists, such as Category from Product, Year 
from Time, or Region from Store dimension, and 
view the corresponding Sk-navigation rules. 
The user also can select one or more facts to 
view simultaneously (Profits, Revenue, Costs), 
which are displayed on the next row. Panel_c 
displays the current rules in descending order 
of skewness with the highest skewed rule at the 
top. If the user selects Year from Time dimen-
sion, the system displays all the rules containing 
only Year in panel_c. After selecting a rule in 
panel_c, the rule is highlighted with a different 
color, and its children rules (next navigation 
level) are presented in panel_d. 

Let us assume that a user first selects a rule 
skr1 year = 1992  profit = Sk-low in panel_c, 
as shown in Figure 3. The corresponding chil-
dren rules are displayed in panel_d. For the 
next navigation level, the user selects a child 
rule from panel_d. For instance, when a rule 
skr2 quarter = 1992-Q3  profit = Sk-low is 
selected from panel_d, it automatically is moved 
to panel_c, implying that the user has navigated 
to skr2, which then becomes the current rule 
(Figure 4). As a result, the dropdown list for 
Time dimension changes from Year to Quarter. 
Unselected rules are moved from panel_d to 
panel_c and become available as the alternate 
paths. Panel_d is refreshed to display children 
rules for skr2. By continuing the navigation in 
a similar fashion, a user finally reaches a low-
level surprise, product subcategory = ‘Frozen 
Food’, quarter = ‘1992-Q3’, month = ‘Jul’, 
state = ‘PA’  profit = Sk-low.

Our system also provides the control pa-
rameters in the top right panel (panel_b). Users 
can dynamically adjust the level of significance 
(α) to study different sets of rules at the same 
cuboid. The possible values of α are 0.005, 0.01, 
0.025, 0.05, and 0.1. Panel_c and panel_d are 
refreshed based on selection of α. For instance, 
a decrease in the value of α results in displaying 

Figure 3. Selecting a rule at year level from panel_c
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only the very highly skewed patterns, such as 
very high profit or very low profit.

We also utilize the interestingness of 
Sk-navigation rules to allow users to instantly 
view the expected, unexpected, or both types 
of patterns. Unexpected rules are differentiated 
visually from expected rules through a red dia-
mond symbol following the rule presentation. 
For instance, one simply can navigate through 
unexpected rules by checking the unexpected 
checkbox, thereby filtering panel_c and panel_d 
to display only the unexpected rules. 

Additionally, we provide a navigation 
history (shown at the bottom left) in order to 
trace the cube exploration by individual users. 
The history facilitates navigation by allowing 
the users to return to a previsited rule without 
the need to backtrack or to recollect the previ-
ous navigation steps. The navigation paths for 
individual users also are recorded in the database 
so that the history can be promptly brought back 
to the users the next time they log in. 

EXPERIMENTAL RESULTS
This section presents results from a set 

of experiments to evaluate the performance of 
DISNAR algorithm by studying the quality and 
scalability of Sk-navigation rules. Specifically, 

we evaluate (a) the recall and precision of Sk-
navigation rules, (b) the execution time, and 
(c) the space overhead. We further present the 
experimental results using a real-life dataset. 
All experiments were performed on a 1.7GHz 
Pentium IV machine with 512MB RAM running 
Windows XP. The algorithms were implemented 
in PL/SQL on an Oracle 10g database.

Experimental Setup
We adapted the grocery database (Kimball, 

2002) in order to generate five test datasets, as 
shown in Table 1. The number of navigation 
nodes is obtained by summing up the total lattice 
nodes in all possible cuboids in the grocery data 
cube. The primary reason for using simulated 
data in experiments is to identify precisely 
the hidden surprises and to compare them to 
discovered Sk-navigation rules. 

Each of the datasets contains three di-
mensions, Product, Time, and Store, and two 
facts, Profit and Quantity. The dimensional 
hierarchies are Product {Category, Subcat-
egory, Brand}, Time {Year, Quarter, Month}, 
and Store {Region, State, City}. The number of 
attributes at the lowest level varied from 16 to 
64 for Product, 20 to 192 for Time, and 14 to 
31 for Store dimension. We generated surprises 

Figure 4. View after selecting a child rule at quarter level
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that represent transactions containing 15-20% 
high or low profit values compared to the rest 
of the transaction set. The number of transac-
tions with surprises varied from 1 to 25 for 
each of the datasets. The surprises also were 
generated in a manner such as to conceal their 
presence at the higher levels of aggregations 
(e.g., the aggregate Product category=Drinks 
would not show the surprises in transactions 
Product Brand = Pepsi and Product Brand = 
Ahold 2% Milk). 

Due to the nature of navigating the lattice 
nodes, a surprise at the lowest level affects its 
higher-level lattice nodes, such as a surprise at 
a node city = Fairfax will influence two addi-
tional nodes, state = VA and region = Eastern. 
We measure this phenomenon by defining an 
influence rate, which is calculated as the number 
of nodes affected divided by the total number 
of nodes. Figure 5 shows the number of nodes 
in the grocery cube lattice that were affected 
by the lowest-level surprises. For instance, in 
dataset DS-5, the existence of only one lowest-
level surprise (affecting a single transaction), 
Product subcategory = Orange Juice, month 
= 1991-Q1_Jan, city = Baltimore, affected 62 
nodes from a total of 1,035,893 nodes in the 
lattice, giving an influence rate of 0.005%. As 
expected, increasing the number of surprises 
to five in the same dataset resulted in a higher 
influence rate of 0.020% by affecting a total of 
215 nodes. At the maximum, when 25 lowest-
level surprises existed for DS-5, the influence 
rate was 0.071%, affecting 738 nodes.

Apart from varying the number of sur-
prises, we also tested the DISNAR algorithm by 
varying the level of significance (α) from 0.005 

to 0.1. The support of Sk-navigation rules (υ) 
was set to 5 throughout the experiments. 

Quality of Sk-Navigation Rules
The purpose of this set of experiments 

was to examine how many true surprises were 
discovered (= recall), and then to analyze the 
percentage of Sk-navigation rules that actually 
were the true surprises (= precision). Figure 6 
shows how a change in α affects the recall and 
precision of discovered rules for DS-5 for dif-
ferent levels of surprises.

We observed that DISNAR detected the 
surprises with high recall and precision values at 
α = 0.05. A high recall was achieved for every set 
of surprises ranging from 1 to 25. For instance, 
DISNAR discovered 519 Sk-navigation rules 
when the number of surprises was 20 and α was 
0.05, thereby resulting in a recall of 75.21%. 
These 519 rules (i.e., nodes) were discovered 
from a total of 1,035,893 lattice nodes. The recall 
increased to 88.11% when α was increased to 
0.1 as a result of detecting more surprises. When 

Table 1. Summary of the five experimental datasets

Dataset # Records # Nodes of Navigation
DS-1 4,480 5,893
DS-2 32,240 37,119
DS-3 97,384 107,095
DS-4 20,736 131,759
DS-5 190,464 1,035,893
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the number of surprises was set to 20 or 25, as 
expected, the recall was relatively smaller at α 
equal to 0.005 and 0.01. This happened because 
the impact of aggregating 20 to 25 surprises with 
variability in the degree of surprise results in 
low skewness. However, these surprises later 
were detected when α was increased to 0.05 
or 0.1, thus ensuring a high recall. Noticeably, 
the algorithm achieved a precision of 1 when 
α was 0.005, because it discovered only very 
highly skewed patterns and did not allow any 
low skewed patterns to qualify as surprises. 
Figure 7 shows the recall and precision for all 
five datasets at α set at 0.05. Again, we observe 
that DISNAR achieved high recall and precision 
values for different datasets. Complete results on 
recall and precision for additional four datasets 
are included in Appendix A.

In Figure 6, we observe that the recall 
increases with a lower precision for higher 
αs. This is attributed to low critical skewness 
with an increase in α. The algorithm detects the 
low skewed patterns, which are not significant 
otherwise at smaller αs. Discovery of these 
less-evident surprises results in a high recall. 
However, relaxing critical skewness to a lower 
value also discovers some false surprises, be-
cause some nodes with relatively small skew-
ness also qualify as surprises, resulting in a 
smaller precision. A practical implication of 
this variation in α is that some surprises are 
apparent, while others are not. Therefore, we 
allow users to dynamically adjust α to pursue 
either high- or low-skewed surprises.

Figure 6. Effect of α on (a) recall (on left) and (b) precision (on right) for DS-5

Figure 7. (a) recall (on left) and (b) precision (on right) for five datasets at α = 0.05
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Execution Time
Figure 8(a) shows the execution time to 

discover different sets of surprises for DS-5 
as a function of α. The graph suggests an in-
crease in execution time for higher αs. This is 
expected, since at higher αs, low value of the 
critical skewness results in a larger number of 
lattice nodes being examined. However, even for 
the largest dataset DS-5, DISNAR discovered 
the surprises within a reasonable processing 
time. For instance, it took only 4.28 minutes to 
discover 334 rules with a number of surprises 
equal to 10 and α set at 0.05. These rules were 
identified from a total of 1,035,893 lattice nodes, 
resulting in a processing time of 0.248 seconds 
per thousand nodes. The execution time reached 
a maximum 9.316 minutes when 653 surprises 
were discovered for DS-5 at a peak α value of 
0.1, resulting in a processing time of only 0.5396 
seconds per thousand nodes. 

Effective pruning of nodes, a feature of 
the DISNAR algorithm, plays an important role 
in the total execution time. When the number 
of surprise rules increased from 215 to 738 (a 
factor of 3.43) for DS-5 at α set at 0.05, the 
execution time increased by only by a factor 
of 1.35 from 258 to 396 seconds. DISNAR’s 
knowledge discovery process begins at the 
root nodes. Subsequent nodes are selected 
for further traversal, only if they satisfy the 
minimum significant skewness. A node with 
insignificant skewness immediately is pruned 

from the discovery process. Hence, even if the 
number of surprises increases in the dataset, it 
does not linearly affect the number of search-
able nodes in the lattice. The execution time 
graphs for the other four datasets are included 
in Appendix B.

We also compare the execution time for 
different datasets at α set at 0.05. As shown in 
Figure 8(b), the execution time for datasets other 
than DS-5 is much lower than for DS-5. For DS-
1, it took less than 1.67 minutes to discover 258 
rules. It took 1.70 minutes to discover 516 rules 
for DS-4. In comparison, it took 6.07 minutes 
to discover 519 rules for DS-5. Although DS4 
and DS5 discovered about the same number of 
rules, they had a huge difference in execution 
time because of the variation in their respective 
search spaces. While 516 surprises were dis-
covered from 131,759 lattice nodes for DS-4, a 
total of 1,035,893 nodes were searched to detect 
519 rules for the larger dataset DS-5.

Space Overhead
The Sk-navigation rules are stored in an 

Oracle database using a relational schema as 
suggested in Kumar, Gangopadhyay, and Kara-
batis (2005). Each rule contains the details on 
its antecedent, consequent, measure of skew-
ness, α, the parent rule, and the interestingness. 
We compare the storage space (in kilobytes) 
required for storing Sk-navigation rules with 
the dataset size to compute the percent of space 

Figure 8. Execution time for (a) DS-5 as a function of α (on left) and (b) five datasets at α = 
0.05 (on right)
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overhead. Figure 9(a) shows the effect of change 
in α on space overhead for DS-5 at different 
number of surprises. Although the overhead 
was expected to increase at higher αs, it ranged 
only from 0.18% to 0.66%. It reached a peak 
0.66% when the largest number of rules (1,034 
rules) was discovered with 25 surprises. Thus, 
compared to the dataset size, a modest storage 
space is required to store the highly meaningful 
set of Sk-navigation rules. The space overhead 
graphs for other four datasets are included in 
Appendix C.

In Figure 9(b), we compare the space 
overhead for different datasets at α = 0.05. The 
graph shows a decrease in percentage space 
overhead for larger datasets. For instance, DS-1 
and DS-4 are the two smallest datasets (Table 1) 
that also exhibit a higher space overhead. On the 
other hand, the largest dataset DS-5 resulted in 
the lowest space overhead. It is understandable, 
because the number of discovered Sk-navigation 
rules is not linearly dependent on the size of 
dataset, and the marginal rate of rule generation 
decreases as the dataset size increases. DS-5 was 
approximately 11 times larger than DS-1, but 
the respective number of discovered rules was 
502 and 258 at 25 surprises with α set at 0.05. 
Clearly the number of rules did not increase in 
direct proportion to the size of datasets. 

The Crash Data Analysis
We also tested DISNAR on a vehicle crash 

dataset obtained from the Maryland Department 

of Transportation (Bapna & Gangopadhyay, 
2005). The dataset contained 534,941 crash 
records ranging from the years 1993 to 2000, 
in which an individual crash record detailed 
the location of the crash, the day and time, 
the severity of the crash, and the crash cost. 
DISNAR discovered 372 expected and 52 un-
expected Sk-navigation rules within a total of 
2.06 minutes. Manual examination of the rules 
confirmed their surprising properties. Some 
hidden surprises were not comprehendible by 
simple examination of the large dataset but were 
discovered by DISNAR as unexpected rules. 
For example, the crash cost for both Severity 
= possible injury and Day_of_Week = Tuesday 
were low, but the algorithm discovered an un-
expectedly high crash cost in Howard County 
on Tuesdays for crashes resulting in possible 
injuries, which was not noticeable at higher 
levels of aggregation.

CONCLUSION AND
FUTURE WORK

In this article, we presented the DISNAR 
algorithm in order to discover hidden surprises 
in data cube lattices. The algorithm assists 
end users to navigate through data cubes that 
otherwise would be difficult to steer due to 
the combinatorial explosion in the number 
of possible navigation paths. This navigation 
capability was conceptualized in terms of the 
discovery of hidden surprises in the dataset. 
Three complementary and independent means 

Figure 9. Storage cost for (a) DS-5 as a function of α (on left) and (b) five datasets at α = 0.05 
(on right)
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to navigate a data cube were used: the level 
of significance as measured by the skewness 
between the parent node and a child node, 
interestingness of surprises, and the ability to 
handle multiple facts. A prototype system imple-
mented the DISNAR algorithm and was tested 
on simulated grocery datasets and a real-world 
crash dataset. The algorithm discovered hidden 
surprises for different grocery datasets with a 
high recall and precision within a reasonable 
execution time. It also discovered hidden sur-
prises in the crash dataset. The effectiveness of 
pruning nodes, based on the test of significance 
of skewness, led to a considerable decrease in 
the number of nodes that were examined for 
traversal. Thus, not only is the traversal of the 
data cube possible in reasonable execution time, 
but the Sk-navigation rules also were stored 
with slight overhead.

We are extending our work on the concept 
of navigation to deal with scenarios in which 
possibly a large number of Sk-navigation rules 
are generated. Specifically, we are working 
on an axis-shift concept in order to determine 
interestingness of navigation paths, which 
ranks the paths based on the distance metrics 
of Sk-navigation rules and then provides a 
comparison matrix to study the usefulness of 
navigation paths. This would allow users simply 
to navigate along selective paths on which highly 
extreme surprises are present. Furthermore, 
we are implementing additional exploration 
capabilities in our rule-driven system in which 
users can view all possible navigation paths 
(the children and further generations until the 
lowest level) from an Sk-navigation rule in a 
tree structure and then delve directly to a rule of 
interest. Another enhancement in our prototype 
would allow users to view the corresponding 
transaction set for the rule sorted in such a way 
that highly skewed transactions are displayed 
clearly at the top.

Association rule mining and OLAP 
traditionally have been viewed from different 
perspectives in order to aid in the knowledge 
acquisition from data warehouses. While our 
approach deals with navigation paths in OLAP 
environments, it produces rules that are repre-

sented in a manner similar to association rules. 
We currently are examining kurtosis-based 
enhancements to the algorithm in order to 
generate all types of rules, including rules that 
are commonly present in the data set. Thus, our 
approach may bridge the gap between OLAP 
and data mining.
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APPENDIX A. RECALL AND PRECISION
Dataset-1

Dataset-2

Dataset-3 

Dataset-4
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APPENDIX B. EXECUTION TIME
Dataset-1 Dataset-2

Dataset-3 Dataset-4

APPENDIX C. SPACE OVERHEAD

Dataset-1 Dataset-2

Dataset-3 Dataset-4
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