

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by
emailing scholarworks-group@umbc.edu and telling us
what having access to this work means to you and why
it’s important to you. Thank you.

mailto:scholarworks-group@umbc.edu

International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006 27

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

ABSTRACT

Navigating through multidimensional data cubes is a nontrivial task. Although On-Line Analyti-
cal Processing (OLAP) provides the capability to view multidimensional data through rollup,
drill-down, and slicing-dicing, it offers minimal guidance to end users in the actual knowledge
discovery process. In this article, we address this knowledge discovery problem by identifying
novel and useful patterns concealed in multidimensional data that are used for effective explora-
tion of data cubes. We present an algorithm for the DIscovery of Sk-NAvigation Rules (DISNAR),
which discovers the hidden interesting patterns in the form of Sk-navigation rules using a test of
skewness on the pairs of the current and its candidate drill-down lattice nodes. The rules then
are used to enhance navigational capabilities, as illustrated by our rule-driven system. Extensive
experimental analysis shows that the DISNAR algorithm discovers the interesting patterns with
a high recall and precision with small execution time and low space overhead.

Keywords: cube navigation; data cube lattice; OLAP; navigation rules; skewness

INTRODUCTION
With the ever-increasing volume of data

collected and archived by organizations, it has
become increasingly critical in order to navigate
efficiently and effectively through large, multi-
dimensional databases. Dimensional modeling
techniques offer modeling paradigms in order
to capture measures along multiple dimensions,
and On-Line Analytical Processing (OLAP)

tools provide various operations such as rollup,
drill-down, and slicing-dicing in order to select
target datasets and to view them from different
angles. However, it is still a daunting task for end
users to detect manually the hidden patterns in
the voluminous and complex lattice of multidi-
mensional databases. The manual data analysis
during cube exploration becomes a bottleneck
in the knowledge-discovery process.

Navigation Rules for Exploring
Large Multidimensional Data Cubes

Navin Kumar, University of Maryland, Baltimore County, USA
Aryya Gangopadhyay, University of Maryland, Baltimore County, USA

George Karabatis, University of Maryland, Baltimore County, USA
Sanjay Bapna, Morgan State University, USA

Zhiyuan Chen, University of Maryland, Baltimore County, USA

28 International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

In this article, we address this problem by
proposing a knowledge-discovery technique in
order to identify novel and useful patterns in
multidimensional data that are later presented
to end users in an apprehensible form. Specifi-
cally, we propose DIscovery of Sk-NAvigation
Rules (DISNAR), a novel skewness-based
algorithm, in order to detect hidden surprises
in data cubes, and then we use these surprises
to provide a method for cube navigation. In this
context, a surprise reveals how anomalous a set
of transactions is when compared with another
set of closely related transactions in the fact
table. The anomalous transactions could be
defined either by few outliers in the datasets
influencing the aggregated datasets or by a
group of transactions showing substantial dif-
ference in facts, such as profit or cost, from the
remaining transactions. Because the notion of a
surprise is an intuitive one, different users may
have different impressions on what constitutes
a surprise. Our rule-driven system allows users
to control the knowledge-discovery process by
letting them set the baseline for surprises by
simply adjusting the level of significance.

Our work addresses two open research
issues. The first one revolves around the inad-
equate level of decision support provided by
most OLAP systems and is limited to aggregated
data, which may not be sufficient for all users.
Users often need to form concepts related to
surprises in the data. The proposed approach
using skewness aids in forming these concepts
of surprises. The second one deals with the
difficulty of navigating through data cube lat-
tices. Currently, a user must have a fairly good
understanding of the multidimensional model
and a good intuition of what might be discovered
in order to navigate through the vast magnitude
of combinatorially explosive datasets involv-
ing high dimensionality and high variability in
a data cube lattice. Without such knowledge,
exploring these huge datasets is constrained by
minimal system guidance and often misled by
aggregated views. For instance, in a hypothetical
profit scenario, a user may view that for years
1991 through 1998 the total profit values are
very close to each other and may conclude

that there is insignificant difference among the
years. However, the data may contain some very
high as well as very low profit segments when
drilled down to lower hierarchical levels defined
by quarters, months, and weeks, even though
the aggregated values reveal no annual profit
differences. This scenario describes a critical
issue in cube exploration in which aggregated
views with no definite guidance often present
incorrect roadmaps to users. We approach this
issue by guiding users based on surprises in the
dataset. Thus, our methodology provides proper
guidance through the discovery of surprises and,
at the same time, lets users drive the knowledge
exploration process.

This article is fundamentally different
from related work in the sense that it identifies
surprises by examining the data at the lowest
level of granularity at every cuboid in a cube
lattice, as opposed to the common practice of
using aggregated data. Aggregation often hides
the characteristics of the detailed data; an ex-
tremely high value and an extremely low value
can be aggregated to a moderate value, hiding
both extreme values. Using the smallest level
of granularity, the problem of hiding a surprise
as a side effect of aggregation is avoided. Our
key contributions are as follows:

1. We discover hidden surprises with a high
recall and precision in multidimensional
cubes by using the statistical property of
skewness on lattice nodes.

2. We enable users to examine different sets
of surprises according to their needs. In
our rule-driven system, a user can navi-
gate to the same dataset multiple times by
adjusting the critical level of significance
of skewness. The practical implication of
this adjustment is that some obvious sur-
prises already may be known to the user,
and therefore, he or she might search for
more fine-grained surprises in different
iterations.

3. We detect the surprises for multiple
measures simultaneously at lattice nodes.
For example, in most real-life settings,
multiple measures such as revenue and

International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006 29

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

cost are viewed simultaneously in order
to gain useful insight.

4. We introduce a rule-driven system that
presents the discovered surprises in a
more comprehensible form, thereby guid-
ing users to proper navigation paths. Our
approach contrasts a traditional OLAP
system in which presenting information
is overwhelming due to the combinatorial
explosion in the number of dimensions,
levels in the dimensional hierarchies, and
transactional cardinality.

The rest of the article is organized as fol-
lows. We present the related work next followed
by the preliminaries on data cube model. Next,
we describe the DISNAR algorithm. We then
present a description of a prototype of the rule-
driven Sk-Navigation system. Next, we proceed
with the detailed experimental results followed
by conclusions and future work.

RELATED WORK
A data warehouse is defined as a “sub-

ject-oriented, integrated, time-variant, and
non-volatile collection of data in support of
management’s decision making process” (In-
mon 1996). There are two essential tasks to be
performed in a data warehouse: storage and
maintenance of data, and providing end users
effective means of navigation and viewing data
using multidimensional models. Consequently,
work in this field has been performed in the
areas of data warehouse development and main-
tenance (Bouzeghoub, Fabret, & Matulovic,
1999; Chen, Dehne, Eavis, & Rau-Chaplin,
2006; Gupta, Mumick, Rao, & Ross, 2001; Yang
& Widom, 2000), view materialization (Gupta
& Mumick, 1999; Theodoratos & Sellis, 1999;
Theodoratos & Sellis, 1999; Yang, Karlapalem,
& Li, 1997), multidimensional modeling (Bauer
et al., 2000; Golfarelli, Maio, & Rizzi, 2000;
Hurtado & Mendelzon, 2001), query languages
and evaluation (Lemire, 2002; Marcel, 1999;
Mendelzon & Vaisman, 2000; Park, Kim, &
Lee, 2001; Poon, 2003; Vaisman & Mendel-
zon, 2001), visualization (Choong, Laurent, &
Marcel, 2001; Maniatis et al., 2005), indexing

(Chan & Ioannidis, 1998; Gupta, Harinarayan,
Rajaraman, & Ullman, 1997; Sarawagi, 1997),
storage and chunking (Deshpande, Ramasamy,
Shukla, & Naughton, 1998; Kaser & Lemire,
2003), and online analytical mining (OLAM)
(Chen, 1999; Fu, 2005; Han, 1998; Han, Chee, &
Chiang, 1998; Sarawagi, Agrawal, & Megiddo,
1998; Tjioe & Taniar, 2005).

Cube lattices commonly are used in mul-
tidimensional data mining in large databases
(Casali, Cicchetti, & Lakhal, 2003). Associa-
tion rule mining, first introduced in Agrawal,
Imielinski, and Swami (1993), is one of the key
research topics and has been developed in differ-
ent ways, such as the quantitative rules (Aumann
& Lindell, 1999), RLSD (Zhang, Bloedorn,
Rosen, & Venese, 2004), strong affinity patterns
(Xiong, Tan, & Kumar, 2003), DGX distribution
(Bi, Faloutsos, & Korn, 2001), and CCMine
(Kim, Lee, & Han, 2004). These methods focus
primarily on finding the strong associations
among the items sets. An association rule, for
example, establishes interesting relationships
among items but cannot determine an interesting
set of transactions containing anomalies, if its
support or confidence is very low. On the other
hand, the outlier detection techniques, such as
LOADED (Ghoting, Otey, & Parthasarathy,
2004), are useful mainly in identifying the
extreme anomalies in the datasets but do not
provide adequate solutions to describe the im-
pact of the surprise on the overall patterns in
the datasets. The DISNAR algorithm addresses
the discovery of hidden patterns in a multidi-
mensional cube and also detects the nodes in
the cube lattice that are influenced directly or
indirectly by interesting patterns.

Another important issue in multidimen-
sional databases is guiding the users to explore
the data cube. While query-driven knowledge
discovery (Boulicaut, Marcel, & Rigotti, 1999)
and discovery-driven exploration of OLAP
data cubes (Sarawagi et al., 1998) have been
proposed, they do not address the easy iden-
tification of surprises. Sarawagi et al. (1998)
define surprises in a rigid manner, implying that
users cannot view them differently according
to their needs. Furthermore, it is overwhelming

30 International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

for users to study the surprises by looking at the
datasets presented in a large number of rows
and columns. This work was extended further
by Sarawagi (1999, 2000) by explaining differ-
ences in aggregate values and by using these
to discover surprises in unexplored parts of a
data cube using maximum entropy principles.
However, the previously mentioned limitations
still exist in these studies, and we differ from
these by dealing with transactions at the low-
est levels of hierarchies. Other related work in
the area of subgroup patterns (Klosgen, 2002)
addresses the general problem of defining and
identifying local subgroups. While important,
such methods also presume the way a surprise is
defined and do not provide a generalized navi-
gational methodology. Another recent approach
in this area is presented by Fabris and Freitas
(2006) in which the authors use Simpson’s
paradox as the basis for defining surprises. In
this article, we provide a method for navigation
that will discover not only Simpson’s paradoxes
but also additional surprises, as defined by the
user. This article extends the existing work
by detecting surprises concealed at the lowest
level of granularities in large multidimensional
databases and by establishing the concept of
cube navigation using the discovered surprises
in a flexible manner.

OVERVIEW OF
THE DATA CUBE MODEL
Let us assume that the data cube consists

of m dimensions, d1, d2,…, dm. A dimension di
is associated with a concept hierarchy contain-
ing one or more levels of aggregation. Level
lij represents the jth level of dimension di, such
that 1≤j≤Li where Li is the number of levels
associated with di. A level lij contains a set of
attributes. Let vijk be the kth attribute at level
lij. The facts are numerical measures, usually
the objects of analysis. Assume that there are
s facts, f1, f2,…, fs in the fact table and that wpq
is the qth value for fact fp, where 1≤p≤s, wpq ∈
Wp where Wp is the domain of possible values
of fact fp. In our example, W[profit] is a set of
discrete values associated with profit, W[profit] =
{low, medium, high}. The fact table contains

the complete transaction set T = [τ1, τ2,…, τn],
where n is the total number of transactions. A
transaction, τ is represented as {(x1, x2,…, xi ,…,
xm), (f1, f2,…, fp ,…, fs)}, where xi is an attribute
(vijk) from the lowest level (=Li) of di, and fp is
an associated fact.

Given m dimensions, latt(m) is a lattice
of cuboids, each being a distinct combination
of hierarchical levels of dimensions. Figure 1
illustrates the partial lattice for a grocery da-
tabase with product (P), time (T) and store (S)
dimensions. (P1) represents a one-dimensional
cuboid containing level-1 (product category)
for product dimension. Similarly, (P1,T1) rep-
resents a two-dimensional cuboid constructed
by level-1 of product (category) and time (year)
dimensions. An edge shows the possible naviga-
tion from one cuboid to another; for instance,
from (P1) to (P1,T1). A cuboid consists of a set
of nodes in which a node contains the attributes
vijk’s and the facts fp’s. For example, the cuboid
(P1) contains three nodes; namely, Food, $445K,
Drinks, $680K, and Supplies, $380K, where the
profit is the fact. Every node corresponds to a
set of transactions, also referred to as a dataset.
A navigation path describes a traversal through
the nodes in the lattice. For example, the path
(P1)  (P2)  (P2,T1)  (P2,T1,S1) suggests
that a user first look at a node at (P1) Product
category, drill down to a node at (P2) product
subcategory, and subsequently view the nodes
at (P2,T1) product subcategory and year and
(P2,T1,S1) product subcategory, year, and region.
We next describe the navigation paths.

Figure 1. A partial lattice of cuboids

International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006 31

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

A navigation path comprises a set of nodes
in a predefined order starting from a root node,
which is a node in a one-dimensional cuboid
such as (P1), (T1), or (S1). Subsequent nodes
are determined either by drilling down one
dimension from a preceding node or by includ-
ing a new dimension that does not exist in the
preceding node. This process may continue
until there are no more nodes to traverse. As
an example of navigation, starting from a cur-
rent node containing the rule Year = 1992, the
candidate nodes to examine for traversal include
the rules {“Quarter=Q1-1992”, “Quarter=Q2-
1992”, “Quarter=Q3-1992”, “Quarter=Q4-
1992”, “Year=1992 and Product Category
= Drinks”, …, “Year = 1992 and Region =
Eastern”, …}.

Suppose nodcurr is a lattice node with the
fact fp[curr]:

nodcurr = {l1[curr], l2[curr], ...li[curr], ...lm[curr]}.

Here li[curr] is the hierarchical level for
dimension di at node nodcurr. A distance metric,
dist(nodx, nody), between two nodes is defined
as follows:

dist(nodx, nody) =
1

m

i=
∑li(nodx) – li(nody).

A node nodcand is considered a candidate
node if its distance from the current node nodcurr
is 1 under the following conditions:

∃ li[cand] : li[cand] = li[curr] + 1 for exactly one li[cand];

∀ i li(nodcand) ≥ li(nodcurr), where i = 1, ...m.

Assume that nodcurr contains m1 dimen-
sions (1 ≤ m1 ≤m) at lij ≠ 0. Candidate nodes
then are determined by (1) navigating one level
down in dimensional hierarchy for dk, dk ∈ m1,
and (2) navigating along a new dimension dl,
dl ∈ (m-m1) dimension set.

THE DISNAR ALGORITHM
We present DISNAR, an algorithm to

discover hidden surprises in multidimensional
cubes using the property of skewness. DISNAR

utilizes normal distribution for detecting skewed
nodes existing in cube lattices. To discover
the surprises, we follow a four-step recursive
process as follows:

1. Given a current node, generate a set of
candidate nodes.

2. Measure the skewness of candidate
nodes.

3. Apply the test of significance of skewness
on candidate nodes.

4. Transform nodes with significant skew-
ness into Sk-navigation rules.

Once a node with a significant skewness
is identified, it acts as the current node for
generating next-level candidates. The algo-
rithm terminates either when it reaches the
lowest level nodes in the lattice or when no
more nodes of surprises are discovered in the
current iteration. We then establish the concept
of cube navigation using Sk-navigation rules.
Finally, we present three ways to guide through
the navigations in order to enhance the cube
exploration capabilities.

Generation of candidate nodes (Step 1)
is explained in the previous section. We now
explain the next three steps of the algorithm.

Step 2. Measurement of Skewness for
Candidate Nodes

A dataset is skewed if it is not symmetri-
cally distributed with reference to its central
axis (usually the mean). If μ and σ are the
mean and standard deviation of a population,
skewness is defined by its third standardized
moment as follows:

3 3() ()
.1 2 3 / 2 3[()]

E X E X

E X
skewness µ µ

β
µ σ

− −
= =

−

Here, E is the expected value operator.
For a symmetric distribution, such as a normal
distribution N(μ,σ), the skewness 1 is equal
to zero. A nonnormal distribution is skewed
either to the left or to the right of its central
axis, 1 ≠ 1. If the distribution is positively

32 International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

(negatively) skewed, 1 > 0 (1 <), the por-
tion of the curve on the right (left) of the central
axis contains the longer tail.

Once the candidate nodcand is identified, we
measure skewness of the dataset for nodcand with
respect to its central axis defined by the mean of
the fact at nodcurr. Evidently, nodcand always will
contain a subset of the transactions contained at
current node nodcurr. For example, a candidate
node product subcategory = frozen food will
contain a subset of the transactions from the
current node product category = food. Let T[curr]
be the transaction set for nodcurr, T[cand] be the
transaction set for nodcand, n1 be the number of
transactions at nodcurr, and n2 be the number of
transactions at nodcand. Then:

T[curr] ⊆ T, T[cand] ⊆ T, and T[cand] ⊆ T[curr], n1 ≤ n,
n2 ≤ n, and n2 ≤ n1.

Let us say that f p[curr] is the mean value
of fact fp[curr] at nodcurr. Let fp(j)[cand] be fp’s value
for the jth transaction τj[cand].

The skewness of candidate node nodcand
is measured as follows:

2 3() /[2()[]1
1[] 3/2

2 2() /[] 2()[]1

n
f f np currp j candj

b cand n
f f np currp j candj

∑ −
=

=

∑ −
=

 
  

Step 3. Test of Significance of
Skewness for Candidate Nodes

In order to determine the pattern (i.e.,
low-profit region, high-profit region) at a
node relative to its parent node, we establish
the corresponding side of the central axis (left
or right) for the significance of skewness. It
is achieved by conducting a one-sided test of
skewness as follows:

H0: normality with 1 = 0
H1: non-normality with 1 > 0, or H1: non-

normality with 1 < 0

If 1 satisfies the critical skewness at a
level of significance α, the null hypothesis H0

becomes false and is rejected. Based on positive
or negative skewness, we infer the element of
Wpq to which the fact fp belongs. For example,
a positive skewness for the profit means a high-
profit region relative to its parent.

We apply the test of significance of skew-
ness (D’Agostino & Stephens, 1986) to discover
the candidate nodes with significant skewness.
Based on the sample size (n2) of nodcand, the
critical skewness 1b critical[cand] is determined
as follows.

Critical Value for Skewness [5 ≤ n2 ≤ 35]
The skewness 1b [cand] for a candidate node

is compared with the simulation probability
points of 1b called Monte Carlo points at a
level of significance α.

Critical Value for Skewness [n2 ≥ 36]
We perform a normal approximation of

the null distribution of 1b characterized by
a Johnson SU curve. The obtained Z-value
represents approximately a standard normal
variable. This Z-value is looked up in the
standard normal distribution N(0,1) table at a
given α to either reject or accept the null hy-
pothesis H0. Another way to test the skewness
is to compare it against the probability points
for 1b computed from Johnson SU approxima-
tion. These probability points are available for
sample sizes up to 10,000. We applied the least
square fitting technique on available probability
points to extend them for sample sizes greater
than 10,000.

Test of Significance of Skewness
If 1b [cand] > 1b critical[cand], we reject the

null hypothesis; therefore, the skewness 1b [cand]
of candidate node nodcand is found significant
at α, suggesting a significantly skewed pattern
at nodcand on the navigation path from nodcurr
to nodcand.

If 1b [cand] ≤ 1b critical[cand], the null hy-
pothesis cannot be rejected, implying that the
candidate dataset normally is distributed with no
significant skewness in f p[curr]. Figure 2 presents
Step 1 to Step 3 of the DISNAR algorithm. The

International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006 33

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

function nodes_of_skewness() describes the first
two steps, generation of candidate nodes and
measurement of skewness. The main function
discover_sk_navigation_rules() describes Step
3, the test of significance of skewness.

Step 4. Transforming Nodes of
Significant Skewness Into
Sk-Navigation Rules

A candidate node nodcand, identified for a
significant skewed pattern, is transformed into
an Sk-navigation rule. The individual dimen-
sions, along with their hierarchical levels, and
attributes from nodcand are represented in the

antecedent. If a dimension does not exist in
nodcand, it is assumed to be aggregated to ALL.
The consequent consists of a fact and its skew-
ness. For example, a positive skewness for profit
suggests a high profit region at nodcand relative to
its parent node. Similarly, a negative skewness
suggests a low profit region at nodcand relative
to its parent node. An Sk-navigation rule skr
then is represented as follows:

(d1: l1j=v1jk, d2: l2j=v2jk, …, di: lij=vijk,…, dm:
lmj=vmjk)  fp = wpq, [α, 1b].

For instance, if a node “Drinks, profit:
$680K” is positively skewed at α = 0.05 and

Figure 2. The DISNAR algorithm

discover_sk_navigation_rules ()
Input
Output: complete set of sk-navigation rules (rs_skewbar)

let Li = number of levels for dimension di;

Li – 1;
while curr_ navig_level < max_navig_level++

nodes_of_skewness(curr_navig_level);
 for every node nodcand in ns_current
 apply test of significance for][1 candb

 if nodcand is significant then
 add nodcand to rs_skewbar;
 rule_navig_level (nodcand ij;
 end for;
end while;
end;

nodes_of_skewness (curr_navig_level)
Input: curr_navig_level // current level of navigation
Output: set of candidate nodes nodcand and their skewness

][1 candb

if curr_navig_level = 0, then
 { }0,...,0,...,20,10: mlilllcurrnod ;

-1) and current node is not null;

for each of t rules
 { }mtlitltltlcurrnod ,...,,...,2,1: ;
 generate candidate nodes nodcand such that dist (nodcurr, nodcand) = 1;
 measure

][1 candb for every nodcand and nodcurr;

end for;
end;

34 International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

1b = 2.63, the corresponding Sk-navigation
rule will be product category = Drinks  profit
= high [0.05, 2.63] relative to its parent node
product category = All.

The support (υ) of an Sk-navigation rule is
defined by the number of transactions to estab-
lish the rule and is a useful parameter to control
the number of rules generated by DISNAR.
A very small sample size may produce a large
number of rules, in which case υ can be used to
restrict the rule generation by qualifying only
those candidate nodes that satisfy the condition
n2 ≥ υ. However, DISNAR allows us to identify
skewed datasets for a sample size (n2) as small as
5. As we drill down to the near-lowest levels in
dimensional hierarchies, the sample size is greatly
reduced. To our advantage, test of skewness still
qualifies for these small sample sizes.

It is important to note that Sk-navigation
rules are neither association rules found in data
mining nor production rules found in expert
systems. Association rules cannot discover sur-
prises, as they detect the most commonly found
patterns as opposed to uncommon patterns. On
the other hand, the primary utility of Sk-naviga-
tion rules is in aiding an OLAP user traverse the
data cube efficiently and effectively.

Cube Traversal Using
Sk-Navigation Rules

In this section, we formally define cube
traversals using Sk-navigation rules. A rule also
is called a node of surprise, because essentially
it represents a lattice node containing a signifi-
cant skewed pattern relative to its parent. A user
begins the navigation with a root node (level-1
rules) and continues drilling down to children
nodes until no further rules are detected. The
rules guide the users to reach surprises of inter-
est. The rules also provide a better choice of
cube exploration for the following reasons:

1. They are simple to comprehend. It is
easier to interpret an Sk-navigation rule
than to manually scan a large dataset and
try to find surprises, if any.

2. They are convenient to use. It is quite
easy to navigate through Sk-navigation

rules. Cube navigation is straightforward,
because the rules can be understood and
recollected better than the real datasets.

3. Cube exploration using Sk-navigation
rules provides guidance for cube navi-
gation, which does not exist in current
OLAP tools.

The following properties of Sk-navigation
rules and navigation paths are used in cube
navigation:

1. A navigation path (np) is defined by the
complete traversal from a root node to the
leaf node. If a navigation path npx contains
a total of t Sk-navigation rules, then:

 npx = {skri: 1 ≤ i ≤ t}.

 Here, npx represents an ordered set of
rules arranged from 1 to t in their order
of navigation.

2. The level of navigation for a rule is de-
termined by summing up the dimensional
levels in its antecedent. For a rule skrp that
contains q dimensions in its antecedent
(q ≤ n), the level of navigation, lnavig, is
given by:

 1
()

q

navig p j
j

l skr l
=

=∑ .

For example, lnavig(skr2) is 3 for a rule skr2 year
= 1993, product subcategory = frozen
food  profit=high [0.05, 1.53].

3. A rule is the root node in a navigation
path, if and only if it does not connect to
a parent. It is defined as follows:

 npx = {skri: 1 ≤ i ≤ t}
 ∃ skj[parent]: lnavig(skrj[parent]) < lnavig(skri) for

all i > j

 For example, year = 1993  profit =
high [0.05, 1.79] is a root node, because
it does not have any parents.

4. A rule is the leaf node (end point) in a
navigation path, if and only if it does not

International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006 35

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

extend to any children rules. The level of
navigation for a leaf node ranges from 1
to (ΣLi – 1). That is:

 npx = {skri: 1 ≤ i ≤ t}
 ∃ skj[leaf]: lnavig(skrj[leaf]) < lnavig(skri) for

all i ≠ j

5. Two rules, skr1 and skr2, exist in the same
navigation path, if and only if one rule is
an ancestor rule of another:

 (skrj, skrk) ∈ npx iff skrj = ancestor(skrk)
or skrk = ancestor(skrj).

6. The length of a navigation path, lennp,
represents the total number of rules in
the complete traversal. A path is called
a shallow-navigation path (npsh) if lennp
is equal to 1. The longest path, recog-
nized by lennp = (ΣLi – 1), is called a
dense-navigation path (npden). We use
dense-navigation paths to describe the
most detailed paths to reach the lowest
possible nodes of surprises.

An important property that arises from the
Sk-navigation rules is that a rule may belong
to multiple navigation paths, since the cuboids
in the lattice are interlinked. A node of surprise
such as in cuboid (T1, P1) can be reached ei-
ther from cuboid (T1) or from cuboid (P1). For
example, a user can navigate to year = 1993,
product category = food  profit = high [0.05,
1.53] either from year = 1993  profit = high
[0.05, 1.79] or from product category=‘food’
 profit = high [0.05, 1.38].

Proposed Ways to Guide Through
Navigation Paths

The properties of Sk-navigation rules
explained in the previous section are used in
our rule-driven system to navigate through
data cubes. To steer the user to one of several
possible navigation paths, three complementary
yet independent controls available to the user
are proposed.

1. Level of Significance (α). The level of
significance is a key parameter in our rule-
driven system. The system allows users to
dynamically adjust α to view different sets
of rules at the same lattice node. The value
of α is user-defined and is initially set to
0.05 by default. A user, looking for only
extreme surprises, just needs to decrease
α to 0.01 or 0.005. Similarly, α can be
relaxed to 0.1 for less-extreme surprises.
Next, we explain the effect of change of
α on discovery of Sk-navigation rules.

 If α1 and α2 are two levels of signifi-
cance (α1<α2), a node nodcurr contains a
Sk-navigation rule under the following
circumstances:

(a) | 1b [curr]| > 1b critical[curr] at (n, α1)
 In this case, skewness 1b [curr] al-

ways will be greater than the critical
skewness at (n, α2) because α1<α2.
Therefore, nodcurr contains a rule at
both α1 and α2.

(b) | 1b [curr]| < 1b critical[curr] at (n, α1), and
 |

1b [curr]| >
1b
critical[curr] at (n, α2)

 Here, nodcurr contains a rule at α2
but is rejected as a non-significant
skewed node at α1. This results in
different sets of Sk-navigation rules
at different αs.

(c) | 1b [curr]| < 1b critical[curr] at (n, α1), and
 |

1b [curr]| <
1b
critical[curr] at (n, α2)

 Because 1b [curr] does not satisfy the
critical skewness at either α1 or α2,
nodcurr does not contain a rule at ei-
ther of the levels of significance.

2. Interestingness of Sk-Navigation
Rules. An important metric of discovered
knowledge in association rules mining
is the interestingness of rules, and it is
considered an important post-data mining
issue. Using this metric, users can prune
the large number of rules generated to
only the ones that are interesting. While
it is difficult to formalize interestingness,
it can take the form of unexpected rules
or in terms of objective measures such

36 International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

as support and confidence. Since our
approach is based on detecting surprises,
we adopt the interestingness of rules in
terms of unexpectedness.

 While navigating through the data cube,
the user expects the children rules to
provide additional details beyond what is
provided by their parent in terms of sur-
prises. If a parent rule contains more than
one child rule, only one of the children is
certain to conform to the parent’s surprise.
The remaining children rules may or may
not encode the similar surprise as that of
parent. For instance, while the parent rule
shows a positive skewness, a subset of the
same transaction set (a child rule) may
behave differently and may show negative
skewness. To examine this unexpected-
ness, we introduce a neighborhood-based
categorization of Sk-navigation rules and
then examine the rules for their unex-
pectedness based on their categories. The
rules are grouped into three categories:
expected, unexpected, and NA (not ap-
plicable), based on the skewness pattern
for the pairs of parent and child. A rule
is called expected if it matches the prior
knowledge of its parent rule’s consequent,
meaning that the user is consistently
navigating through the rules having the
same nature of skewness. An unexpected
rule indicates a perceptible change on the
skewness while navigating from parent to
child. The consequent of an unexpected
rule differs from that of its parent. A root
node is indicated by NA if it is the first
node of navigation and does not have a
parent rule with which to compare.

 Let us assume that skrparent and skrchild are
the parent and child Sk-navigation rules.
Then:

(a) skrchild is expected if
 ante(skrchild) ⊃ ante(skrparent), and
 cons(skrchild) = cons(skrparent)
(b) skrchild is unexpected if
 ante(skrchild) ⊃ ante(skrparent), and
 cons(skrchild) ≠ cons(skrparent)

(c) skrparent is NA if
 lnavig(skrparent) = 1, or skrparent is a root

node in its navigation path.

 For instance, the algorithm discovered an
unexpected surprise, quarter = 1993-Q2
 profit = low , when navigating from
year = 1993  profit = high. This catego-
rization adds purposeful information to
navigation paths. We can rank the naviga-
tion paths by their number of unexpected
rules. Users then simply can drill down
on the paths that contain a large number
of unexpected Sk-navigation rules and
examine the corresponding datasets
that contain many highs and lows in the
transactions.

3. Dealing With Multiple Facts. Our
rule-driven system allows users to work
simultaneously with many rules that con-
tain multiple facts in their consequents.
Given a navigation path, a user can study
the behavior of different facts at the same
time by looking at different consequents
while maintaining the same antecedent.
If skrj and skrk are two rules representing
two different facts, then:

 lnavig(skrj) = lnavig(skrk),
 ante(skrj) = ante(skrk), and
 cons(skrj) ≠ cons(skrk).

 For example, two Sk-navigation rules,
skr1 year = 1993  profit = high [0.05,
1.79] and skr2 year = 1993 cost = low
[0.05, -2.06], represent the same lattice
node but refer to two different facts: profit
and cost.

PROTOTYPE OF A
RULE-DRIVEN

Sk-NAVIGATION SYSTEM
In this section, we describe our rule-driven

prototype and illustrate how it assists end users
to explore data cubes and to reach low-level
surprises. In order to discover surprises, our
system supports drill-down and rollup opera-

International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006 37

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

panel_c panel_d

panel_a panel_b

tions on Sk-navigation rules in the same manner
as OLAP. In addition, the system provides novel
methods of cube navigation and a navigation
history to the end users.

We illustrate the rule-driven system with
few sample screens for exploring a grocery data
cube consisting of three dimensions, Product,
Time, and Store, with the lowest dimensional
levels as Product Brand, Month, and City,
respectively. In Figure 3, the top left panel
(panel_a) displays the three dimensions and their
respective top-level hierarchies in drop-down
lists. A user simply can select a hierarchical
level available for navigating from the drop-
down lists, such as Category from Product, Year
from Time, or Region from Store dimension, and
view the corresponding Sk-navigation rules.
The user also can select one or more facts to
view simultaneously (Profits, Revenue, Costs),
which are displayed on the next row. Panel_c
displays the current rules in descending order
of skewness with the highest skewed rule at the
top. If the user selects Year from Time dimen-
sion, the system displays all the rules containing
only Year in panel_c. After selecting a rule in
panel_c, the rule is highlighted with a different
color, and its children rules (next navigation
level) are presented in panel_d.

Let us assume that a user first selects a rule
skr1 year = 1992  profit = Sk-low in panel_c,
as shown in Figure 3. The corresponding chil-
dren rules are displayed in panel_d. For the
next navigation level, the user selects a child
rule from panel_d. For instance, when a rule
skr2 quarter = 1992-Q3  profit = Sk-low is
selected from panel_d, it automatically is moved
to panel_c, implying that the user has navigated
to skr2, which then becomes the current rule
(Figure 4). As a result, the dropdown list for
Time dimension changes from Year to Quarter.
Unselected rules are moved from panel_d to
panel_c and become available as the alternate
paths. Panel_d is refreshed to display children
rules for skr2. By continuing the navigation in
a similar fashion, a user finally reaches a low-
level surprise, product subcategory = ‘Frozen
Food’, quarter = ‘1992-Q3’, month = ‘Jul’,
state = ‘PA’  profit = Sk-low.

Our system also provides the control pa-
rameters in the top right panel (panel_b). Users
can dynamically adjust the level of significance
(α) to study different sets of rules at the same
cuboid. The possible values of α are 0.005, 0.01,
0.025, 0.05, and 0.1. Panel_c and panel_d are
refreshed based on selection of α. For instance,
a decrease in the value of α results in displaying

Figure 3. Selecting a rule at year level from panel_c

38 International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

only the very highly skewed patterns, such as
very high profit or very low profit.

We also utilize the interestingness of
Sk-navigation rules to allow users to instantly
view the expected, unexpected, or both types
of patterns. Unexpected rules are differentiated
visually from expected rules through a red dia-
mond symbol following the rule presentation.
For instance, one simply can navigate through
unexpected rules by checking the unexpected
checkbox, thereby filtering panel_c and panel_d
to display only the unexpected rules.

Additionally, we provide a navigation
history (shown at the bottom left) in order to
trace the cube exploration by individual users.
The history facilitates navigation by allowing
the users to return to a previsited rule without
the need to backtrack or to recollect the previ-
ous navigation steps. The navigation paths for
individual users also are recorded in the database
so that the history can be promptly brought back
to the users the next time they log in.

EXPERIMENTAL RESULTS
This section presents results from a set

of experiments to evaluate the performance of
DISNAR algorithm by studying the quality and
scalability of Sk-navigation rules. Specifically,

we evaluate (a) the recall and precision of Sk-
navigation rules, (b) the execution time, and
(c) the space overhead. We further present the
experimental results using a real-life dataset.
All experiments were performed on a 1.7GHz
Pentium IV machine with 512MB RAM running
Windows XP. The algorithms were implemented
in PL/SQL on an Oracle 10g database.

Experimental Setup
We adapted the grocery database (Kimball,

2002) in order to generate five test datasets, as
shown in Table 1. The number of navigation
nodes is obtained by summing up the total lattice
nodes in all possible cuboids in the grocery data
cube. The primary reason for using simulated
data in experiments is to identify precisely
the hidden surprises and to compare them to
discovered Sk-navigation rules.

Each of the datasets contains three di-
mensions, Product, Time, and Store, and two
facts, Profit and Quantity. The dimensional
hierarchies are Product {Category, Subcat-
egory, Brand}, Time {Year, Quarter, Month},
and Store {Region, State, City}. The number of
attributes at the lowest level varied from 16 to
64 for Product, 20 to 192 for Time, and 14 to
31 for Store dimension. We generated surprises

Figure 4. View after selecting a child rule at quarter level

International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006 39

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

that represent transactions containing 15-20%
high or low profit values compared to the rest
of the transaction set. The number of transac-
tions with surprises varied from 1 to 25 for
each of the datasets. The surprises also were
generated in a manner such as to conceal their
presence at the higher levels of aggregations
(e.g., the aggregate Product category=Drinks
would not show the surprises in transactions
Product Brand = Pepsi and Product Brand =
Ahold 2% Milk).

Due to the nature of navigating the lattice
nodes, a surprise at the lowest level affects its
higher-level lattice nodes, such as a surprise at
a node city = Fairfax will influence two addi-
tional nodes, state = VA and region = Eastern.
We measure this phenomenon by defining an
influence rate, which is calculated as the number
of nodes affected divided by the total number
of nodes. Figure 5 shows the number of nodes
in the grocery cube lattice that were affected
by the lowest-level surprises. For instance, in
dataset DS-5, the existence of only one lowest-
level surprise (affecting a single transaction),
Product subcategory = Orange Juice, month
= 1991-Q1_Jan, city = Baltimore, affected 62
nodes from a total of 1,035,893 nodes in the
lattice, giving an influence rate of 0.005%. As
expected, increasing the number of surprises
to five in the same dataset resulted in a higher
influence rate of 0.020% by affecting a total of
215 nodes. At the maximum, when 25 lowest-
level surprises existed for DS-5, the influence
rate was 0.071%, affecting 738 nodes.

Apart from varying the number of sur-
prises, we also tested the DISNAR algorithm by
varying the level of significance (α) from 0.005

to 0.1. The support of Sk-navigation rules (υ)
was set to 5 throughout the experiments.

Quality of Sk-Navigation Rules
The purpose of this set of experiments

was to examine how many true surprises were
discovered (= recall), and then to analyze the
percentage of Sk-navigation rules that actually
were the true surprises (= precision). Figure 6
shows how a change in α affects the recall and
precision of discovered rules for DS-5 for dif-
ferent levels of surprises.

We observed that DISNAR detected the
surprises with high recall and precision values at
α = 0.05. A high recall was achieved for every set
of surprises ranging from 1 to 25. For instance,
DISNAR discovered 519 Sk-navigation rules
when the number of surprises was 20 and α was
0.05, thereby resulting in a recall of 75.21%.
These 519 rules (i.e., nodes) were discovered
from a total of 1,035,893 lattice nodes. The recall
increased to 88.11% when α was increased to
0.1 as a result of detecting more surprises. When

Table 1. Summary of the five experimental datasets

Dataset # Records # Nodes of Navigation
DS-1 4,480 5,893
DS-2 32,240 37,119
DS-3 97,384 107,095
DS-4 20,736 131,759
DS-5 190,464 1,035,893

0

200

400

600

800

1 2 5 10 15 20 25
Number of surprises

To
ta

l n
um

be
r o

f
af

fe
ct

ed

no
de

s

DS-1 DS-2 DS-3 DS-4 DS-5

Figure 5. Surprise vs. total affected nodes

40 International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

the number of surprises was set to 20 or 25, as
expected, the recall was relatively smaller at α
equal to 0.005 and 0.01. This happened because
the impact of aggregating 20 to 25 surprises with
variability in the degree of surprise results in
low skewness. However, these surprises later
were detected when α was increased to 0.05
or 0.1, thus ensuring a high recall. Noticeably,
the algorithm achieved a precision of 1 when
α was 0.005, because it discovered only very
highly skewed patterns and did not allow any
low skewed patterns to qualify as surprises.
Figure 7 shows the recall and precision for all
five datasets at α set at 0.05. Again, we observe
that DISNAR achieved high recall and precision
values for different datasets. Complete results on
recall and precision for additional four datasets
are included in Appendix A.

In Figure 6, we observe that the recall
increases with a lower precision for higher
αs. This is attributed to low critical skewness
with an increase in α. The algorithm detects the
low skewed patterns, which are not significant
otherwise at smaller αs. Discovery of these
less-evident surprises results in a high recall.
However, relaxing critical skewness to a lower
value also discovers some false surprises, be-
cause some nodes with relatively small skew-
ness also qualify as surprises, resulting in a
smaller precision. A practical implication of
this variation in α is that some surprises are
apparent, while others are not. Therefore, we
allow users to dynamically adjust α to pursue
either high- or low-skewed surprises.

Figure 6. Effect of α on (a) recall (on left) and (b) precision (on right) for DS-5

Figure 7. (a) recall (on left) and (b) precision (on right) for five datasets at α = 0.05

International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006 41

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

Execution Time
Figure 8(a) shows the execution time to

discover different sets of surprises for DS-5
as a function of α. The graph suggests an in-
crease in execution time for higher αs. This is
expected, since at higher αs, low value of the
critical skewness results in a larger number of
lattice nodes being examined. However, even for
the largest dataset DS-5, DISNAR discovered
the surprises within a reasonable processing
time. For instance, it took only 4.28 minutes to
discover 334 rules with a number of surprises
equal to 10 and α set at 0.05. These rules were
identified from a total of 1,035,893 lattice nodes,
resulting in a processing time of 0.248 seconds
per thousand nodes. The execution time reached
a maximum 9.316 minutes when 653 surprises
were discovered for DS-5 at a peak α value of
0.1, resulting in a processing time of only 0.5396
seconds per thousand nodes.

Effective pruning of nodes, a feature of
the DISNAR algorithm, plays an important role
in the total execution time. When the number
of surprise rules increased from 215 to 738 (a
factor of 3.43) for DS-5 at α set at 0.05, the
execution time increased by only by a factor
of 1.35 from 258 to 396 seconds. DISNAR’s
knowledge discovery process begins at the
root nodes. Subsequent nodes are selected
for further traversal, only if they satisfy the
minimum significant skewness. A node with
insignificant skewness immediately is pruned

from the discovery process. Hence, even if the
number of surprises increases in the dataset, it
does not linearly affect the number of search-
able nodes in the lattice. The execution time
graphs for the other four datasets are included
in Appendix B.

We also compare the execution time for
different datasets at α set at 0.05. As shown in
Figure 8(b), the execution time for datasets other
than DS-5 is much lower than for DS-5. For DS-
1, it took less than 1.67 minutes to discover 258
rules. It took 1.70 minutes to discover 516 rules
for DS-4. In comparison, it took 6.07 minutes
to discover 519 rules for DS-5. Although DS4
and DS5 discovered about the same number of
rules, they had a huge difference in execution
time because of the variation in their respective
search spaces. While 516 surprises were dis-
covered from 131,759 lattice nodes for DS-4, a
total of 1,035,893 nodes were searched to detect
519 rules for the larger dataset DS-5.

Space Overhead
The Sk-navigation rules are stored in an

Oracle database using a relational schema as
suggested in Kumar, Gangopadhyay, and Kara-
batis (2005). Each rule contains the details on
its antecedent, consequent, measure of skew-
ness, α, the parent rule, and the interestingness.
We compare the storage space (in kilobytes)
required for storing Sk-navigation rules with
the dataset size to compute the percent of space

Figure 8. Execution time for (a) DS-5 as a function of α (on left) and (b) five datasets at α =
0.05 (on right)

42 International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

overhead. Figure 9(a) shows the effect of change
in α on space overhead for DS-5 at different
number of surprises. Although the overhead
was expected to increase at higher αs, it ranged
only from 0.18% to 0.66%. It reached a peak
0.66% when the largest number of rules (1,034
rules) was discovered with 25 surprises. Thus,
compared to the dataset size, a modest storage
space is required to store the highly meaningful
set of Sk-navigation rules. The space overhead
graphs for other four datasets are included in
Appendix C.

In Figure 9(b), we compare the space
overhead for different datasets at α = 0.05. The
graph shows a decrease in percentage space
overhead for larger datasets. For instance, DS-1
and DS-4 are the two smallest datasets (Table 1)
that also exhibit a higher space overhead. On the
other hand, the largest dataset DS-5 resulted in
the lowest space overhead. It is understandable,
because the number of discovered Sk-navigation
rules is not linearly dependent on the size of
dataset, and the marginal rate of rule generation
decreases as the dataset size increases. DS-5 was
approximately 11 times larger than DS-1, but
the respective number of discovered rules was
502 and 258 at 25 surprises with α set at 0.05.
Clearly the number of rules did not increase in
direct proportion to the size of datasets.

The Crash Data Analysis
We also tested DISNAR on a vehicle crash

dataset obtained from the Maryland Department

of Transportation (Bapna & Gangopadhyay,
2005). The dataset contained 534,941 crash
records ranging from the years 1993 to 2000,
in which an individual crash record detailed
the location of the crash, the day and time,
the severity of the crash, and the crash cost.
DISNAR discovered 372 expected and 52 un-
expected Sk-navigation rules within a total of
2.06 minutes. Manual examination of the rules
confirmed their surprising properties. Some
hidden surprises were not comprehendible by
simple examination of the large dataset but were
discovered by DISNAR as unexpected rules.
For example, the crash cost for both Severity
= possible injury and Day_of_Week = Tuesday
were low, but the algorithm discovered an un-
expectedly high crash cost in Howard County
on Tuesdays for crashes resulting in possible
injuries, which was not noticeable at higher
levels of aggregation.

CONCLUSION AND
FUTURE WORK

In this article, we presented the DISNAR
algorithm in order to discover hidden surprises
in data cube lattices. The algorithm assists
end users to navigate through data cubes that
otherwise would be difficult to steer due to
the combinatorial explosion in the number
of possible navigation paths. This navigation
capability was conceptualized in terms of the
discovery of hidden surprises in the dataset.
Three complementary and independent means

Figure 9. Storage cost for (a) DS-5 as a function of α (on left) and (b) five datasets at α = 0.05
(on right)

International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006 43

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

to navigate a data cube were used: the level
of significance as measured by the skewness
between the parent node and a child node,
interestingness of surprises, and the ability to
handle multiple facts. A prototype system imple-
mented the DISNAR algorithm and was tested
on simulated grocery datasets and a real-world
crash dataset. The algorithm discovered hidden
surprises for different grocery datasets with a
high recall and precision within a reasonable
execution time. It also discovered hidden sur-
prises in the crash dataset. The effectiveness of
pruning nodes, based on the test of significance
of skewness, led to a considerable decrease in
the number of nodes that were examined for
traversal. Thus, not only is the traversal of the
data cube possible in reasonable execution time,
but the Sk-navigation rules also were stored
with slight overhead.

We are extending our work on the concept
of navigation to deal with scenarios in which
possibly a large number of Sk-navigation rules
are generated. Specifically, we are working
on an axis-shift concept in order to determine
interestingness of navigation paths, which
ranks the paths based on the distance metrics
of Sk-navigation rules and then provides a
comparison matrix to study the usefulness of
navigation paths. This would allow users simply
to navigate along selective paths on which highly
extreme surprises are present. Furthermore,
we are implementing additional exploration
capabilities in our rule-driven system in which
users can view all possible navigation paths
(the children and further generations until the
lowest level) from an Sk-navigation rule in a
tree structure and then delve directly to a rule of
interest. Another enhancement in our prototype
would allow users to view the corresponding
transaction set for the rule sorted in such a way
that highly skewed transactions are displayed
clearly at the top.

Association rule mining and OLAP
traditionally have been viewed from different
perspectives in order to aid in the knowledge
acquisition from data warehouses. While our
approach deals with navigation paths in OLAP
environments, it produces rules that are repre-

sented in a manner similar to association rules.
We currently are examining kurtosis-based
enhancements to the algorithm in order to
generate all types of rules, including rules that
are commonly present in the data set. Thus, our
approach may bridge the gap between OLAP
and data mining.

REFERENCES
Agrawal, R., Imielinski, T., & Swami, A. (1993).

Mining associations between sets of items
in large databases. In Proceedings of the
ACM SIGMOD.

Aumann, Y., & Lindell, Y. (1999). A statistical
theory for quantitative association rules.
In Proceedings of the ACM SIGKDD.

Bapna, S., & Gangopadhyay, A. (2005). A
Web-based GIS for analyzing commer-
cial motor vehicle crashes. Information
Resources Management Journal, 18(3),
1–12.

Bauer, A., Hümmer, W., et al. (2000). An alterna-
tive relational OLAP modeling approach.
Proceedings of the DAWAK.

Bi, Z., Faloutsos, C., & Korn, F. (2001). The
dgx distribution for mining massive,
skewed data.

Boulicaut, J., Marcel, P., & Rigotti, C. (1999).
Query driven knowledge discovery in
multidimensional data. In Proceedings
of the ACM DOLAP.

Bouzeghoub, M., Fabret, F., & Matulovic, M.
(1999). Modeling data warehouse refresh-
ment process as a workflow application.
In Proceedings of the International
Workshop on Design and Management of
Data Warehouses, DMDW, Heidelberg,
Germany.

Casali, A., Cicchetti, R., & Lakhal, L. (2003).
Cube lattices: A framework for multidi-
mensional data mining. In Proceedings
of the SDM.

Chan, C.Y., & Ioannidis, Y.E. (1998). Bitmap
index design and evaluation. In Proceed-
ings of the ACM SIGMOD.

Chen, Q. (1999). Mining exceptions and quan-
titative association rules in OLAP data
cubes. Simon Fraser University.

44 International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Chen, Y., Dehne, F., Eavis, T., & Rau-Chaplin,
A. (2006). Improved data partitioning
for building large ROLAP data cubes in
parallel. International Journal of Data
Warehousing and Mining, 2(1), 1–26.

Choong, Y.-W., Laurent, D., & Marcel, P. (2001).
Computing appropriate representations
for multidimensional data. In Proceedings
of the ACM 4th International Workshop
on Data Warehousing and OLAP.

D’Agostino, R., & Stephens, M. (1986).
Goodness-of-fit techniques. New York:
M. Dekker.

Deshpande, P.M., Ramasamy, K., Shukla,
A., & Naughton, J.F. (1998). Caching
multidimensional queries using chunks.
Proceedings of the ACM SIGMOD,
Seattle, Washington, USA.

Fabris, C.C., & Freitas, A.A. (2006). Discov-
ering surprising instances of Simpson’s
paradox in hierarchical multidimensional
data. International Journal of Data Ware-
housing and Mining, 2(1), 27–49.

Fu, L. (2005). Novel efficient classifiers based
on data cube. International Journal of
Data Warehousing and Mining, 1(3),
15–27.

Ghoting, A., Otey, M., & Parthasarathy, S.
(2004). LOADED: Link-based outlier
and anomaly detection in evolving data
sets. ICDM.

Golfarelli, M., Maio, D., & Rizzi, S. (2000).
Applying vertical fragmentation tech-
niques in logical design of multidimen-
sional databases. In Proceedings of the
DAWAK.

Gupta, A., Mumick, I.S., Rao, J., & Ross, K.A.
(2001). Adapting materialized views
after redefinitions: Techniques and a
performance study [Special issue on Data
Warehousing]. Information Systems.

Gupta, H., Harinarayan, V., Rajaraman, A., &
Ullman, J. (1997). Index selection for
OLAP. In Proceedings of the ICDE.

Gupta, H., & Mumick, I.S. (1999). Selection of
views to materialize under a maintenance-
time constraint. In Proceedings of the
International Conference on Database

Theory, Jerusalem, Israel.
Han, J. (1998). Towards on-line analytical min-

ing in large databases. In Proceedings of
the ACM SIGMOD.

Han, J., Chee, S., & Chiang, J. (1998). Issues
for on-line analytical mining of data ware-
houses. In Proceedings of SIGMOD’96
Workshop on Research Issues on Data
Mining and Knowledge Discovery,
DMKD, Seattle, Washington, USA.

Hurtado, C., & Mendelzon, A. (2001). Rea-
soning about summarizability in hetero-
geneous multidimensional schemas. In
Proceedings of the ICDT.

Inmon, W.H. (1996). Building the data ware-
house. New York: John Wiley & Sons.

Kaser, O., & Lemire, D. (2003). Attribute value
reordering for efficient hybrid OLAP. In
Proceedings of the DOLAP, New Orleans,
Louisiana.

Kim, W.Y., Lee, Y.K., & Han, J. (2004). CC-
Mine: Efficient mining of confidence-
closed correlated patterns. In Proceedings
of the PAKDD.

Kimball, R. (2002). The data warehouse
toolkit.

Klosgen, W. (2002). Subgroup discovery. In
W. Klosgen, & J.M. Zytkow (Eds.),
Handbook of data mining and knowledge
discovery (pp. 354–361). New York,
Oxford University Press.

Kumar, N., Gangopadhyay, A., & Karabatis,
G. (2005). Supporting mobile deci-
sion making with association rules and
multi-layered caching. Decision Support
Systems.

Lemire, D. (2002). Wavelet-based relative prefix
sum methods for range sum queries in data
cubes. In Proceedings of the CASCON,
Toronto, Canada.

Maniatis, A., Vassiliadis, P., Skiadopoulos, S.,
Vassiliou, Y., Mavrogonatos, G., & Mi-
chalarias, I. (2005). A presentation model
& non-traditional visualization for OLAP.
International Journal of Data Warehous-
ing and Mining, 1(1), 1–36.

Marcel, P. (1999). Modeling and querying mul-
tidimensional databases: An overview.

International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006 45

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

Networking and Information Systems
Journal, 2(5–6), 515–548.

Mendelzon, A., & Vaisman, A. (2000). Temporal
queries in OLAP. In Proceedings of the
VLDB, Cairo, Egypt.

Park, C.-S., Kim, M.H., & Lee, Y.-J. (2001).
Rewriting OLAP queries using material-
ized views and dimension hierarchies
in data warehouses. In Proceedings of
the ICDE.

Poon, C.K. (2003). Dynamic orthogonal range
queries in OLAP. Theoretical Computer
Science, 296, 487–510.

Sarawagi, S. (1997). Indexing OLAP data. IEEE
Data Engineering Bulletin.

Sarawagi, S. (1999). Explaining differences in
multidimensional aggregates. In Proceed-
ings of the VLDB. Morgan Kaufmann.

Sarawagi, S. (2000). User-adaptive exploration
of multidimensional data. In Proceedings
of the VLDB.

Sarawagi, S., Agrawal, R., & Megiddo, N.
(1998). Discovery-driven exploration of
OLAP data cubes. In Proceedings of the
International Conference on Extending
Database Technology.

Theodoratos, D., & Sellis, T. (1999a). Design-
ing data warehouses. In Proceedings of
the Data and Knowledge Engineering,
DKE.

Theodoratos, D., & Sellis, T. (1999b). Dynamic
data warehouse design. In Proceedings
of the International Conference on Data
Warehousing and Knowledge Discovery,
DaWaK, Florence, Italy.

Tjioe, H.C., & Taniar, D. (2005). Mining as-
sociation rules in data warehouses. Inter-
national Journal of Data Warehousing
and Mining, 1(3), 28–62.

Vaisman, A., & Mendelzon, A. (2001). A tempo-
ral query language for OLAP: Implemen-
tation and a case study. In Proceedings
of the DBPL, Rome, Italy.

Xiong, H., Tan, P.-N., & Kumar, V. (2003). Min-
ing strong affinity association patterns in
data sets with skewed support distribu-
tion. In Proceedings of the ICDM.

Yang, J., Karlapalem, K., & Li, Q. (1997).
Algorithms for materialized view design
in data warehousing environment. In
Proceedings of the VLDB.

Yang, J., & Widom, J. (2000). Making tem-
poral views self-maintainable for data
warehousing. In Proceedings of the 7th
International Conference on Extend-
ing Database Technology, Konstanz,
Germany.

Zhang, J., Bloedorn, E., Rosen, L., & Venese,
D. (2004). Learning rules from highly
unbalanced data sets. In Proceedings of
the ICDM.

46 International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

APPENDIX A. RECALL AND PRECISION
Dataset-1

Dataset-2

Dataset-3

Dataset-4

International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006 47

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is
prohibited.

APPENDIX B. EXECUTION TIME
Dataset-1 Dataset-2

Dataset-3 Dataset-4

APPENDIX C. SPACE OVERHEAD

Dataset-1 Dataset-2

Dataset-3 Dataset-4

48 International Journal of Data Warehousing & Mining, 2(4), 27-48, October-December 2006

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Navin Kumar is a PhD candidate at the Department of Information Systems at the University
of Maryland, Baltimore County. He received his MS in information systems from the University
of Maryland, Baltimore County, and BTech(Honors) in industrial engineering and management
from Indian Institute of Technology, Kharagpur. His main research interests include data ware-
housing and mining, knowledge discovery, and mobile commerce.

Aryya Gangopadhyay (gangopad@umbc.edu) is an associate professor of information systems
at the University of Maryland, Baltimore County (UMBC). He has a PhD in computer infor-
mation systems from Rutgers University. His research interests include decision support using
data warehousing and mining, and database applications in geographic information systems
and healthcare informatics. He has co-authored and edited three books, many book chapters,
and numerous papers in journals.

Dr. George Karabatis is an assistant professor of information systems at the University of
Maryland, Baltimore County (UMBC). He holds degrees in Computer Science (PhD and MS)
and mathematics (BS). He is pursuing research on various aspects of information technology
related to databases systems, applications for wireless handheld devices. Prior to his current
appointment he was a research scientist at Telcordia Technologies (formerly Bellcore) where he
led several telecommunications projects involving database related technologies. His work has
been published in journals, conference proceedings and book chapters.

Sanjay Bapna is an associate professor of information science and systems at Morgan State
University and has published articles in the areas of data mining, intelligent transportation
systems, geographic information systems, and decision support systems. He has received nu-
merous external funded grants in the area of ITS. His current research interests are in the area
of privacy and anonymity.

Zhiyuan Chen received a PhD in computer science from the Cornell University in 2002. Presently,
he is an assistant professor in the information systems department at University of Maryland,
Baltimore County. His research interests include XML and semi-structured data, privacy-preserv-
ing data mining, data integration, automatic database tuning, and database compression.

	sheet1
	navin-ijdwm06

