Genomic evidence of speciation reversal in ravens

Author/Creator ORCID

Date

2018-03-02

Department

Program

Citation of Original Publication

Anna M. Kearns, Marco Restani, Ildiko Szabo, Audun Schrøder-Nielsen, Jin Ah Kim, Hayley M. Richardson, John M. Marzluff, Robert C. Fleischer, Arild Johnsen & Kevin E. Omland , Genomic evidence of speciation reversal in ravens, Nature research journal volume 9, Article number: 906 (2018) , https://doi.org/10.1038/s41467-018-03294-w

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Attribution 4.0 International (CC BY 4.0)

Abstract

Many species, including humans, have emerged via complex reticulate processes involving hybridisation. Under certain circumstances, hybridisation can cause distinct lineages to collapse into a single lineage with an admixed mosaic genome. Most known cases of such ‘speciation reversal’ or ‘lineage fusion’ involve recently diverged lineages and anthropogenic perturbation. Here, we show that in western North America, Common Ravens (Corvus corax) have admixed mosaic genomes formed by the fusion of non-sister lineages (‘California’ and ‘Holarctic’) that diverged ~1.5 million years ago. Phylogenomic analyses and concordant patterns of geographic structuring in mtDNA, genome-wide SNPs and nuclear introns demonstrate long-term admixture and random interbreeding between the non-sister lineages. In contrast, our genomic data support reproductive isolation between Common Ravens and Chihuahuan Ravens (C. cryptoleucus) despite extensive geographic overlap and a sister relationship between Chihuahuan Ravens and the California lineage. These data suggest that the Common Raven genome was formed by secondary lineage fusion and most likely represents a case of ancient speciation reversal that occurred without anthropogenic causes.