A Search for Cosmic-Ray Proton Anisotropy with the Fermi Large Area Telescope

Author/Creator

Author/Creator ORCID

Date

2019-09-18

Department

Program

Citation of Original Publication

M. Ajello et al., A Search for Cosmic-Ray Proton Anisotropy with the Fermi Large Area Telescope, The Astrophysical Journal, Volume 883, Number 1 (2019), doi: 10.3847/1538-4357/ab3a2e

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Public Domain Mark 1.0
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law

Subjects

Abstract

The Fermi Large Area Telescope (LAT) has amassed a large data set of primary cosmic-ray protons throughout its mission. In fact, it is the largest set of identified cosmic-ray protons ever collected at this energy. The LAT's wide field of view and full-sky survey capabilities make it an excellent instrument for studying cosmic-ray anisotropy. As a space-based survey instrument, the LAT is sensitive to anisotropy in both R.A. and decl., while ground-based observations only measure the anisotropy in R.A. We present the results of the first-ever proton anisotropy search using Fermi LAT. The data set was collected over eight years and consists of approximately 179 million protons above 78 GeV, enabling it to probe dipole anisotropy below an amplitude of 10⁻³, resulting in the most stringent limits on the decl. dependence of the dipole to date. We measure a dipole amplitude δ = 3.9 ± 1.5 × 10⁻⁴ with a p-value of 0.01 (pretrials) for protons with energy greater than 78 GeV. We discuss various systematic effects that could give rise to a dipole excess and calculate upper limits on the dipole amplitude as a function of minimum energy. The 95% confidence level upper limit on the dipole amplitude is δ UL = 1.3 × 10⁻³ for protons with energy greater than 78 GeV and δ UL = 1.2 × 10⁻³ for protons with energy greater than 251 GeV.