3FHL: The Third Catalog of Hard Fermi-LAT Sources

Author/Creator ORCID

Date

2017-09-27

Department

Program

Citation of Original Publication

M. Ajello et al., 3FHL: The Third Catalog of Hard Fermi-LAT Sources, The Astrophysical Journal Supplement Series, Volume 232, Number 2, doi: 10.3847/1538-4365/aa8221

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Public Domain Mark 1.0
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law

Subjects

Abstract

We present a catalog of sources detected above 10 GeV by the Fermi Large Area Telescope (LAT) in the first 7 years of data using the Pass 8 event-level analysis. This is the Third Catalog of Hard Fermi-LAT Sources (3FHL), containing 1556 objects characterized in the 10 GeV–2 TeV energy range. The sensitivity and angular resolution are improved by factors of 3 and 2 relative to the previous LAT catalog at the same energies (1FHL). The vast majority of detected sources (79%) are associated with extragalactic counterparts at other wavelengths, including 16 sources located at very high redshift (z > 2). Of the sources, 8% have Galactic counterparts and 13% are unassociated (or associated with a source of unknown nature). The high-latitude sky and the Galactic plane are observed with a flux sensitivity of 4.4 to 9.5 × 10⁻¹¹ ph cm⁻² s⁻¹, respectively (this is approximately 0.5% and 1% of the Crab Nebula flux above 10 GeV). The catalog includes 214 new γ-ray sources. The substantial increase in the number of photons (more than 4 times relative to 1FHL and 10 times to 2FHL) also allows us to measure significant spectral curvature for 32 sources and find flux variability for 163 of them. Furthermore, we estimate that for the same flux limit of 10⁻¹² erg cm⁻² s⁻¹, the energy range above 10 GeV has twice as many sources as the range above 50 GeV, highlighting the importance, for future Cherenkov telescopes, of lowering the energy threshold as much as possible.