• Login
    View Item 
    •   Maryland Shared Open Access Repository Home
    • ScholarWorks@UMBC
    • UMBC College of Natural and Mathematical Sciences
    • UMBC Biological Sciences Department
    • View Item
    •   Maryland Shared Open Access Repository Home
    • ScholarWorks@UMBC
    • UMBC College of Natural and Mathematical Sciences
    • UMBC Biological Sciences Department
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Responses to Di-Sodium Guanosine 5′-Monophosphate and Monosodiuml-Glutamate in Taste Receptor Cells of Rat Fungiform Papillae

    Thumbnail
    Links to Files
    https://journals.physiology.org/doi/full/10.1152/jn.00994.2002
    Permanent Link
    https://doi.org/10.1152/jn.00994.2002
    http://hdl.handle.net/11603/21070
    Collections
    • UMBC Biological Sciences Department
    Metadata
    Show full item record
    Author/Creator
    Lin, Weihong
    Ogura, Tatsuya
    Kinnamon, Sue C.
    Date
    2003-03-01
    Type of Work
    6 pages
    Text
    journal articles
    Citation of Original Publication
    Lin, Weihong, Tatsuya Ogura, and Sue C. Kinnamon. Responses to di-sodium guanosine 5-monophosphate and monosodium L-glutamate in taste receptor cells of rat fungiform papillae. J Neurophysiol 89: 1434–1439, (2003); 10.1152/jn.00994.2002.
    Rights
    This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
    Subjects
    taste
    glutamate
    umami compounds
    receptors
    Abstract
    The 5′-ribonucleotide guanosine 5′-monophosphate (GMP) is used widely as an umami taste stimulus and a potent flavor enhancer as it synergistically increases the umami taste elicited by monosodium glutamate. Transduction mechanisms for GMP and its synergy with glutamate are largely unknown. Using whole-cell patch-clamp and Ca2+ imaging, we examined responses to GMP, glutamate, and a mixture of GMP and glutamate in taste-receptor cells of rat fungiform papillae. Our electrophysiological results showed that GMP induces responses that are similar to those of glutamate, e.g., an outward current, an inward current, or a biphasic response. Our Ca2+ imaging results showed that applications of GMP, glutamate, and the mixture increased intracellular Ca2+ levels. Interestingly, both patch-clamp and Ca2+ imaging showed that some taste cells can respond to GMP and glutamate independently, indicating that glutamate and GMP likely activate different receptors. Simultaneous application of GMP and glutamate resulted in synergistic responses in a subset of cells; both response intensity and number of responding cells were increased. Most responses to GMP, as well as the synergy between GMP and glutamate, were suppressed by 8bromo-adenosine 3′,5′-cyclic monophosphate (8-bromo-cAMP) in patch-clamp recordings. Together, our results suggest that intracellular cAMP- and Ca2+-mediated pathways are involved in umami taste transduction for GMP and its synergistic responses with glutamate.


    Albin O. Kuhn Library & Gallery
    University of Maryland, Baltimore County
    1000 Hilltop Circle
    Baltimore, MD 21250
    www.umbc.edu/scholarworks

    Contact information:
    Email: scholarworks-group@umbc.edu
    Phone: 410-455-3021


    If you wish to submit a copyright complaint or withdrawal request, please email mdsoar-help@umd.edu.

     

     

    My Account

    LoginRegister

    Browse

    This CollectionBy Issue DateTitlesAuthorsSubjectsType

    Statistics

    View Usage Statistics


    Albin O. Kuhn Library & Gallery
    University of Maryland, Baltimore County
    1000 Hilltop Circle
    Baltimore, MD 21250
    www.umbc.edu/scholarworks

    Contact information:
    Email: scholarworks-group@umbc.edu
    Phone: 410-455-3021


    If you wish to submit a copyright complaint or withdrawal request, please email mdsoar-help@umd.edu.