• Login
    View Item 
    •   Maryland Shared Open Access Repository Home
    • ScholarWorks@UMBC
    • UMBC College of Natural and Mathematical Sciences
    • UMBC Biological Sciences Department
    • View Item
    •   Maryland Shared Open Access Repository Home
    • ScholarWorks@UMBC
    • UMBC College of Natural and Mathematical Sciences
    • UMBC Biological Sciences Department
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Acid-Activated Cation Currents in Rat Vallate Taste Receptor Cells

    Thumbnail
    Links to Files
    https://journals.physiology.org/doi/full/10.1152/jn.2002.88.1.133
    Permanent Link
    https://doi.org/10.1152/jn.2002.88.1.133
    http://hdl.handle.net/11603/21071
    Collections
    • UMBC Biological Sciences Department
    Metadata
    Show full item record
    Author/Creator
    Lin, Weihong
    Ogura, Tatsuya
    Kinnamon, Sue C.
    Date
    2002-07-01
    Type of Work
    9 pages
    Text
    journal articles
    Citation of Original Publication
    Weihong Lin, Tatsuya Ogura, and Sue C. Kinnamon, Acid-Activated Cation Currents in Rat Vallate Taste Receptor Cells, J Neurophysiol 88: 133–141, 2002; 10.1152/jn.00698.2001.
    Rights
    This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
    Subjects
    taste receptor cells
    sourness
    acid-sensing
    current amplitudes
    Abstract
    Sour taste is mediated by acids with the degree of sourness a function of proton concentration. Recently, several members of the acid-sensing ion channel subfamily (ASICs) were cloned from taste cells and proposed to mediate sour taste. However, it is not known whether sour responses in taste cells resemble the responses mediated by ASICs. Using the whole cell patch-clamp technique and Na+ imaging, we have characterized responses to acid stimuli in isolated rat vallate taste cells. Citric acid (pH 5) induced a large, rapidly activating inward current in most taste cells tested. The response showed various degrees of desensitization with prolonged stimulation. Current amplitudes were pH dependent, and adapting with acidic bath solutions reduced subsequent responses to acid stimulation. Amiloride (100–500 μM) partially and reversibly suppressed the acid-induced current. The current-voltage relationship showed reversal potential near the Na+equilibrium potential, suggesting that the current is carried predominantly by Na+. These data were consistent with Na+ imaging experiments showing that acid stimulation resulted in increases in intracellular Na+. Taken together, these data indicate that acid-induced currents in vallate taste cells share general properties with ASICs expressed in heterologous cells and sensory neurons that express ASIC subunits. The large amplitude of the current and its existence in a high percentage of taste cells imply that ASICs or ASIC-like channels may play a prominent role in sour-taste transduction.


    Albin O. Kuhn Library & Gallery
    University of Maryland, Baltimore County
    1000 Hilltop Circle
    Baltimore, MD 21250
    www.umbc.edu/scholarworks

    Contact information:
    Email: scholarworks-group@umbc.edu
    Phone: 410-455-3021


    If you wish to submit a copyright complaint or withdrawal request, please email mdsoar-help@umd.edu.

     

     

    My Account

    LoginRegister

    Browse

    This CollectionBy Issue DateTitlesAuthorsSubjectsType

    Statistics

    View Usage Statistics


    Albin O. Kuhn Library & Gallery
    University of Maryland, Baltimore County
    1000 Hilltop Circle
    Baltimore, MD 21250
    www.umbc.edu/scholarworks

    Contact information:
    Email: scholarworks-group@umbc.edu
    Phone: 410-455-3021


    If you wish to submit a copyright complaint or withdrawal request, please email mdsoar-help@umd.edu.