Probing Large-scale Coherence between Spitzer IR and Chandra X-Ray Source-subtracted Cosmic Backgrounds

Date

2017-09-21

Department

Program

Citation of Original Publication

Cappelluti. N. et al. Probing Large-scale Coherence between Spitzer IR and Chandra X-Ray Source-subtracted Cosmic Backgrounds. The Astrophysical Journal Letters 847 (Sept. 21, 2017), no 1. https://doi.org/10.3847/2041-8213/aa8acd

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.

Subjects

Abstract

We present new measurements of the large-scale clustering component of the cross-power spectra of the source-subtracted Spitzer-IRAC cosmic infrared background and Chandra-ACIS cosmic X-ray background surface brightness fluctuations Our investigation uses data from the Chandra Deep Field South, Hubble Deep Field North, Extended Groth Strip/AEGIS field, and UDS/SXDF surveys, comprising 1160 Spitzer hours and ∼12 Ms of Chandra data collected over a total area of 0.3 deg2. We report the first (>5σ) detection of a cross-power signal on large angular scales >20'' between [0.5–2] keV and the 3.6 and 4.5 μm bands, at ∼5σ and 6.3σ significance, respectively. The correlation with harder X-ray bands is marginally significant. Comparing the new observations with existing models for the contribution of the known unmasked source population at z < 7, we find an excess of about an order of magnitude at 5σ confidence. We discuss possible interpretations for the origin of this excess in terms of the contribution from accreting early black holes (BHs), including both direct collapse BHs and primordial BHs, as well as from scattering in the interstellar medium and intra-halo light.