AIRS Satellite CO Data Confirm the Increase in Wildfires in the Northern Hemisphere Over the Past Two Decades

Author/Creator

Date

2022-06-06

Department

Program

Citation of Original Publication

Yurganov, L. AIRS Satellite CO Data Confirm the Increase in Wildfires in the Northern Hemisphere Over the Past Two Decades. Preprints 2022, 2022060070 (doi: 10.20944/preprints202206.0070.v1).

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Attribution 4.0 International (CC BY 4.0)

Subjects

Abstract

Biomass burning is an important and changing component of the global and hemispheric carbon cycles. In particular, boreal forest fires in Russia and Canada are important sources of greenhouse gases carbon dioxide (CO2) and methane (CH4). The influence of carbon monoxide (CO) on the climate is insignificant: its main absorption bands of 4.6 and 2.3 μm are far away from the climatically important regions of the spectrum. Meanwhile, CO concentrations in fire plumes are closely related to CO2 and CH4 emissions from fires. On the other hand, satellite measurements of CO are much simpler than those for the aforementioned gases. The Atmospheric Infrared Sounder (AIRS) provides a long satellite-based CO data set. This article presents estimates of CO emissions from biomass burning north of 30° N using a simple two-box model. These results correlate closely with independently estimated CO emissions from the GFED4 bottom-up data base. Both ones reported record high emissions in 2021 throughout two decades, double the annual emissions comparing to the previous a few years. There have been several years with extreme emissions, but for the rest of data upward trend with a rate of 3.7 ± 2.3 Tg CO yr-2 (4.4 ± 2.8% per year), was found.