• Login
    View Item 
    •   Maryland Shared Open Access Repository Home
    • ScholarWorks@UMBC
    • UMBC College of Natural and Mathematical Sciences
    • UMBC Physics Department
    • View Item
    •   Maryland Shared Open Access Repository Home
    • ScholarWorks@UMBC
    • UMBC College of Natural and Mathematical Sciences
    • UMBC Physics Department
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Auger-Limited Carrier Recombination and Relaxation in CdSe Colloidal Quantum Wells

    Thumbnail
    Files
    Baghani-Pelton-revised.pdf (932.8Kb)
    Links to Files
    https://pubs.acs.org/doi/full/10.1021/acs.jpclett.5b00143
    Permanent Link
    https://doi.org/10.1021/acs.jpclett.5b00143
    http://hdl.handle.net/11603/29706
    Collections
    • UMBC Faculty Collection
    • UMBC Physics Department
    Metadata
    Show full item record
    Author/Creator
    Baghani, Erfan
    O’Leary, Stephen K.
    Fedin, Igor
    Talapin, Dmitri V.
    Pelton, Matthew
    Author/Creator ORCID
    https://orcid.org/0000-0002-6370-8765
    Date
    2015-03-02
    Type of Work
    18 pages
    Text
    journal articles
    preprints
    Citation of Original Publication
    Baghani, Erfan, Stephen K. O’Leary, Igor Fedin, Dmitri V. Talapin, and Matthew Pelton. “Auger-Limited Carrier Recombination and Relaxation in CdSe Colloidal Quantum Wells.” The Journal of Physical Chemistry Letters 6, no. 6 (March 19, 2015): 1032–36. https://doi.org/10.1021/acs.jpclett.5b00143.
    Rights
    This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in The Journal of Physical Chemistry Letters, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acs.jpclett.5b00143.
    Abstract
    Using time-resolved photoluminescence spectroscopy, we show that two-exciton Auger recombination dominates carrier recombination and cooling dynamics in CdSe nanoplatelets, or colloidal quantum wells. The electron–hole recombination rate depends only on the number of electron–hole pairs present in each nanoplatelet, and is consistent with a two-exciton recombination process over a wide range of exciton densities. The carrier relaxation rate within the conduction and valence bands also depends only on the number of electron–hole pairs present, apart from an initial rapid decay, and is consistent with the cooling rate being limited by reheating due to Auger recombination processes. These Auger-limited recombination and relaxation dynamics are qualitatively different from the carrier dynamics in either colloidal quantum dots or epitaxial quantum wells.


    Albin O. Kuhn Library & Gallery
    University of Maryland, Baltimore County
    1000 Hilltop Circle
    Baltimore, MD 21250
    www.umbc.edu/scholarworks

    Contact information:
    Email: scholarworks-group@umbc.edu
    Phone: 410-455-3544


    If you wish to submit a copyright complaint or withdrawal request, please email mdsoar-help@umd.edu.

     

     

    My Account

    LoginRegister

    Browse

    This CollectionBy Issue DateTitlesAuthorsSubjectsType

    Statistics

    View Usage Statistics


    Albin O. Kuhn Library & Gallery
    University of Maryland, Baltimore County
    1000 Hilltop Circle
    Baltimore, MD 21250
    www.umbc.edu/scholarworks

    Contact information:
    Email: scholarworks-group@umbc.edu
    Phone: 410-455-3544


    If you wish to submit a copyright complaint or withdrawal request, please email mdsoar-help@umd.edu.