Relationship Between Inter-individual Variation in Circadian Rhythm and Sociality: A case Study Using Halictid Bees
Loading...
Links to Files
Collections
Author/Creator ORCID
Date
2021-09-06
Type of Work
Department
Program
Citation of Original Publication
Rights
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
CC BY-NC-ND 4.0 DEED Attribution-NonCommercial-NoDerivs 4.0 International
CC BY-NC-ND 4.0 DEED Attribution-NonCommercial-NoDerivs 4.0 International
Subjects
Abstract
The bee family Halictidae is considered to be an optimal model for the study of social evolution due to its remarkable range of social behaviors. Past studies in circadian rhythms suggest that social species may express more diversity in circadian behaviors than solitary species. However, these previous studies did not make appropriate taxonomic comparisons. To further explore the link between circadian rhythms and sociality, we examine four halictid species with different degrees of sociality, three social species of Lasioglossum, one from Greece and two from Puerto Rico, and a solitary species of Systropha from Greece. Based on our previous observations, we hypothesized that species with greater degree of sociality will show greater inter-individual variation in circadian rhythms than solitary species. We observed distinct differences in their circadian behavior that parallel differences across sociality, where the most social species expressed the highest inter-individual variation. We predict that circadian rhythm differences will be informative of sociality across organisms.