Calibrating the system dynamics of LISA Pathfinder

dc.contributor.authorArmano, M.
dc.contributor.authorAudley, H.
dc.contributor.authorBaird, J.
dc.contributor.authorBinetruy, P.
dc.contributor.authorBorn, M.
dc.contributor.authorBortoluzzi, D.
dc.contributor.authorCastelli, Eleonora
dc.contributor.authorCavalleri, A.
dc.contributor.authorCesarini, A.
dc.contributor.authorCruise, A. M.
dc.contributor.authorDanzmann, K.
dc.contributor.authorde Deus Silva, M.
dc.contributor.authorDiepholz, I.
dc.contributor.authorDixon, G.
dc.contributor.authorDolesi, R.
dc.contributor.authorFerraioli, L.
dc.contributor.authorFerroni, V.
dc.contributor.authorFitzsimons, E. D.
dc.contributor.authorFreschi, M.
dc.contributor.authorGesa, L.
dc.contributor.authorGibert, F.
dc.contributor.authorGiardini, D.
dc.contributor.authorGiusteri, R.
dc.contributor.authorGrimani, C.
dc.contributor.authorGrzymisch, J.
dc.contributor.authorHarrison, I.
dc.contributor.authorHeinzel, G.
dc.contributor.authorHewitson, M.
dc.contributor.authorHollington, D.
dc.contributor.authorHoyland, D.
dc.contributor.authorHueller, M.
dc.contributor.authorInchauspé, H.
dc.contributor.authorJennrich, O.
dc.contributor.authorJetzer, P.
dc.contributor.authorKarnesis, N.
dc.contributor.authorKaune, B.
dc.contributor.authorKorsakova, N.
dc.contributor.authorKillow, C. J.
dc.contributor.authorLobo, J. A.
dc.contributor.authorLloro, I.
dc.contributor.authorLiu, L.
dc.contributor.authorLópez-Zaragoza, J. P.
dc.contributor.authorMaarschalkerweerd, R.
dc.contributor.authorMance, D.
dc.contributor.authorMeshksar, N.
dc.contributor.authorMartín, V.
dc.contributor.authorMartin-Polo, L.
dc.contributor.authorMartino, J.
dc.contributor.authorMartin-Porqueras, F.
dc.contributor.authorMateos, I.
dc.contributor.authorMcNamara, P. W.
dc.contributor.authorMendes, J.
dc.contributor.authorMendes, L.
dc.contributor.authorNofrarias, M.
dc.contributor.authorPaczkowski, S.
dc.contributor.authorPerreur-Lloyd, M.
dc.contributor.authorPetiteau, A.
dc.contributor.authorPivato, P.
dc.contributor.authorPlagnol, E.
dc.contributor.authorRamos-Castro, J.
dc.contributor.authorReiche, J.
dc.contributor.authorRobertson, D. I.
dc.contributor.authorRivas, F.
dc.contributor.authorRussano, G.
dc.contributor.authorSlutsky, J.
dc.contributor.authorSopuerta, C. F.
dc.contributor.authorSumner, T.
dc.contributor.authorTexier, D.
dc.contributor.authorThorpe, J. I.
dc.contributor.authorVetrugno, D.
dc.contributor.authorVitale, S.
dc.contributor.authorWanner, G.
dc.contributor.authorWard, H.
dc.contributor.authorWass, P.
dc.contributor.authorWeber, W. J.
dc.contributor.authorWissel, L.
dc.contributor.authorWittchen, A.
dc.contributor.authorZweifel, P.
dc.date.accessioned2025-08-13T20:14:16Z
dc.date.issued2018-06-12
dc.description.abstractLISA Pathfinder (LPF) was a European Space Agency mission with the aim to test key technologies for future space-borne gravitational-wave observatories like LISA. The main scientific goal of LPF was to demonstrate measurements of differential acceleration between free-falling test masses at the sub-femto-g level, and to understand the residual acceleration in terms of a physical model of stray forces, and displacement readout noise. A key step toward reaching the LPF goals was the correct calibration of the dynamics of LPF, which was a three-body system composed by two test-masses enclosed in a single spacecraft, and subject to control laws for system stability. In this work, we report on the calibration procedures adopted to calculate the residual differential stray force per unit mass acting on the two test-masses in their nominal positions. The physical parameters of the adopted dynamical model are presented, together with their role on LPF performance. The analysis and results of these experiments show that the dynamics of the system was accurately modeled and the dynamical parameters were stationary throughout the mission. Finally, the impact and importance of calibrating system dynamics for future space-based gravitational wave observatories is discussed.
dc.description.sponsorshipThis work has been made possible by the LISA Pathfinder mission, which is part of the space-science programme of the European Space Agency. The French contribution has been supported by the CNES (Accord Specific de projet CNES 1316634/CNRS 103747), the CNRS, the Observatoire de Paris and the University Paris Diderot. E. Plagnol and H. Inchausp´e would also like to acknowledge the financial support of the UnivEarthS Labex program at Sorbonne Paris Cit´e (ANR-10-LABX 0023 and ANR-11-IDEX-0005-02). The Albert-Einstein Institut acknowledges the support of the German Space Agency, DLR. The work is supported by the Federal Ministry for Economic Affairs and Energy based on a resolution of the German Bundestag (FKZ 50OQ0501 and FKZ 50OQ1601). The Italian contribution has been supported by Agenzia Spaziale Italiana and Istituto Nazionale di Fisica Nucleare. The Spanish contribution has been supported by contracts AYA2010-15709 (MICINN), ESP2013-47637-P, 2017-SGR-1469 (AGAUR, Catalan Government), and ESP2015-67234-P (MINECO). M. Nofrarias acknowledges support from Fundacion General CSIC (Programa ComFuturo). F. Rivas acknowledges an FPI contract (MINECO). The Swiss contribution acknowledges the support of the Swiss Space Office (SSO) via the PRODEX Programme of ESA. L. Ferraioli acknowledges the support of the Swiss National Science Foundation. N. Meshskar acknowledges the support of the ETH Zurich (ETH-05 16-2). The UK groups wish to acknowledge support from the United Kingdom Space Agency (UKSA), the University of Glasgow, the University of Birmingham, Imperial College, and the Scottish Universities Physics Alliance (SUPA). J. I. Thorpe and J. Slutsky acknowledge the support of the US National Aeronautics and Space Administration (NASA). N. Korsakova would like to acknowledge the support of the Newton International Fellowship from the Royal Society
dc.description.urihttps://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.122002
dc.format.extent14 pages
dc.genrejournal articles
dc.identifierdoi:10.13016/m21e8s-7jaj
dc.identifier.citationArmano, M., H. Audley, J. Baird, J. Slutsky, J. I. Thorpe, E. Castelli, et al. “Calibrating the System Dynamics of LISA Pathfinder.” Physical Review D 97, no. 12 (2018): 122002. https://doi.org/10.1103/PhysRevD.97.122002.
dc.identifier.urihttps://doi.org/10.1103/PhysRevD.97.122002
dc.identifier.urihttp://hdl.handle.net/11603/39725
dc.language.isoen
dc.publisherAPS
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Center for Space Sciences and Technology (CSST) / Center for Research and Exploration in Space Sciences & Technology II (CRSST II)
dc.rightsThis work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
dc.rightsPublic Domain
dc.rights.urihttps://creativecommons.org/publicdomain/mark/1.0/
dc.titleCalibrating the system dynamics of LISA Pathfinder
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0002-4429-0682

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevD97122002.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format