Combing Visible and Infrared Spectral Tests for Dust Identification
Loading...
Links to Files
Permanent Link
Author/Creator
Author/Creator ORCID
Date
2016-06-06
Department
Program
Citation of Original Publication
Rights
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain Mark 1.0
Public Domain Mark 1.0
Subjects
Abstract
The MODIS Dark Target aerosol algorithm over Ocean (DT-O) uses spectral reflectance in the visible, near-IR and SWIR wavelengths to determine aerosol optical depth (AOD) and Angstrom Exponent (AE). Even though DT-O does have "dust-like" models to choose from, dust is not identified a priori before inversion. The "dust-like" models are not true "dust models" as they are spherical and do not have enough absorption at short wavelengths, so retrieved AOD and AE for dusty regions tends to be biased. The inference of "dust" is based on postprocessing criteria for AOD and AE by users. Dust aerosol has known spectral signatures in the near-UV (Deep blue), visible, and thermal infrared (TIR) wavelength regions. Multiple dust detection algorithms have been developed over the years with varying detection capabilities. Here, we test a few of these dust detection algorithms, to determine whether they can be useful to help inform the choices made by the DT-O algorithm. We evaluate the following methods: The multichannel imager (MCI) algorithm uses spectral threshold tests in (0.47, 0.64, 0.86, 1.38, 2.26, 3.9, 11.0, 12.0 micrometer) channels and spatial uniformity test [Zhao et al., 2010]. The NOAA dust aerosol index (DAI) uses spectral contrast in the blue channels (412nm and 440nm) [Ciren and Kundragunta, 2014]. The MCI is already included as tests within the "Wisconsin" (MOD35) Cloud mask algorithm.