A compressed sensing approach to hyperspectral classification

dc.contributor.authorPorta, C. J. Della
dc.contributor.authorLampe, Bernard
dc.contributor.authorBekit, Adam
dc.contributor.authorChang, Chein-I
dc.date.accessioned2019-10-03T14:05:15Z
dc.date.available2019-10-03T14:05:15Z
dc.date.issued2019-05-13
dc.descriptionSPIE Defense + Commercial Sensing, 2019, Baltimore, Maryland, United States.en_US
dc.description.abstractAlthough hyperspectral technology has continued to improve over the years, its use is often still limited due to size, weight and power (SWaP) constraints. One of the more taxing requirements, is the need to sample a large number of very fine spectral bands. The prohibitively large size of hyperpsectral data creates challenges in both archival and processing. Compressive sensing is an enabling technology for reducing the overall processing and SWaP requirements. This paper explores the viability of performing classification on sparsely sampled hyperspectral data without the need of performing sparse reconstruction. In particular, a spatial-spectral classifier based on a Support Vector Machine (SVM) and edgepreserving filters (EPFs) is applied directly in the compressed domain. The well-known Restricted Isometry Property (RIP) and a random spectral sampling strategy are used to evaluate analytically, the error between the compressed classifier and the full band classifier. The mathematical analysis presented shows that the classification error can be expressed in terms of the Restricted Isometry Constant (RIC) and that it is indeed possible to achieve full classification performance in the compressed domain, given that sufficient sampling conditions are met. A set of experiments are performed to empirically demonstrate compressed classification. Images from both the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) are examined to draw inferences on the impact of scene complexity. The results presented clearly demonstrate the possibility of compressed classification and lead to several open research questions to be addressed in future work.en_US
dc.description.urihttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/10989/1098908/A-compressed-sensing-approach-to-hyperspectral-classification/10.1117/12.2518382.full?SSO=1en_US
dc.format.extent10 pagesen_US
dc.genreconference papers and proceedingsen_US
dc.identifierdoi:10.13016/m2hr8g-hssq
dc.identifier.citationC. J. Della Porta, Bernard Lampe, Adam Bekit, and Chein-I Chang "A compressed sensing approach to hyperspectral classification", Proc. SPIE 10989, Big Data: Learning, Analytics, and Applications, 1098908 (13 May 2019); https://doi.org/10.1117/12.2518382en_US
dc.identifier.urihttps://doi.org/10.1117/12.2518382
dc.identifier.urihttp://hdl.handle.net/11603/14966
dc.language.isoen_USen_US
dc.publisherSPIEen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.rights© 2019 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
dc.subjectcompressive sensing hyperspectral classificationen_US
dc.subjectsupport vector machinesen_US
dc.titleA compressed sensing approach to hyperspectral classificationen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1098908.pdf
Size:
454.25 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: