The impact of dimensionality reduction of ion counts distributions on preserving moments, with applications to data compression
dc.contributor.author | da Silva, Daniel | |
dc.contributor.author | Bard, C. | |
dc.contributor.author | Dorelli, J. | |
dc.contributor.author | Kirk, M. | |
dc.contributor.author | Thompson, B. | |
dc.contributor.author | Shuster, J. | |
dc.date.accessioned | 2023-11-30T17:59:30Z | |
dc.date.available | 2023-11-30T17:59:30Z | |
dc.date.issued | 2023-01-04 | |
dc.description.abstract | The field of space physics has a long history of utilizing dimensionality reduction methods to distill data, including but not limited to spherical harmonics, the Fourier Transform, and the wavelet transform. Here, we present a technique for performing dimensionality reduction on ion counts distributions from the Multiscale Mission/Fast Plasma Investigation (MMS/FPI) instrument using a data-adaptive method powered by neural networks. This has applications to both feeding low-dimensional parameterizations of the counts distributions into other machine learning algorithms, and the problem of data compression to reduce transmission volume for space missions. The algorithm presented here is lossy, and in this work, we present the technique of validating the reconstruction performance with calculated plasma moments under the argument that preserving the moments also preserves fluid-level physics, and in turn a degree of scientific validity. The method presented here is an improvement over other lossy compressions in loss-tolerant scenarios like the Multiscale Mission/Fast Plasma Investigation Fast Survey or in non-research space weather applications. | |
dc.description.sponsorship | Center for Helioanalytics Seed Project Grant. The authors would like to thank the NASA/GSFC Center for Heliophysics for seed funding to complete this project, the NASA/GSFC Heliocloud project for GPU and cloud resources, and the Helionauts community (Sam Schonfeld in particular) for supportive discussion. MMS/FPI flight data used for this publication is available from the MMS Science Data Center, located online at https://lasp.colorado.edu/mms/sdc/public/. | |
dc.description.uri | https://www.frontiersin.org/articles/10.3389/fspas.2022.1056508/full | |
dc.format.extent | 12 pages | |
dc.genre | journal articles | |
dc.identifier.citation | da Silva D, Bard C, Dorelli J, Kirk M, Thompson B and Shuster J (2023) The impact of dimensionality reduction of ion counts distributions on preserving moments, with applications to data compression. Front. Astron. Space Sci. 9:1056508. doi: 10.3389/fspas.2022.1056508 | |
dc.identifier.uri | https://doi.org/10.3389/fspas.2022.1056508 | |
dc.identifier.uri | http://hdl.handle.net/11603/30948 | |
dc.language.iso | en_US | |
dc.publisher | Frontiers | |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Goddard Planetary Heliophysics Institute (GPHI) | |
dc.relation.ispartof | UMBC Faculty Collection | |
dc.rights | This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. | |
dc.rights | Public Domain Mark 1.0 | en |
dc.rights.uri | https://creativecommons.org/publicdomain/mark/1.0/ | |
dc.title | The impact of dimensionality reduction of ion counts distributions on preserving moments, with applications to data compression | |
dc.type | Text | |
dcterms.creator | https://orcid.org/0000-0001-7537-3539 |