Extending “Deep Blue” aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies
dc.contributor.author | Sayer, Andrew | |
dc.contributor.author | Hsu, N. C. | |
dc.contributor.author | Bettenhausen, C. | |
dc.contributor.author | Lee, J. | |
dc.contributor.author | Redemann, J. | |
dc.contributor.author | Schmid, B. | |
dc.contributor.author | Shinozuka, Y. | |
dc.date.accessioned | 2024-04-29T17:01:06Z | |
dc.date.available | 2024-04-29T17:01:06Z | |
dc.date.issued | 2016-04-18 | |
dc.description.abstract | Cases of absorbing aerosols above clouds (AACs), such as smoke or mineral dust, are omitted from most routinely processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar sensors, for incorporation into a future version of the “Deep Blue” AOD data product. Detailed retrieval simulations suggest that these sensors should be able to determine AAC AOD with a typical level of uncertainty ~25–50% (with lower uncertainties for more strongly absorbing aerosol types) and COD with an uncertainty ~10–20%, if an appropriate aerosol optical model is known beforehand. Errors are larger, particularly if the aerosols are only weakly absorbing, if the aerosol optical properties are not known, and the appropriate model to use must also be retrieved. Actual retrieval errors are also compared to uncertainty envelopes obtained through the optimal estimation (OE) technique; OE-based uncertainties are found to be generally reasonable for COD but larger than actual retrieval errors for AOD, due in part to difficulties in quantifying the degree of spectral correlation of forward model error. The algorithm is also applied to two MODIS scenes (one smoke and one dust) for which near-coincident NASA Ames Airborne Tracking Sun photometer (AATS) data were available to use as a ground truth AOD data source, and found to be in good agreement, demonstrating the validity of the technique with real observations. | |
dc.description.sponsorship | Further information about Deep Blue is available at http://deepblue.gsfc.nasa.gov. The NASA Ames Sunphotometer-Satellite Team page is https://earthscience.arc.nasa.gov/sunsat. This research was funded under the NASA ROSES program. AERONET data are available from http://aeronet.gsfc.nasa.gov/; the AERONET team and PIs, led by B. Holben, are thanked for the creation and stewardship of these data records. CPL data are available from http://cpl.gsfc.nasa.gov/. R. Frey and K. Meyer are thanked for their useful discussions about the MODIS cloud data products. Z. Zhang and two anonymous reviewers are thanked for their insightful reviews. | |
dc.description.uri | https://onlinelibrary.wiley.com/doi/abs/10.1002/2015JD024729 | |
dc.format.extent | 25 pages | |
dc.genre | journal articles | |
dc.identifier | doi:10.13016/m2auvr-njkk | |
dc.identifier.citation | Sayer, A. M., N. C. Hsu, C. Bettenhausen, J. Lee, J. Redemann, B. Schmid, and Y. Shinozuka. “Extending ‘Deep Blue’ Aerosol Retrieval Coverage to Cases of Absorbing Aerosols above Clouds: Sensitivity Analysis and First Case Studies.” Journal of Geophysical Research: Atmospheres 121, no. 9 (2016): 4830–54. https://doi.org/10.1002/2015JD024729. | |
dc.identifier.uri | https://doi.org/10.1002/2015JD024729 | |
dc.identifier.uri | http://hdl.handle.net/11603/33398 | |
dc.language.iso | en_US | |
dc.publisher | AGU | |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC GESTAR II | |
dc.rights | This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. | |
dc.rights | Public Domain | |
dc.rights.uri | https://creativecommons.org/publicdomain/mark/1.0/ | |
dc.subject | Aerosol | |
dc.subject | Cloud | |
dc.subject | MODIS | |
dc.subject | Retrieval | |
dc.title | Extending “Deep Blue” aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies | |
dc.type | Text | |
dcterms.creator | https://orcid.org/0000-0001-9149-1789 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- JGR_Atmospheres_2016_Sayer_Extending_Deep_Blue_aerosol_retrieval_coverage_to_cases_of_absorbing_aerosols_above.pdf
- Size:
- 3.5 MB
- Format:
- Adobe Portable Document Format