Type Prediction for Efficient Coreference Resolution in Heterogeneous Semantic Graphs

dc.contributor.authorSleeman, Jennifer
dc.contributor.authorFinin, Tim
dc.date.accessioned2018-11-02T16:01:56Z
dc.date.available2018-11-02T16:01:56Z
dc.date.issued2013-09-16
dc.descriptionProceedings of the Seventh IEEE International Conference on Semantic Computingen_US
dc.description.abstractWe describe an approach for performing entity type recognition in heterogeneous semantic graphs in order to reduce the computational cost of performing coreference resolution. Our research specifically addresses the problem of working with semi-structured text that uses ontologies that are not informative or not known. This problem is similar to coreference resolution in unstructured text, where entities and their types are identified using contextual information and linguistic-based analysis. Semantic graphs are semi-structured with very little contextual information and trivial grammars that do not convey additional information. In the absence of known ontologies, performing coreference resolution can be challenging. Our work uses a supervised machine learning algorithm and entity type dictionaries to map attributes to a common attribute space. We evaluated the approach in experiments using data from Wikipedia, Freebase and Arnetminer.en_US
dc.description.urihttps://ieeexplore.ieee.org/document/6693497en_US
dc.format.extent8 pagesen_US
dc.genreconference papers and proceedings pre-printen_US
dc.identifierdoi:10.13016/M29W0933X
dc.identifier.citationJennifer Sleeman and Tim Finin, Type Prediction for Efficient Coreference Resolution in Heterogeneous Semantic Graphs, 7th IEEE Int. Conf. on Semantic Computing, Sept. 2013, DOI: 10.1109/ICSC.2013.22en_US
dc.identifier.uri10.1109/ICSC.2013.22
dc.identifier.urihttp://hdl.handle.net/11603/11848
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.rights© 2013 IEEE
dc.subjectentity resolutionen_US
dc.subjectSemantic Weben_US
dc.subjectResource Description Framework (RDF)en_US
dc.subjectSemantic Graphsen_US
dc.subjectUMBC Ebiquity Research Groupen_US
dc.titleType Prediction for Efficient Coreference Resolution in Heterogeneous Semantic Graphsen_US
dc.typeTexten_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
684.pd.pdf
Size:
3.45 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: