A Deep learning method for event recognition in CALET data
| dc.contributor.author | CALET Collaboration | |
| dc.contributor.author | Picquenot, Adrien | |
| dc.contributor.author | Negro, Michela | |
| dc.contributor.author | Cannady, Nicholas | |
| dc.contributor.author | Hams, Thomas | |
| dc.contributor.author | Adriani, O. | |
| dc.contributor.author | Akaike, Y. | |
| dc.contributor.author | Asano, K. | |
| dc.contributor.author | et al. | |
| dc.date.accessioned | 2025-08-13T20:14:41Z | |
| dc.date.issued | 2025-07-22 | |
| dc.description | ICRC 2025 The Astroparticle Physics Conference. Geneva, Switzerland, 14-24, July 2024. Authors - CALET Collaboration: O. Adriani,1,2 Y. Akaike,3,4 K. Asano,5 Y. Asaoka,5 E. Berti,2,6 P. Betti, 2,6 G. Bigongiari,7,8 W.R. Binns,9 M. Bongi,1,2 P. Brogi,7,8 A. Bruno,10 N. Cannady,11 G. Castellini,6 C. Checchia,7,8 M.L. Cherry,12 G.Collazuol,13,14 G.A. de Nolfo,10 K. Ebisawa,15 A. W. Ficklin,12 H. Fuke,15 S. Gonzi,1,2,6 T.G. Guzik,12 T. Hams,16 K.Hibino,17 M. Ichimura,18 M.H.Israel,9 K. Kasahara,19 J. Kataoka,20 R. Kataoka,21 Y. Katayose,22 C. Kato,23 N. Kawanaka,24,25 Y. Kawakubo,26 K. Kobayashi,3,4 K. Kohri,25,27 H.S. Krawczynski, 9 J.F. Krizmanic,11 P. Maestro,7,8 P.S. Marrocchesi,7,8 M. Mattiazzi,13,14 A.M.Messineo,8,28 J.W. Mitchell,11 S. Miyake,29 A.A. Moiseev, 11,30,31 M. Mori,32 N. Mori,2 H.M. Motz,33 K. Munakata,23 S. Nakahira,15 J.Nishimura,15 M.Negro,12 S. Okuno,17 J.F. Ormes,34 S. Ozawa,35 L. Pacini,2,6 P. Papini,2 B.F. Rauch,9 S.B. Ricciarini,2,6 K. Sakai,36 T. Sakamoto,26 M. Sasaki, 11,30,31 Y. Shimizu,17 A. Shiomi,37 P. Spillantini,1 F. Stolzi,7,8 S. Sugita,26 A. Sulaj, 7,8 M.Takita,5 T.Tamura,17 T.Terasawa,5 S.Torii,3 Y.Tsunesada,38,39 Y.Uchihori,40 E. Vannuccini,2 J.P.Wefel,12 K.Yamaoka,41 S.Yanagita,42 A.Yoshida,26 K.Yoshida,19 and W. V. Zober 9 | |
| dc.description.abstract | In this study we:- Apply unsupervised machine learning methods to classify CREs from CALET data. the goal is to minimize dependence on MC simulations and pursue a data-driven classification.- We evaluate algorithm performance using simulations, then apply the optimized models directly to real data. | |
| dc.description.uri | https://indico.cern.ch/event/1258933/contributions/6486501/ | |
| dc.format.extent | 32 pages | |
| dc.genre | conference papers and proceedings | |
| dc.genre | presentations (communicative events) | |
| dc.identifier | doi:10.13016/m2xz5u-egwa | |
| dc.identifier.uri | http://hdl.handle.net/11603/39806 | |
| dc.language.iso | en | |
| dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
| dc.relation.ispartof | UMBC Center for Space Sciences and Technology (CSST) / Center for Research and Exploration in Space Sciences & Technology II (CRSST II) | |
| dc.relation.ispartof | UMBC Faculty Collection | |
| dc.rights | This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. | |
| dc.rights | Public Domain | |
| dc.rights.uri | https://creativecommons.org/publicdomain/mark/1.0/ | |
| dc.title | A Deep learning method for event recognition in CALET data | |
| dc.type | Text |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- ICRCpresentationAdrienPicquenot.pdf
- Size:
- 2.86 MB
- Format:
- Adobe Portable Document Format
