Smile-shaped electron gradient distributions observed during magnetic reconnection at Earth’s magnetopause

Department

Program

Citation of Original Publication

Shuster, Jason R., Naoki Bessho, John C. Dorelli, et al. “Smile-Shaped Electron Gradient Distributions Observed during Magnetic Reconnection at Earth’s Magnetopause.” Communications Physics, January 10, 2026. https://doi.org/10.1038/s42005-026-02489-8.

Rights

This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain

Abstract

The electron diffusion region is central to NASA’s Magnetospheric Multiscale (MMS) mission to understand collisionless magnetic reconnection, the plasma physics phenomenon crucial to triggering the explosive energy release of solar flares, powering auroras generated in planetary magnetospheres, and driving sawtooth crashes in laboratory fusion devices. Inside the diffusion region, electron velocity distributions exhibit highly-structured velocity-space signatures critical for elucidating the kinetic mechanisms fueling reconnection. Recent multi-spacecraft analysis techniques enabled observational study of the spatial gradient in the electron velocity distribution, which has been reported in electron-scale current layers to explain the kinetic origins of electron pressure gradients. However, electron gradient distributions have not yet been investigated inside the reconnection diffusion region. In this work, we discover that electron gradient distributions exhibit a smile-shaped velocity-space structure in the electron diffusion region of asymmetric magnetic reconnection at Earth’s magnetopause. Characterizing the nature and prevalence of these smile-shaped electron gradient distributions offers a kinetic perspective into how electrons spatially evolve to provide the net electron pressure divergence that self-consistently supports non-ideal electric fields in the electron diffusion region of magnetopause reconnection. These results are relevant to space, astrophysical, and laboratory plasma communities working to understand the long-standing mystery of collisionless magnetic reconnection.